Articles | Volume 19, issue 6
https://doi.org/10.5194/acp-19-3905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-3905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event
Vanessa Selimovic
Department of Chemistry, University of Montana, Missoula, MT 59812, USA
Robert J. Yokelson
CORRESPONDING AUTHOR
Department of Chemistry, University of Montana, Missoula, MT 59812, USA
Gavin R. McMeeking
Handix Scientific LLC, 5485 Conestoga Court, Suite 104B, Boulder, CO 80301, USA
Sarah Coefield
Missoula City-County Health Department, Missoula, MT 59801, USA
Related authors
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
James M. Roberts, Chelsea E. Stockwell, Robert J. Yokelson, Joost de Gouw, Yong Liu, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, Kyle J. Zarzana, Steven S. Brown, Cristina Santin, Stefan H. Doerr, and Carsten Warneke
Atmos. Chem. Phys., 20, 8807–8826, https://doi.org/10.5194/acp-20-8807-2020, https://doi.org/10.5194/acp-20-8807-2020, 2020
Short summary
Short summary
We measured total reactive nitrogen, Nr, in lab fires from western North American fuels, along with measurements of individual nitrogen compounds. We measured the amount of N that gets converted to inactive compounds (avg. 70 %), and the amount that is accounted for by individual species (85 % of remaining N). We provide guidelines for how the reactive nitrogen is distributed among individual compounds such as NOx and ammonia. This will help estimates and predictions of wildfire emissions.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Coty N. Jen, Lindsay E. Hatch, Vanessa Selimovic, Robert J. Yokelson, Robert Weber, Arantza E. Fernandez, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019, https://doi.org/10.5194/acp-19-1013-2019, 2019
Short summary
Short summary
Wildfires in the western US are occurring more frequently and burning larger land areas. Smoke from these fires will play a greater role in regional air quality and atmospheric chemistry than in the past. To help fire and climate modelers and atmospheric experimentalists better understand how smoke impacts the environment, we have separated, identified, classified, and quantified the thousands of organic compounds found in smoke and related their amounts emitted to fire conditions.
Kyle J. Zarzana, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, William P. Dubé, Robert J. Yokelson, Carsten Warneke, Joost A. de Gouw, James M. Roberts, and Steven S. Brown
Atmos. Chem. Phys., 18, 15451–15470, https://doi.org/10.5194/acp-18-15451-2018, https://doi.org/10.5194/acp-18-15451-2018, 2018
Short summary
Short summary
Emissions of glyoxal and methylglyoxal from fuels common to the western United States were measured using cavity-enhanced spectroscopy, which provides a more selective measurement of those compounds than was previously available. Primary emissions of glyoxal were lower than previously reported and showed variability between the different fuel groups. However, emissions of glyoxal relative to formaldehyde were constant across almost all the fuel groups at 6 %–7 %.
Kanako Sekimoto, Abigail R. Koss, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Carsten Warneke, Robert J. Yokelson, James M. Roberts, and Joost de Gouw
Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, https://doi.org/10.5194/acp-18-9263-2018, 2018
Short summary
Short summary
We found that on average 85 % of the VOC emissions from biomass burning across various fuels representative of the western US (including various coniferous and chaparral fuels) can be explained using only two emission profiles: (i) a high-temperature pyrolysis profile and (ii) a low-temperature pyrolysis profile. The high-temperature profile is quantitatively similar between different fuel types (r2 > 0.84), and likewise for the low-temperature profile.
Chelsea E. Stockwell, Agnieszka Kupc, Bartłomiej Witkowski, Ranajit K. Talukdar, Yong Liu, Vanessa Selimovic, Kyle J. Zarzana, Kanako Sekimoto, Carsten Warneke, Rebecca A. Washenfelder, Robert J. Yokelson, Ann M. Middlebrook, and James M. Roberts
Atmos. Meas. Tech., 11, 2749–2768, https://doi.org/10.5194/amt-11-2749-2018, https://doi.org/10.5194/amt-11-2749-2018, 2018
Short summary
Short summary
This work investigates the total conversion of particle-bound nitrogen and organic carbon across platinum and molybdenum catalysts followed by NO–O3 chemiluminescence and nondispersive infrared CO2 detection. We show the instrument is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation through comparisons with a calibrated particle-into-liquid sampler coupled to an electrospray ionization source of a mass spectrometer.
Abigail R. Koss, Kanako Sekimoto, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Jose L. Jimenez, Jordan Krechmer, James M. Roberts, Carsten Warneke, Robert J. Yokelson, and Joost de Gouw
Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, https://doi.org/10.5194/acp-18-3299-2018, 2018
Short summary
Short summary
Non-methane organic gases (NMOGs) were detected by proton-transfer-reaction mass spectrometry (PTR-ToF) during an extensive laboratory characterization of wildfire emissions. Identifications for PTR-ToF ion masses are proposed and supported by a combination of techniques. Overall excellent agreement with other instrumentation is shown. Scalable emission factors and ratios are reported for many newly reported reactive species. An analysis of chemical characteristics is presented.
Vanessa Selimovic, Robert J. Yokelson, Carsten Warneke, James M. Roberts, Joost de Gouw, James Reardon, and David W. T. Griffith
Atmos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-18-2929-2018, https://doi.org/10.5194/acp-18-2929-2018, 2018
Short summary
Short summary
We burned fuels representing western US wildfires in large-scale laboratory simulations to generate relevant emissions as confirmed by lab–field comparison. We report emission factors (EFs) for light scattering and absorption and BC along with SSA at 870 and 401 nm and AAE. We report EF for 22 trace gases that are major inorganic and organic emissions from flaming and smoldering. We report trace gas EF for species rarely (NH3) or not yet measured (e.g., HONO, acetic acid) for real US wildfires.
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary
Short summary
In this study, we use a new laser imaging nephelometer to measure the bulk aerosol scattering phase function for biomass burning aerosol from controlled fires. By comparing measurements to models for spherical and fractal particles, we demonstrate that the dominant morphology varies by fuel type. This instrument has unique capabilities to directly measure how morphology affects optical properties, and can be used in the future for important validations of remote sensing retrievals.
Jiumeng Liu, Peng Lin, Alexander Laskin, Julia Laskin, Shawn M. Kathmann, Matthew Wise, Ryan Caylor, Felisha Imholt, Vanessa Selimovic, and John E. Shilling
Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, https://doi.org/10.5194/acp-16-12815-2016, 2016
Short summary
Short summary
Light absorbing organic aerosols (BrC) absorb sunlight thereby influencing climate; however, understanding of the link between their optical properties and environmental variables remains limited. Our chamber experiment results suggest that variables including NOx concentration, RH level, and photolysis time have considerable influence on secondary BrC optical properties. The results contribute to a more accurate characterization of the impacts of aerosols on climate, especially in urban areas.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1780, https://doi.org/10.5194/egusphere-2024-1780, 2024
Short summary
Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was stationed in the East River Watershed in CO, USA to study the variability of aerosol in mountainous terrain. We found that aerosol variability was related to elevation differences and the variability changed seasonally. This suggests that model accuracy could be inconsistent over different seasons in complex terrain. This work provides a blueprint for future studies in other mountainous regions.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
James M. Roberts, Chelsea E. Stockwell, Robert J. Yokelson, Joost de Gouw, Yong Liu, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, Kyle J. Zarzana, Steven S. Brown, Cristina Santin, Stefan H. Doerr, and Carsten Warneke
Atmos. Chem. Phys., 20, 8807–8826, https://doi.org/10.5194/acp-20-8807-2020, https://doi.org/10.5194/acp-20-8807-2020, 2020
Short summary
Short summary
We measured total reactive nitrogen, Nr, in lab fires from western North American fuels, along with measurements of individual nitrogen compounds. We measured the amount of N that gets converted to inactive compounds (avg. 70 %), and the amount that is accounted for by individual species (85 % of remaining N). We provide guidelines for how the reactive nitrogen is distributed among individual compounds such as NOx and ammonia. This will help estimates and predictions of wildfire emissions.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday
Atmos. Chem. Phys., 19, 8209–8228, https://doi.org/10.5194/acp-19-8209-2019, https://doi.org/10.5194/acp-19-8209-2019, 2019
Short summary
Short summary
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, the capital city of Nepal. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and found that they have significant impacts on air quality surrounding the valley. Our results highlight the importance of improving local emissions estimates for air quality modeling.
