Articles | Volume 19, issue 4
https://doi.org/10.5194/acp-19-2149-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-2149-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites
Environmental Meteorology Research Division, National Institute of
Meteorological Sciences, Jeju, 63568, Republic of Korea
Atmospheric Chemistry Laboratory, Hankuk University of Foreign Studies,
Gyeonggi-do, 17035, Republic of Korea
Sang-Ok Han
Environmental Meteorology Research Division, National Institute of
Meteorological Sciences, Jeju, 63568, Republic of Korea
Sang-Boom Ryoo
Environmental Meteorology Research Division, National Institute of
Meteorological Sciences, Jeju, 63568, Republic of Korea
Jeong-Soon Lee
Korea Research Institute of Standards and Science, Daejeon, 34113,
Republic of Korea
Gang-Woong Lee
Atmospheric Chemistry Laboratory, Hankuk University of Foreign Studies,
Gyeonggi-do, 17035, Republic of Korea
Related authors
Haeyoung Lee, Wonick Seo, Shanlan Li, Soojeong Lee, Samuel Takele Kenea, and Sangwon Joo
Atmos. Chem. Phys., 23, 7141–7159, https://doi.org/10.5194/acp-23-7141-2023, https://doi.org/10.5194/acp-23-7141-2023, 2023
Short summary
Short summary
We introduced three Korea Meteorological Administration (KMA) monitoring stations with monitoring systems and measurement uncertainty. We also analyzed the regional characteristics of CH4 at each KMA station. CH4 levels measured at KMA stations are compared to those measured at other Asian stations. From the long-term records of CH4 and δ13CH4 at AMY, we confirmed that the source of CH4xs changed from the past (2006 to 2010) to recent (2016 to 2020) years in East Asia.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Beni Adi Trisna, Sang Woo Kim, Yong-Doo Kim, Miyeon Park, Seung-Nam Park, and Jeongsoon Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-153, https://doi.org/10.5194/amt-2024-153, 2024
Revised manuscript not accepted
Short summary
Short summary
Manuscript presents a novel calibration method for measuring absorption cross sections (ACSs) of atmospheric gases using a compact UV-DOAS spectrometer. Combining precise lab measurements with advanced simulations, we accurately determined ACSs for various gases, including reactive ones, without costly reference materials. This approach lowers uncertainty, ensures traceability to standard units, and enhances measurement reliability, making it ideal for field applications.
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023, https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.
Haeyoung Lee, Wonick Seo, Shanlan Li, Soojeong Lee, Samuel Takele Kenea, and Sangwon Joo
Atmos. Chem. Phys., 23, 7141–7159, https://doi.org/10.5194/acp-23-7141-2023, https://doi.org/10.5194/acp-23-7141-2023, 2023
Short summary
Short summary
We introduced three Korea Meteorological Administration (KMA) monitoring stations with monitoring systems and measurement uncertainty. We also analyzed the regional characteristics of CH4 at each KMA station. CH4 levels measured at KMA stations are compared to those measured at other Asian stations. From the long-term records of CH4 and δ13CH4 at AMY, we confirmed that the source of CH4xs changed from the past (2006 to 2010) to recent (2016 to 2020) years in East Asia.
Beni Adi Trisna, Seungnam Park, Injun Park, Jeongsoon Lee, and Jeong Sik Lim
Atmos. Chem. Phys., 23, 4489–4500, https://doi.org/10.5194/acp-23-4489-2023, https://doi.org/10.5194/acp-23-4489-2023, 2023
Short summary
Short summary
An accurate estimate of radiative efficiency (RE) is substantial for an accurate assessment of global warming potential (GWP). In this study, we report accurate estimates of RE values of emerging greenhouse gases (GHGs) by using high-resolution Fourier transform infrared spectroscopy (FTIR). CF3OCFCF2 and CF3OCF2CF3 are reported for the first time. In addition, hidden errors in RE values of (CF3)2CFCN and CF3OCFCF2 in previous studies are pointed out.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Cited articles
Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H.,
Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L.,
Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M.
J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S.