Coty N. Jen, Lindsay E. Hatch, Vanessa Selimovic, Robert J. Yokelson, Robert Weber, Arantza E. Fernandez, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019, https://doi.org/10.5194/acp-19-1013-2019, 2019
Short summary
Short summary
Wildfires in the western US are occurring more frequently and burning larger land areas. Smoke from these fires will play a greater role in regional air quality and atmospheric chemistry than in the past. To help fire and climate modelers and atmospheric experimentalists better understand how smoke impacts the environment, we have separated, identified, classified, and quantified the thousands of organic compounds found in smoke and related their amounts emitted to fire conditions.
Kyle J. Zarzana, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, William P. Dubé, Robert J. Yokelson, Carsten Warneke, Joost A. de Gouw, James M. Roberts, and Steven S. Brown
Atmos. Chem. Phys., 18, 15451–15470, https://doi.org/10.5194/acp-18-15451-2018, https://doi.org/10.5194/acp-18-15451-2018, 2018
Short summary
Short summary
Emissions of glyoxal and methylglyoxal from fuels common to the western United States were measured using cavity-enhanced spectroscopy, which provides a more selective measurement of those compounds than was previously available. Primary emissions of glyoxal were lower than previously reported and showed variability between the different fuel groups. However, emissions of glyoxal relative to formaldehyde were constant across almost all the fuel groups at 6 %–7 %.
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary
Short summary
Size distributions and emission factors of submicron aerosol were quantified using online techniques for a variety of common but under-sampled combustion sources in South Asia: wood and dung cooking fires, groundwater pumps, brick kilns, trash burning, and open burning of crop residues. Optical properties (brown carbon light absorption and the absorption Ångström exponent, AAE) of the emissions were also investigated. Contextual comparisons to the literature and other NAMaSTE results were made.
Kanako Sekimoto, Abigail R. Koss, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Carsten Warneke, Robert J. Yokelson, James M. Roberts, and Joost de Gouw
Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, https://doi.org/10.5194/acp-18-9263-2018, 2018
Short summary
Short summary
We found that on average 85 % of the VOC emissions from biomass burning across various fuels representative of the western US (including various coniferous and chaparral fuels) can be explained using only two emission profiles: (i) a high-temperature pyrolysis profile and (ii) a low-temperature pyrolysis profile. The high-temperature profile is quantitatively similar between different fuel types (r2 > 0.84), and likewise for the low-temperature profile.
Chelsea E. Stockwell, Agnieszka Kupc, Bartłomiej Witkowski, Ranajit K. Talukdar, Yong Liu, Vanessa Selimovic, Kyle J. Zarzana, Kanako Sekimoto, Carsten Warneke, Rebecca A. Washenfelder, Robert J. Yokelson, Ann M. Middlebrook, and James M. Roberts
Atmos. Meas. Tech., 11, 2749–2768, https://doi.org/10.5194/amt-11-2749-2018, https://doi.org/10.5194/amt-11-2749-2018, 2018
Short summary
Short summary
This work investigates the total conversion of particle-bound nitrogen and organic carbon across platinum and molybdenum catalysts followed by NO–O3 chemiluminescence and nondispersive infrared CO2 detection. We show the instrument is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation through comparisons with a calibrated particle-into-liquid sampler coupled to an electrospray ionization source of a mass spectrometer.
Abigail R. Koss, Kanako Sekimoto, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Jose L. Jimenez, Jordan Krechmer, James M. Roberts, Carsten Warneke, Robert J. Yokelson, and Joost de Gouw
Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, https://doi.org/10.5194/acp-18-3299-2018, 2018
Short summary
Short summary
Non-methane organic gases (NMOGs) were detected by proton-transfer-reaction mass spectrometry (PTR-ToF) during an extensive laboratory characterization of wildfire emissions. Identifications for PTR-ToF ion masses are proposed and supported by a combination of techniques. Overall excellent agreement with other instrumentation is shown. Scalable emission factors and ratios are reported for many newly reported reactive species. An analysis of chemical characteristics is presented.
Vanessa Selimovic, Robert J. Yokelson, Carsten Warneke, James M. Roberts, Joost de Gouw, James Reardon, and David W. T. Griffith
Atmos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-18-2929-2018, https://doi.org/10.5194/acp-18-2929-2018, 2018
Short summary
Short summary
We burned fuels representing western US wildfires in large-scale laboratory simulations to generate relevant emissions as confirmed by lab–field comparison. We report emission factors (EFs) for light scattering and absorption and BC along with SSA at 870 and 401 nm and AAE. We report EF for 22 trace gases that are major inorganic and organic emissions from flaming and smoldering. We report trace gas EF for species rarely (NH3) or not yet measured (e.g., HONO, acetic acid) for real US wildfires.
Thilina Jayarathne, Chelsea E. Stockwell, Ashley A. Gilbert, Kaitlyn Daugherty, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2585–2600, https://doi.org/10.5194/acp-18-2585-2018, https://doi.org/10.5194/acp-18-2585-2018, 2018
Short summary
Short summary
Fine particulate matter (PM2.5) emissions from Indonesian peat burning were measured in situ. Fuel-based emission factors from 6.0–29.6 gPM kg-1. Detailed chemical analysis revealed high levels of organic carbon that was primarily water insoluble, little to no detectable elemental carbon, and alkane contributions to organic carbon in the range of 6 %. These data were used to estimate that 3.2–11 Tg of PM2.5 were emitted by the 2015 peat burning episodes in Indonesia.
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary
Short summary
In this study, we use a new laser imaging nephelometer to measure the bulk aerosol scattering phase function for biomass burning aerosol from controlled fires. By comparing measurements to models for spherical and fractal particles, we demonstrate that the dominant morphology varies by fuel type. This instrument has unique capabilities to directly measure how morphology affects optical properties, and can be used in the future for important validations of remote sensing retrievals.
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, https://doi.org/10.5194/essd-9-697-2017, 2017
Short summary
Short summary
Fires occur in many vegetation types and are sometimes natural but often ignited by humans for various purposes. We have estimated how much area they burn globally and what their emissions are. Total burned area is roughly equivalent to the size of the EU with most fires burning in tropical savannas. Their emissions vary substantially from year to year and contribute to the atmospheric burdens of many trace gases and aerosols. The 20-year dataset is mostly suited for large-scale assessments.
Rudra P. Pokhrel, Eric R. Beamesderfer, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 17, 5063–5078, https://doi.org/10.5194/acp-17-5063-2017, https://doi.org/10.5194/acp-17-5063-2017, 2017
Short summary
Short summary
This study investigates enhancement of black carbon (BC) absorption in biomass burning emissions due to absorbing and non-absorbing coatings. The fraction of absorption due to BC, brown carbon (BrC), and lensing is estimated using different approaches. The similarities and differences between the results from these approaches are discussed. Absorption by BrC is shown to have good correlation with the elemental to organic carbon ratio (EC / OC) and AAE.
Lindsay E. Hatch, Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, https://doi.org/10.5194/acp-17-1471-2017, 2017
Short summary
Short summary
The most comprehensive database of gaseous biomass burning emissions to date was compiled. Four complementary instruments were deployed together during laboratory fires. The results generally compared within experimental uncertainty and highlighted that a range of measurement approaches are required for adequate characterization of smoke composition. Observed compounds were binned based on volatility, and priority recommendations were made to improve secondary organic aerosol predictions.
Jiumeng Liu, Peng Lin, Alexander Laskin, Julia Laskin, Shawn M. Kathmann, Matthew Wise, Ryan Caylor, Felisha Imholt, Vanessa Selimovic, and John E. Shilling
Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, https://doi.org/10.5194/acp-16-12815-2016, 2016
Short summary
Short summary
Light absorbing organic aerosols (BrC) absorb sunlight thereby influencing climate; however, understanding of the link between their optical properties and environmental variables remains limited. Our chamber experiment results suggest that variables including NOx concentration, RH level, and photolysis time have considerable influence on secondary BrC optical properties. The results contribute to a more accurate characterization of the impacts of aerosols on climate, especially in urban areas.
Chelsea E. Stockwell, Thilina Jayarathne, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Donald R. Blake, Isobel J. Simpson, Elizabeth A. Stone, and Robert J. Yokelson
Atmos. Chem. Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-2016, https://doi.org/10.5194/acp-16-11711-2016, 2016
Short summary
Short summary
We present the first or rare field measurements of emission factors for Indonesian peat fires made in Borneo during the 2015 El Niño. The data include up to 90 gases, aerosol mass, and aerosol optical properties at two wavelengths (405 and 870 nm). Brown carbon dominates aerosol absorption, revisions to previous values for greenhouse gas emissions are supported and air toxics are assessed.
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Rudra P. Pokhrel, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, https://doi.org/10.5194/acp-16-9549-2016, 2016
Short summary
Short summary
This paper gives first multi-wavelength estimates of SSA and AAE of emissions from combustion of Indonesian peat. In addition, it demonstrates that SSA of biomass burning emissions can be parameterized with EC / (EC+OC) and that this parameterization is quantitatively superior to previously published parameterizations based on MCE. It also shows that EC / (EC+OC) parameterization accurately predicts SSA during the first few hours of aging of a biomass burning plume.
Markus Müller, Bruce E. Anderson, Andreas J. Beyersdorf, James H. Crawford, Glenn S. Diskin, Philipp Eichler, Alan Fried, Frank N. Keutsch, Tomas Mikoviny, Kenneth L. Thornhill, James G. Walega, Andrew J. Weinheimer, Melissa Yang, Robert J. Yokelson, and Armin Wisthaler
Atmos. Chem. Phys., 16, 3813–3824, https://doi.org/10.5194/acp-16-3813-2016, https://doi.org/10.5194/acp-16-3813-2016, 2016
Short summary
Short summary
Atmospheric emissions from small forest fires and their impact on regional air quality are still poorly characterized. We used an instrumented NASA P-3B aircraft to study emissions from a small forest understory fire in Georgia (USA) and to investigate chemical transformations in the fire plume in the 1 h downwind region. A state-of-the-art chemical model was able to accurately simulate key chemical processes in the aging plume.
J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke, P. R. Veres, J. M. Roberts, J. A. de Gouw, I. R. Burling, and R. J. Yokelson
Atmos. Chem. Phys., 15, 13915–13938, https://doi.org/10.5194/acp-15-13915-2015, https://doi.org/10.5194/acp-15-13915-2015, 2015
Short summary
Short summary
A comprehensive suite of instruments was used to quantify the emissions of over 200 organic and inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. Emission ratios relative to carbon monoxide (CO) are used to characterize the composition of gases emitted by mass; OH reactivity; and potential secondary organic aerosol (SOA) precursors for the three different U.S. fuel regions presented here.
M. J. Alvarado, C. R. Lonsdale, R. J. Yokelson, S. K. Akagi, H. Coe, J. S. Craven, E. V. Fischer, G. R. McMeeking, J. H. Seinfeld, T. Soni, J. W. Taylor, D. R. Weise, and C. E. Wold
Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, https://doi.org/10.5194/acp-15-6667-2015, 2015
Short summary
Short summary
Being able to understand and simulate the chemical evolution of biomass burning smoke plumes under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use an improved model of this chemistry to simulate the evolution of ozone and secondary organic aerosol within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009.
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015, https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Short summary
Smoke plumes from some prescribed fires in the southeastern United States were sampled via aircraft to observe changes in organic aerosol (OA) with atmospheric transport. These plumes underwent rapid mixing, and, hence, substantial dilution with background air occurred. Dilution-driven evaporation appears to be the primary driver of OA transformations within the sampled plumes rather than photochemistry.
L. E. Hatch, W. Luo, J. F. Pankow, R. J. Yokelson, C. E. Stockwell, and K. C. Barsanti
Atmos. Chem. Phys., 15, 1865–1899, https://doi.org/10.5194/acp-15-1865-2015, https://doi.org/10.5194/acp-15-1865-2015, 2015
Short summary
Short summary
This work represents the first application of two-dimensional gas chromatography to broadly characterize the gas-phase emissions of biomass burning, including comparisons among the emissions from burns of selected conifer, grass, crop residue, and peat fuel types. In these smoke samples, over 700 compounds were detected, which are discussed in the context of potential secondary organic aerosol formation.
C. E. Stockwell, P. R. Veres, J. Williams, and R. J. Yokelson
Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, https://doi.org/10.5194/acp-15-845-2015, 2015
Short summary
Short summary
We used a high-resolution proton-transfer-reaction time-of-flight mass spectrometer to measure emissions from peat, crop residue, cooking fires, etc. We assigned > 80% of the mass of gas-phase organic compounds and much of it was secondary organic aerosol precursors. The open cooking emissions were much larger than from advanced cookstoves. Little-studied N-containing organic compounds accounted for 0.1-8.7% of the fuel N and may influence new particle formation.
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014, https://doi.org/10.5194/acp-14-10535-2014, 2014
C. E. Stockwell, R. J. Yokelson, S. M. Kreidenweis, A. L. Robinson, P. J. DeMott, R. C. Sullivan, J. Reardon, K. C. Ryan, D. W. T. Griffith, and L. Stevens
Atmos. Chem. Phys., 14, 9727–9754, https://doi.org/10.5194/acp-14-9727-2014, https://doi.org/10.5194/acp-14-9727-2014, 2014
S. K. Akagi, I. R. Burling, A. Mendoza, T. J. Johnson, M. Cameron, D. W. T. Griffith, C. Paton-Walsh, D. R. Weise, J. Reardon, and R. J. Yokelson
Atmos. Chem. Phys., 14, 199–215, https://doi.org/10.5194/acp-14-199-2014, https://doi.org/10.5194/acp-14-199-2014, 2014
R. J. Yokelson, M. O. Andreae, and S. K. Akagi
Atmos. Meas. Tech., 6, 2155–2158, https://doi.org/10.5194/amt-6-2155-2013, https://doi.org/10.5194/amt-6-2155-2013, 2013
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, https://doi.org/10.5194/acp-13-1141-2013, 2013
R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell, J. de Gouw, S. K. Akagi, S. P. Urbanski, P. Veres, J. M. Roberts, W. C. Kuster, J. Reardon, D. W. T. Griffith, T. J. Johnson, S. Hosseini, J. W. Miller, D. R. Cocker III, H. Jung, and D. R. Weise
Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, https://doi.org/10.5194/acp-13-89-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by the VH-TDMA system in the autumn of 2023
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
In situ vertical observations of the layered structure of air pollution in a continental high latitude urban boundary layer during winter
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Measurement Report: An investigation of the spatiotemporal variability of aerosol in the mountainous terrain of the Upper Colorado River Basin from SAIL-Net
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Terrestrial runoff is an important source of biological INPs in Arctic marine systems
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Measurement Report: Seasonal variation and anthropogenic influence on cloud condensation nuclei (CCN) activity in the South China Sea: Insights from shipborne observations during summer and winter of 2021
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Pollution affects Arabian and Saharan dust optical properties in the Eastern Mediterranean
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025, https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Short summary
Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2232, https://doi.org/10.5194/egusphere-2024-2232, 2024
Short summary
Short summary
In this work, we utilized the VH-TDMA system to investigate the hygroscopicity and volatility, as well as the hygroscopicity after heated of submicron aerosols in urban Beijing during the autumn of 2023 for the first time. We analyzed the size-resolved characteristics of hygroscopicity and volatility, the relationship between hygroscopic and volatile properties, as well as the hygroscopicity of heated submicron aerosols.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1780, https://doi.org/10.5194/egusphere-2024-1780, 2024
Short summary
Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was stationed in the East River Watershed in CO, USA to study the variability of aerosol in mountainous terrain. We found that aerosol variability was related to elevation differences and the variability changed seasonally. This suggests that model accuracy could be inconsistent over different seasons in complex terrain. This work provides a blueprint for future studies in other mountainous regions.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Maire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
EGUsphere, https://doi.org/10.5194/egusphere-2024-1633, https://doi.org/10.5194/egusphere-2024-1633, 2024
Short summary
Short summary
The Arctic region is subjected to profound changes due to the warming climate. Ice nucleating particles (INPs) in the seawater can get transported to the atmosphere and impact cloud formation. However, the sources of characteristics of INPs in the marine areas are poorly understood. We investigated the INPs in seawater from Greenlandic fjords and identified a seasonal variability and highly active INPs originating from terrestrial sources.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-956, https://doi.org/10.5194/egusphere-2024-956, 2024
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) during the summer and winter of 2021 were conducted. Our study found that aerosol hygroscopicity is higher in SCS in summer than in winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio (AR) than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of CCN activities in the SCS.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-701, https://doi.org/10.5194/egusphere-2024-701, 2024
Short summary
Short summary
The A-LIFE aircraft field experiment was carried out in the Eastern Mediterranean in 2017. Using A-LIFE data, we studied the change in mineral dust optical properties due to mixing with anthropogenic aerosols. We found that increasing pollution affects dust optical properties which has implications for identifying dust events and understanding their climate effects. We also show that optical properties of Saharan and Arabian dust are similar when comparing cases with equal pollution content.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Cited articles
Adetona, O., Reinhardt, T. E., Domitrovich, J., Broyles, G., Adetona, A. M.,
Kleinman, M. T., Ottmar, R. D., and Naeher, L. P.: Review of the health
effects of wildland fire smoke on wildland firefighters and the public,
Inhal. Toxicol., 28, 95–139, https://doi.org/10.3109/08958378.2016.1145771, 2016.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S.,
Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and
domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys.,
11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R.
J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H.,
Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles
emitted by a chaparral fire in California, Atmos. Chem. Phys., 12,
1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I.,
Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S.,
Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D.
R.: Measurements of reactive trace gases and variable O3 formation
rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13,
1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.
An American Aerosol in Paris:
https://earthobservatory.nasa.gov/images/90980/an-american-aerosol-in-paris,
last access: 14 February 2019.
Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig,
M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian
wildfire smoke in the stratosphere over central Europe on 21–22 August 2017,
Atmos. Chem. Phys., 18, 11831–11845,
https://doi.org/10.5194/acp-18-11831-2018, 2018.
Benedict, K. B., Prenni, A. J., Carrico, C. M., Sullivan, A. P., Schichtel,
B. A., and Collett Jr., J. L.: Enhanced concentrations of reactive nitrogen
species in wildfire smoke, Atmos. Environ., 148, 8–15, 2017.
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C.,
Smirnova, T. G., Olson, J. B., James, E., Dowell, D. C., Grell, G. A., Lin,
H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J., and Manikin,
G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The
Rapid Refresh, Mon. Weather Rev., 144, 1669–1694,
https://doi.org/10.1175/MWR-D-15-0242.1, 2016.
Bergstrom, R. W., Russell, P. B., and Hignett, P: Wavelength dependence of
the absorption of black carbon particles: predictions and results from the
TARFOX experiment and implications for aerosol single scattering albedo, J.
Atmos. Sci., 59, 567–577,
https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2, 2002.
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C.,
Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric
aerosols, Atmos. Chem. Phys., 7, 5937–5943,
https://doi.org/10.5194/acp-7-5937-2007, 2007.
Bond, T. C. and Bergstrom, R.: Light absorption by carbonaceous particles: An
investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Doherty, S. J., Fahey, D.W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G.,Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W. , Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P., Wold, C. E.,
Griffith, D. W. T., Johnson, T. J., Reardon, J., and Weise, D. R.: Airborne
and ground-based measurements of the trace gases and particles emitted by
prescribed fires in the United States, Atmos. Chem. Phys., 11, 12197–12216,
https://doi.org/10.5194/acp-11-12197-2011, 2011.
Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and Coe,
H.: Aging of biomass burning aerosols over West Africa: Aircraft measurements
of chemical composition, microphysical properties, and emission ratios, J.
Geophys. Res., 113, D00C15, https://doi.org/10.1029/2008JD009845, 2008.
Carrico, C., Prenni, A., Kreidenweis, S., Levin, E., McCluskey, C., DeMott,
P., McMeeking, G., Nakao, S., Stockwell, C., and Yokelson, R. J.: Rapidly
evolving ultrafine and fine mode biomass smoke physical properties: Comparing
laboratory and field results, J. Geophys. Res., 121, 5750–5768,
https://doi.org/10.1002/2015JD024389, 2016.
Christian, T., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J.,
Hao, W. M., Saharjo, B. H., and Ward, D. E.: Comprehensive laboratory
measurements of biomass-burning emissions: 1. Emissions from Indonesian,
African, and other fuels, J. Geophys. Res., 108, 4719,
https://doi.org/10.1029/2003JD003704, 2003.
Collier, S., Zhou, S., Onasch, T.B., Jaffe, D. A., Kleinman, L., Sedlacek
III., A. J., Briggs, N. L., Hee, J., Fortner, E., Shilling, J. E., Worsnop,
D., Yokelson, R. J., Parworth, C., Ge, X., Xu, J., Butterfield, Z., Chand,
D., Dubey, M. K., Pekour, M. S., Springston, S., and Zhang, Q.: Regional
influence of aerosol emissions from wildfires driven by combustion
efficiency: insights from the BBOP campaign, Environ. Sci. Technol., 50,
8513–8522, https://doi.org/10.1021/acs.est.6b01617, 2016.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: Impact on
atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678,
https://doi.org/10.1126/science.250.4988.1669, 1990.
Draxler, R. R.: HYSPLIT4 user's guide, NOAA Tech. Memo. ERL ARL-230, NOAA Air
Resources Laboratory, Silver Spring, MD, USA, 1999.
Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4 modeling
system, NOAA Tech. Memo. ERL ARL-224, NOAA Air Resources Laboratory, Silver
Spring, MD, USA, 24 pp., 1997.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modeling system
of trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47,
295–308, 1998.
Eck, T., Holben, B. N, Reid, J., Dubovik, O., Smirnov, A., O'Neill, N.,
Slutsker, I., and Kinne, S: Wavelength dependence of the optical depth of
biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104,
31333–31349, 1999.
Eck, T. F., Holben B. N., Reid, J. S., Mukelabai, M. M., Piketh, S. J.,
Torres, O., Jethva, H. T., Hyer, E. J., Ward, D. E., Dubovik, O., Sinyuk, A.,
Schafer, J. S., Giles, D. M., Sorokin, M., Smirnov, A., and Slutsker, I.: A
seasonal trend of single scattering albedo in southern African
biomass-burning particles: implications for satellite products and estimates
of emissions for the world's largest biomass burning source, J. Geophys.
Res.-Atmos., 118, 6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol
formation in cloud droplets and aqueous particles (aqSOA): a review of
laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102,
https://doi.org/10.5194/acp-11-11069-2011, 2011.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant
atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621,
https://doi.org/10.5194/acp-13-8607-2013, 2013.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., and
Andreae, M. O: Inorganic and carbonaceous aerosols during the Southern
African Regional Science Initiative (SAFARI 2000) experiment: Chemical
characteristics, physical properties, and emission data for smoke from
African biomass burning, J. Geophys. Res., 108, 8488,
https://doi.org/10.1029/2002JD002408, 2003.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L.,
Anderson, B., Diskin, G., Perring, A. E., Schwarz, J. P., Campuzano-Jost, P.,
Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.:
Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett., 42,
4623–4630, https://doi.org/10.1002/2015GL063897, 2015.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., Malingre, G.,
Cachier, H., Buat-Menard, P., Artaxo, P., and Maenhaut,W.: Trace Elements in
Tropical African Savanna, J. Atmos. Chem., 22, 19–39,
https://doi.org/10.1007/BF00708179, 1995.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A
comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753,
https://doi.org/10.5194/acp-6-729-2006, 2006.
Griffith, D. W. T.: Synthetic calibration and quantitative analysis of gas
phase infrared spectra, Appl. Spectrosc., 50, 59–70, 1996.
Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V., Torres, O.,
Ridley, D. A., and Spurr, R. J. D.: Interpreting the ultraviolet aerosol
index observed with the OMI satellite instrument to understand absorption by
organic aerosols: implications for atmospheric oxidation and direct radiative
effects, Atmos. Chem. Phys., 16, 2507–2523,
https://doi.org/10.5194/acp-16-2507-2016, 2016.
Hobbs, P. V., Reid, J. S., Herring, J. A., Nance, J. D., Weiss, R. E., Ross,
J. L., Hegg, D. A., Ottmar, R. D., and Liousse, C.: Particle and trace-gas
measurements in smoke from prescribed burns of forest products in the Pacific
Northwest, Biomass Burning and Global Change, vol. 1, MIT Press, New York,
USA, 1996.
Hobbs, P. V., Sinha, P., Yokelson, R. J., Christian, T. J., Blake, D. R.,
Gao, S., Kirchstetter, T. W., Novakov, T., and Pilewskie, P.: Evolution of
gases and particles from a savanna fire in South Africa, J. Geophys. Res.,
108, 8485, https://doi.org/10.1029/2002JD002352, 2003.
Hungershoefer, K., Zeromskiene, K., Iinuma, Y., Helas, G., Trentmann, J.,
Trautmann, T., Parmar, R. S., Wiedensohler, A., Andreae, M. O., and Schmid,
O.: Modelling the optical properties of fresh biomass burning aerosol
produced in a smoke chamber: results from the EFEU campaign, Atmos. Chem.
Phys., 8, 3427–3439, https://doi.org/10.5194/acp-8-3427-2008, 2008.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat
and moisture fluxes, black and brown carbon, and cloud absorption effects, J.
Geophys. Res.-Atmos., 119, 8980–9002, https://doi.org/10.1002/2014JD021861, 2014.
Jaffe, D. A., Wigder, N., Downey, N., Pfister, G., Boynard, A., and Reid, S.
B: Impact of wildfires on ozone exceptional events in the western U.S.,
Environ. Sci. Technol., 47, 11065–11072, https://doi.org/10.1021/es402164f, 2013.
Jen, C. N., Hatch, L. E., Selimovic, V., Yokelson, R. J., Weber, R.,
Fernandez, A. E., Kreisberg, N. M., Barsanti, K. C., and Goldstein, A. H.:
Speciated and total emission factors of particulate organics from burning
western US wildland fuels and their dependence on combustion efficiency,
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019,
2019.
Jethva, H. and Torres, O.: Satellite-based evidence of wavelength-dependent
aerosol absorption in biomass burning smoke inferred from Ozone Monitoring
Instrument, Atmos. Chem. Phys., 11, 10541–10551,
https://doi.org/10.5194/acp-11-10541-2011, 2011.
Jiang, H. and Feingold, G.: Effect of aerosol on warm convective clouds:
aerosol-cloud-surface flux feedbacks in a new coupled large eddy model, J.
Geophys. Res.-Atmos., 111, D01202, https://doi.org/10.1029/2005JD006138, 2006.
Jolleys, M. D., Coe, H., McFiggans, G., Capes, G., Allan, J. D., Crosier, J.,
Williams, P. I., Allen, G., Bower, K. N., Jimenez, J. L., Russell., L. M.,
Grutter, M., and Baumgardner, D: Characterizing the aging of biomass buring
organic aerosol by use of mixing ratios: a meta-analysis of four regions,
Environ. Sci. Technol., 46, 13093–13102, https://doi.org/10.1021/es302386v, 2012.
Kaufman, Y., Gitelson, A., Karnieli, A., Ganor, E., Fraser, R., Nakajima, T.,
Mattoo, S., and Holben, B. N.: Size distribution and scattering phase
function of aerosol particles retrieved from sky brightness measurements, J.
Geophys. Res., 99, 10341–10356, 1994.
Kim, Y. H., Warren, S., Krantz, Q. T., King, C., Jaskot, R., Preston, W. T.,
George, B. J., Hays, M. D., Landis, M. S., Higuchi, M., DeMarini, D., and
Gilmour, M. R: Mutagenicity and lung toxicity of smoldering versus flaming
emissions from various biomass fuels: implications for health effects from
wildland fires, Environ. Health Persp., 126, 017011, https://doi.org/10.1289/EHP2200,
2018.
Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush,
M., and Spracklen, D. V.: Impacts of Amazonia biomass burning aerosols
assessed from short-range weather forecasts, Atmos. Chem. Phys., 15,
12251–12266, https://doi.org/10.5194/acp-15-12251-2015, 2015.
Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M.,
Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L.,
Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.:
Non-methane organic gas emissions from biomass burning: identification,
quantification, and emission factors from PTR-ToF during the FIREX 2016
laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319,
https://doi.org/10.5194/acp-18-3299-2018, 2018.
Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light
absorption enhancement, single scatter albedo and absorption wavelength
dependence of black carbon, Atmos. Chem. Phys., 10, 4207–4220,
https://doi.org/10.5194/acp-10-4207-2010, 2010.
Lack, D. A. and Langridge, J. M.: On the attribution of black and brown
carbon light absorption using the Ångström exponent, Atmos. Chem.
Phys., 13, 10535–10543, https://doi.org/10.5194/acp-13-10535-2013, 2013.
Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau,
B., Bates, T. S., Quinn, P. K., Lovejoy, E. R., and Ravishankara, A. R.: Bias
in Filter Based Aerosol Light Absorption Measurements Due to Organic Aerosol
Loading: Evidence from Ambient Measurements, Aerosol Sci. Tech., 42,
1033–1041, https://doi.org/10.1080/02786820802389285, 2008.
Lack, D. A., Langridge, J. M, Bahreini, R., Cappa, C. D., Middlebrook, A. M.,
and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning
particles, P. Natl. Acad. Sci. USA, 109, 14802–14807,
https://doi.org/10.1073/pnas.1206575109, 2012.
Landis, M. S., Edgerton, E. S., White, E. M., Wentworth, G. R., Sullivan, A.
P., and Dillner, A. M: The impact of the 2016 Fort McMurray Horse River
wildfire on ambient air pollution levels in the Athabasca Oil Sands Region,
Alberta, Canada, Sci. Total. Environ., 618, 1665—1676,
https://doi.org/10.1016/j.scitotenv.2017.10.008, 2017.
Laskin, A., Laskin, J., and Nizkorodov, S. A: Chemistry of atmospheric brown
carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Le, G. E., Breysse, P. N., McDermott, A., Eftim, S. E., Geyh, A., Berman, J.
D., and Curriero, F. C: Canadian forest fires and the effects of long-range
transboundary air pollution on hospitalizations among the elderly, ISPRS Int.
Geo-Inf., 3, 713–731, https://doi.org/10.3390/ijgi3020713, 2014.
Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Effect of solar radiation on the optical properties and molecular composition
of laboratory proxies of atmospheric brown carbon, Environ. Sci. Technol.,
48, 10217–10226, https://doi.org/10.1021/es502515r, 2014.
Lewis, K., Arnott, W. P., Moosmuller, H., and Wold, C. E.: Strong spectral
variation of biomass smoke light absorption and single scattering albedo
observed with a novel dual-wavelength photoacoustic instrument, J. Geophys.
Res., 113, D16203, https://doi.org/10.1029/2007JD009699, 2008.
Li, H., Lamb, K. D., Schwarz, J. P., Selimovic, V., Yokelson, R. J.,
McMeeking, G. R., and May, A.: Inter-comparison of black carbon measurement
methods for simulated open biomass burning emissions, Atmos. Environ., 206,
156–169, https://doi.org/10.1016/j.atmosenv.2019.03.010, 2019.
Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin,
A.: Molecular characterization of brown carbon (BrC) chromophores in
secondary organic aerosol generated from photo-oxidation of toluene, Phys.
Chem. Chem. Phys., 17, 23312–23325, https://doi.org/10.1039/C5CP02563J, 2015.
Lindaas, J., Farmer, D. K., Pollack, I. B., Abeleira, A., Flocke, F.,
Roscioli, R., Herndon, S., and Fischer, E. V.: Changes in ozone and
precursors during two aged wildfire smoke events in the Colorado Front Range
in summer 2015, Atmos. Chem. Phys., 17, 10691–10707,
https://doi.org/10.5194/acp-17-10691-2017, 2017.
Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L: A
systematic review of the physical health impacts from non-occupational
exposure to wildfire smoke, Environ. Res., 136, 120–132,
https://doi.org/10.1016/j.envres.2014.10.015, 2015.
Liu, X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez, J. L.,
Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Choi, Y., St Clair, J.
M., Crounse, J. D., Day, D. A., Diskin, G. S., Fried, A., Hall, S. R.,
Hanisco, T. F., King, L. E., Meinardi, S., Mikoviny, T., Palm, B. B.,
Peischl, J., Perring, A. E., Pollack, I. B., Ryerson, T. B., Sachse, G.,
Schwarz, J. P., Simpson, I. J., Tanner, D. J., Thornhill, K. L., Ullmann, K.,
Weber, R. J., Wennberg, P. O., Wisthaler, A., Wolfe, G. M., and Ziemba, L.
D.: Agricultural fires in the southeastern US during SEAC4RS: Emissions of
trace gases and particles and evolution of ozone, reactive nitrogen, and
organic aerosol, J. Geophys. Res.-Atmos., 121, 7383–7414,
https://doi.org/10.1002/2016jd025040, 2016.
Liu, X., Huey, G. L., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez. J. L., Campuzano-Jost, P., Beyersdorf. A. J., Blake,
D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S.,
Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L.,
Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B., Peischl, J., Pollack,
I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J., Shilling, J. E.,
Springston, S., St. Clair, J. M., Tanner, D. J, Peng, A. P., Wennberg, P. O.,
Wisthaler, A., and Wolfe, G. M.: Airborne measurements of western U.S
wildfire emissions: Comparison with prescribed burning and air quality
implications, J. Geophys. Res.-Atmos., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017.
Lobert, J. M., Scharffe, D. H., Hao, W. M., Kuhlbusch, T. A., Seuwen, R.,
Wameck, P., and Crutzen, P. J.: Experimental evaluation of biomass burning
emissions: Nitrogen and carbon containing compounds, in: Global Biomass
Burning: Atmospheric, Climatic and Biospheric Implications, edited by:
Levine, J. S., 289–304, MIT Press, Cambridge, Mass., USA, 1991.
Mao, Y. H., Li, Q. B., Henze, D. K., Jiang, Z., Jones, D. B. A., Kopacz, M.,
He, C., Qi, L., Gao, M., Hao, W.-M., and Liou, K.-N.: Estimates of black
carbon emissions in the western United States using the GEOS-Chem adjoint
model, Atmos. Chem. Phys., 15, 7685–7702,
https://doi.org/10.5194/acp-15-7685-2015, 2015.
May, A. A., McMeeking., G. R., Lee, T., Taylor, J. W., Craven, J. S.,
Burling, I., Sullivan, A. P., Akagi, S., Collett Jr., J. L., Flynn, M., Coe,
H., Urbanski, S. P., Seinfeld, J. H., Yokelson, R. J., and Kreidenweis, S.
M.: Aerosol emissions from prescribed fires in the United States: A synthesis
of laboratory and aircraft measurements, J. Geophys. Res.-Atmos., 119,
11826–11849, https://doi.org/10.1002/2014JD021848, 2014.
May, A. A., Lee, T., McMeeking, G. R., Akagi, S., Sullivan, A. P., Urbanski,
S., Yokelson, R. J., and Kreidenweis, S. M.: Observations and analysis of
organic aerosol evolution in some prescribed fire smoke plumes, Atmos. Chem.
Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015, 2015.
McClure, C. D. and Jaffe, D. A: US particulate matter air quality improves
except in wildfire-prone areas, P. Natl. Acad. Sci. USA, 115, 7901–7906,
https://doi.org/10.1073/pnas.1804353115, 2018.
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R.,
Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: calculation from
observables and sensitivities to inputs, J. Geophys. Res.-Atmos., 113,
D09202, https://doi.org/10.1029/2007JD009170, 2008.
McMeeking, G. R., Kreidenweis, S. M., Carrico, C. M., Collett, J. L., Day, D.
E., and Malm, W. C.: Observations of smoke-influenced aerosol during the
Yosemite Aerosol Characterization Study: Size distributions and chemical
composition J. Geophys. Res., 110, D18209, https://doi.org/10.1029/2004JD005389, 2005a.
McMeeking, G. R., Kreidenweis, S. M., Carrico, C. M., Collett, J. L., Day, D.
E., and Malm, W. C.: Observations of smoke-influenced aerosol during the
Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorbing
properties, J. Geophys. Res., 110, D18209, https://doi.org/10.1029/2004JD005624, 2005b.
Miyakawa, T., Oshima, N., Taketani, F., Komazaki, Y., Yoshino, A., Takami,
A., Kondo, Y., and Kanaya, Y.: Alteration of the size distributions and
mixing states of black carbon through transport in the boundary layer in east
Asia, Atmos. Chem. Phys., 17, 5851–5864,
https://doi.org/10.5194/acp-17-5851-2017, 2017.
Müller, M., Anderson, B. E., Beyersdorf, A. J., Crawford, J. H., Diskin,
G. S., Eichler, P., Fried, A., Keutsch, F. N., Mikoviny, T., Thornhill, K.
L., Walega, J. G., Weinheimer, A. J., Yang, M., Yokelson, R. J., and
Wisthaler, A.: In situ measurements and modeling of reactive trace gases in a
small biomass burning plume, Atmos. Chem. Phys., 16, 3813–3824,
https://doi.org/10.5194/acp-16-3813-2016, 2016.
Nakayama, T. Suzuki, H., Kagamitani, S., and Ikeda, Y.: Characterization of a
three wavelength Photoacoustic Soot Spectrometer (PASS-3) and a Photoacoustic
Extinctiometer (PAX), J. Meteorol. Soc. Jpn., 93, 285–308,
https://doi.org/10.2151/jmsj.2015-016, 2015.
Park, R. J., Jacob, D. J., and Logan, J. A.: Fire and biofuel contributions
to annual mean aerosol mass concentrations in the United States, Atmos.
Environ., 41, 7389–7400, https://doi.org/10.1016/j.atmosenv.2007.05.061, 2007.
Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T.,
Stone, E. A., Stockwell, C. E., Yokelson, R. J., and Murphy, S. M.:
Parameterization of single-scattering albedo (SSA) and absorption
Ångström exponent (AAE) with EC ∕ OC for aerosol emissions from
biomass burning, Atmos. Chem. Phys., 16, 9549–9561,
https://doi.org/10.5194/acp-16-9549-2016, 2016.
Pokhrel, R. P., Beamesderfer, E. R., Wagner, N. L., Langridge, J. M., Lack,
D. A., Jayarathne, T., Stone, E. A., Stockwell, C. E., Yokelson, R. J., and
Murphy, S. M.: Relative importance of black carbon, brown carbon, and
absorption enhancement from clear coatings in biomass burning emissions,
Atmos. Chem. Phys., 17, 5063–5078, https://doi.org/10.5194/acp-17-5063-2017,
2017.
Praveen, P. S., Ahmed, T., Kar, A., Rehman, I. H., and Ramanathan, V.: Link
between local scale BC emissions in the Indo-Gangetic Plains and large scale
atmospheric solar absorption, Atmos. Chem. Phys., 12, 1173–1187,
https://doi.org/10.5194/acp-12-1173-2012, 2012.
Radke, L. F., Hegg, D. A., Hobbs, P. V., Nance, J. D., Lyons, J. H., Laursen,
K. K., Weiss, R. E., Riggan, P. J., and Ward, D. E.: Particulate and trace
gas emissions from large biomass fires in North America, in: Global biomass
burning – Atmospheric, climatic, and biospheric implications, MIT Press,
Cambridge, MA, USA, 209–224, 1991.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D: Aerosols,
climate, and the hydrological cycle, Science, 294, 2219–2124,
https://doi.org/10.1126/science.1064034, 2001.
Reid, C. E., Brauer, M., Johnson, F. H., Jerrett, J., Balmes, J. R., and
Elliot, C. T.: Critical review of health impacts of wildfire smoke exposure,
Environ. Health Persp., 124, 1334–1343, https://doi.org/10.1289/ehp.1409277, 2016.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of
biomass burning emissions part II: intensive physical properties of biomass
burning particles, Atmos. Chem. Phys., 5, 799–825,
https://doi.org/10.5194/acp-5-799-2005, 2005a.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O.,
Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of
biomass burning emissions part III: intensive optical properties of biomass
burning particles, Atmos. Chem. Phys., 5, 827–849,
https://doi.org/10.5194/acp-5-827-2005, 2005b.
Reisen, F., Meyer, C. P., Weston, C. J., and Volkova, L: Ground-Based field
measurements of PM2.5 emission factors from flaming and smoldering
combustion in eucalypt forests, J. Geophys. Res.-Atmos., 123, 8301–8314,
https://doi.org/10.1029/2018JD028488, 2018.
Sahu, L. K., Kondo, Y., Moteki, N., Takegawa, N., Zhao, Y., Cubison, M. J.,
Jimenez, J. L., Vay, S., Diskin, G. S., Wisthaler, A., Mikoviny, T., Huey, L.
G., Weinheimer, A. J., and Knapp, D. J: Emission characteristics of black
carbon in anthropogenic and biomass burning plumes over California during
ARCTAS-CARB 2008, J. Geophys. Res-Atmos, 117, D16302,
https://doi.org/10.1029/2011JD017401, 2012.
Saide, P. E., Peterson, D. A., da Silva, A., Anderson, B., Ziemba, L. D.,
Diskin, G., Sachse, G., Hair, J., Butler, C., Fenn, M., Jimenez, J. L.,
Campuzano-Jost, P., Perring, A. E., Schwarz, J. P., Markovic, M. Z., Russell,
P., Redemann, J., Shinozuka, Y., Streets, D. G., Yan, F., Dibb, J., Yokelson,
R., Toon, O. B., Hyer, E., and Carmichael, G. R.: Revealing important
nocturnal and day-to-day variations in fire smoke emissions through a
multiplatform inversion, Geophys. Res. Lett., 42, 2015GL063737,
https://doi.org/10.1002/2015GL063737, 2015.
Saleh, R., Robinson E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A.
C., Sullivan, R. C., Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue,
N. M., and Robinson, A. L.: Brownness of organics in aerosols from biomass
burning linked to their black carbon content, Nat. Geosci., 7, 647–650,
https://doi.org/10.1038/ngeo2220, 2014.
Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.:
Secondary organic material formed by methylglyoxal in aqueous aerosol mimics,
Atmos. Chem. Phys., 10, 997–1016, https://doi.org/10.5194/acp-10-997-2010,
2010.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and
bimodal aerosol size distributions, J. Geophys. Res., 111, D07207,
https://doi.org/10.1029/2005JD006328, 2006.
Selimovic, V., Yokelson, R. J., Warneke, C., Roberts, J. M., de Gouw, J.,
Reardon, J., and Griffith, D. W. T.: Aerosol optical properties and trace gas
emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires
during FIREX, Atmos. Chem. Phys., 18, 2929–2948,
https://doi.org/10.5194/acp-18-2929-2018, 2018.
Shaddix, C. R., Harrington, J. E., and Smyth, K. C: Quantitative measurements
of enhanced soot production in a flickering methane/air diffusion flame,
Combust. Flame., 99, 723–732, https://doi.org/10.1016/0010-2180(94)90067-1, 1994.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1,
2015.
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.:
Characterization of biomass burning emissions from cooking fires, peat, crop
residue, and other fuels with high-resolution proton-transfer-reaction
time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845–865,
https://doi.org/10.5194/acp-15-845-2015, 2015.
Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Putra, E. I.,
Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R., Simpson, I. J.,
Stone, E. A., and Yokelson, R. J.: Field measurements of trace gases and
aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the
2015 El Niño, Atmos. Chem. Phys., 16, 11711–11732,
https://doi.org/10.5194/acp-16-11711-2016, 2016a.
Stockwell, C. E., Christian, T. J., Goetz, J. D., Jayarathne, T., Bhave, P.
V., Praveen, P. S., Adhikari, S., Maharjan, R., DeCarlo, P. F., Stone, E. A.,
Saikawa, E., Blake, D. R., Simpson, I. J., Yokelson, R. J., and Panday, A.
K.: Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE):
emissions of trace gases and light-absorbing carbon from wood and dung
cooking fires, garbage and crop residue burning, brick kilns, and other
sources, Atmos. Chem. Phys., 16, 11043–11081,
https://doi.org/10.5194/acp-16-11043-2016, 2016b.
Subramanian, R., Roden, C. A., Boparai, P., and Bond, T. C: Yellow beads and
missing particles: trouble ahead for filter-based absorption measurements,
Aerosol. Sci. Tech., 41, 630–637, https://doi.org/10.1080/02786820701344589, 2007.
Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C., and
Johnson, B. T.: The effect of South American biomass burning aerosol
emissions on the regional climate, Atmos. Chem. Phys., 18, 5321–5342,
https://doi.org/10.5194/acp-18-5321-2018, 2018.
Tomaz, S, Cui, T., Chen, Y., Sexton, K. G., Roberts, J. M., Warneke, C.,
Yokelson, R. J., Surratt, J. D., and Turpin, B. J: Photochemical cloud
processing of primary wildfire emissions as a potential source of secondary
organic aerosol, Environ. Sci. Technol., 52, 11027—11037,
https://doi.org/10.1021/acs.est.8b03293, 2018.
United States Environmental Protection Agency: “Climate Indicators:
Wildfires”, available at:
http://web.archive.org/web/20160512002554/https://www3.epa.gov/climatechange/science/indicators/ecosystems/wildfires.html,
last access: 21 March 2019.
United States National Interagency Fire Center: Total Wildland Fires and
Acres (1926–2017), available at:
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html, last
access: 21 March 2019.
Urbanski, S. P.: Combustion efficiency and emission factors for
wildfire-season fires in mixed conifer forests of the northern Rocky
Mountains, US, Atmos. Chem. Phys., 13, 7241–7262,
https://doi.org/10.5194/acp-13-7241-2013, 2013.
Vakkari, V., Kerminen, V., Beukes, J. P., Tiitta, P., van Zyl, P. G.,
Josipovic, M., Venter, A. D., Jaars, K., Worsnop, D. R., Kulmala, M., and
Laasko, L: Rapid changes in biomass burning aerosols by atmospheric
oxidation, Geophys. Res. Lett., 41, 2644–2651, https://doi.org/10.1002/2014GL059396,
2014.
Vakkari, V., Beukes, J. P., Dal Maso, M., Aurela, M., Josipovic, M., and van
Zyl, P. G.: Major secondary aerosol formation in southern African open
biomass burning plumes, Nat. Geosci., 11, 580–583,
https://doi.org/10.1038/s41561-018-0170-0, 2018.
Wang, J., Geng, N. B., Xu, Y. F., Zhang, W. D., Tang, X. Y., and Zhang, R. Q:
PAHs in PM2.5 in Zhengzhou: concentration, carcinogenic risk analysis
and source apportionment, Environ. Monit. Assess., 186, 7461–7473,
https://doi.org/10.1007/s10661-014-3940-1, 2014.
Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and Zeng, J: Mitigating
satellite-bassed fire sampling limitations in deriving biomass burning
emission rates: application to WRF-Chem model over the northern sub-saharan
African region, J. Geophys. Res.-Atmos, 123, 507–528,
https://doi.org/10.1002/2017JD026840, 2017.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: warming
and earlier spring increase western U.S forest wildfire activity, Science,
313, 940–943, https://doi.org/10.1126/science.1128834, 2006.
Wigder, N. L., Jaffe, D. A., and Saketa, F. A.: Ozone and particulate matter
enhancements from regional wildfires observed at Mount Bachelor during
2004–2011, Atmos. Environ., 75, 24—31, https://doi.org/10.1016/j.atmosenv.2013.04.026,
2013.
Wilkins, J. L., Pouliot, G., Foley, K., Appel., W., and Pierce, T.: The
impact of US wildland fires on ozone and particulate matter a comparison of
measurements and CMAQ model predictions from 2008 to 2012, Int. J. Wildland
Fire, 27, 684–698, https://doi.org/10.1071/WF18053, 2018.
Xu, J., Zhang, Q., Shi, J., Ge, X., Xie, C., Wang, J., Kang, S., Zhang, R.,
and Wang, Y.: Chemical characteristics of submicron particles at the central
Tibetan Plateau: insights from aerosol mass spectrometry, Atmos. Chem. Phys.,
18, 427–443, https://doi.org/10.5194/acp-18-427-2018, 2018.
Yates, E. L., Iraci, L. T., Singh, H. B., Tanaka, T., Roby, M. C., Hamill,
P., Clements, C. B., Lareau, N., Contezac, J., Blake, D. R., Simpson, I. J.,
Wisthaler, A., Mikoviny, T., Diskin, G. S., Beyersdorf, A. J., Choi, Y.,
Ryerson, T. B., Jimenez, J. L., and Gore, W.: Airborne measurements and
emissions estimates of greenhouse gases and other trace constituents form the
2013 California Yosemite Rim wildfire, Atmos. Environ., 127, 293–302,
https://doi.org/10.1016/j.atmosenv.2015.12.038, 2016.
Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W.
T.: Emissions from smoldering combustion of biomass burning measured by
open-path Fourier transform infrared spectroscopy, J. Geophys. Res.-Atmos.,
102, 18865–18877, https://doi.org/10.1029/97JD00852, 1997.
Yokelson, R. J., Christian, T. J., Bertschi, I. T., and Hao, W. M.:
Evaluation of adsorption effects on measurements of ammonia, acetic acid, and
methanol, J. Geophys. Res., 108, 4649, https://doi.org/10.1029/2003JD003549, 2003.
Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J.,
Griffith, D. W. T., Guenther, A., and Hao, W. M.: The Tropical Forest and
Fire Emissions Experiment: overview and airborne fire emission factor
measurements, Atmos. Chem. Phys., 7, 5175–5196,
https://doi.org/10.5194/acp-7-5175-2007, 2007.
Yokelson, R. J., Christian, T. J., Karl, T. G., and Guenther, A.: The
tropical forest and fire emissions experiment: laboratory fire measurements
and synthesis of campaign data, Atmos. Chem. Phys., 8, 3509–3527,
https://doi.org/10.5194/acp-8-3509-2008, 2008.
Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S.,
Atlas, E., Campos, T., Shinozuka, Y., Kapustin, V., Clarke, A. D.,
Weinheimer, A., Knapp, D. J., Montzka, D. D., Holloway, J., Weibring, P.,
Flocke, F., Zheng, W., Toohey, D., Wennberg, P. O., Wiedinmyer, C., Mauldin,
L., Fried, A., Richter, D., Walega, J., Jimenez, J. L., Adachi, K., Buseck,
P. R., Hall, S. R., and Shetter, R.: Emissions from biomass burning in the
Yucatan, Atmos. Chem. Phys., 9, 5785–5812,
https://doi.org/10.5194/acp-9-5785-2009, 2009.
Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C.
E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M.,
Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S.,
Miller, J. W., Cocker III, D. R., Jung, H., and Weise, D. R.: Coupling field
and laboratory measurements to estimate the emission factors of identified
and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13,
89–116, https://doi.org/10.5194/acp-13-89-2013, 2013a.
Yokelson, R. J., Andreae, M. O., and Akagi, S. K.: Pitfalls with the use of
enhancement ratios or normalized excess mixing ratios measured in plumes to
characterize pollution sources and aging, Atmos. Meas. Tech., 6, 2155–2158,
https://doi.org/10.5194/amt-6-2155-2013, 2013b.
Yue, C., Ciais, P., Cadule, P., Thonicke, K., and van Leeuwen, T. T.:
Modelling the role of fires in the terrestrial carbon balance by
incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2:
Carbon emissions and the role of fires in the global carbon balance, Geosci.
Model Dev., 8, 1321–1338, https://doi.org/10.5194/gmd-8-1321-2015, 2015.
Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.:
Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem.
Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-6087-2015, 2015.
Zhong, M. and Jang, M.: Dynamic light absorption of biomass-burning organic
carbon photochemically aged under natural sunlight, Atmos. Chem. Phys., 14,
1517–1525, https://doi.org/10.5194/acp-14-1517-2014, 2014.
Zhou, L., Baker, K. R., Napelenok., S. L., Pouliot, G., Elleman, R., O'Neill,
S. M., Urbanski, S. P., and Wong, D. C: Modeling crop residual burning
experiments to evaluate smoke emissions and plume transport, Sci. Total
Environ., 627, 523–533, https://doi.org/10.1016/j.scitotenv.2018.01.237, 2018.
Short summary
A massive wildfire smoke episode impacted the western US and Canada in summer 2017. We measured CO, other trace gases, PM, BC, and aerosol optical properties at a heavily impacted, ground-based site affected by this event. Brown carbon diminished as smoke aged but was a persistent component of the regional smoke, accounting for about half of aerosol absorption at 401 nm on average. The PM / CO ratios suggested aerosol evaporation was dominant at the surface at smoke ages of up to ~ 1–2 days.
A massive wildfire smoke episode impacted the western US and Canada in summer 2017. We measured...
Altmetrics
Final-revised paper
Preprint