F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and
CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's
Global Greenhouse Gas Reference Network: instrumentation, uncertainty
analysis, and recommendations for future high-accuracy greenhouse gas
monitoring efforts, Atmos. Meas. Tech., 7, 647–687,
https://doi.org/10.5194/amt-7-647-2014, 2014.
Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., and Kennedy, J. J.:
El Nino and a record CO2 rise, Nat. Clim. Change, 6,
806–810, 2016.
Canadell, J. G., Le Quéré, C., Raupach, M. R.,
Field, C. B., Buitenhuis, E., Ciais, P., Conway, T. J., Gilett, N. P.,
Houghton, J. T., and Marland, G.: Contributions to accelerating atmospheric
CO2 growth from economic activity, carbon intensity, and efficiency
of natural sinks, P. Natl. Acad. Sci. USA, 104, 18866–18870,
https://doi.org/10.1073/pnas.0702737104, 2007.
Chan, D., Ishizawa, M., Higuchi, K., Maksyutov, S., and Chen, J.: Seasonal
CO2 rectifier effect and large-scale extratropical atmospheric
transport, J. Geophys. Res., 113, D17309, https://doi.org/10.1029/2007JD009443, 2008.
Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E.
R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C.,
Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy
continuous airborne measurements of greenhouse gases (CO2 and CH4) using the
cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3,
375–386, https://doi.org/10.5194/amt-3-375-2010, 2010.
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels
of methane, carbon dioxide, and water vapor, Appl. Phys. B, 92, 403–408,
2008.
Denning S., Takahashi, T., and Friedlingstein, P.: Can a strong atmospheric
CO2 rectifier effect be reconciled with a “reasonable” carbon budget?, Tellus,
51B, 249–253, 1999.
Dlugokencky, E. J., Harris, J. M., Chung, Y. S., Tans, P. P., and Fung, I.: The
relationship between the methane seasonal cycle and regional sources and
sinks at Tae-ahn Peninsula, Korea, Atmos. Environ., 27, 2115–2120, 1993.
Dolman, A. J., Gerbig, C., Noilhan, J., Sarrat, C., and Miglietta, F.:
Detecting regional variability in sources and sinks of carbon dioxide: a
synthesis, Biogeosciences, 6, 1015–1026,
https://doi.org/10.5194/bg-6-1015-2009, 2009.
Fung, I. Y., Tucker, C. J., and Prentice, K. C.: Application of advanced very high
resolution radiometer vegetation index to study atmosphere biosphere exchange
of CO2, J. Geophys. Res., 92, 2999–3015, 1987.
Graven, H. D., Guilderson, T. P., and Keeling, R. F.: Observations of
radiocarbon in CO2 at La Jolla, California, USA 1992–2007: Analysis
of the long-term trend, J. Geophys. Res., 117, D02302,
https://doi.org/10.1029/2011JD016533, 2012.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feddbacks, Nature, 451, 289–292, 2008.
Higuchi, K., Worthy, D., Chan, D., and Shashkov, A.: Regional source/sink impact
on the diurnal, seasonal and inter-annual variations in atmospheric
CO2 at a boreal forest site in Canada, Tellus B, 55, 115–125, 2003.
JCGM: International vocabulary of metrology-Basic and general
concepts and associated terms (VIM, 3rd edition, 2008 version with minor
corrections), available at:
https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf (last access: 1 December 2018),
2012.
Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann,
M., Mook, W. G., and Roeloffzen, H.: A three-dimensional model of atmospheric
CO2 transport based on observed winds: 1. Analysis of observational
data in Aspects of Climate Variability in the pacific and the Western
Americas, Geophys. Monogr. Ser., vol. 55, edited by: Peterson, D. H., 165–236,
AGU, Washington, DC, USA, 1989.
Kim, H.-S., Chung, Y.-S., and Tans, P. P.: A study on carbon dioxide concentrations and
carbon isotopes measured in East Asia during 1991–2001, Air Qual. Atmos.
Hlth., 7, 173–179, 2014.
KMA: Report of Global Atmosphere Watch 2013, Korea Meteorological
Administration, 11-1360000-000991-10, 2014.
Knorr, W.: Is the airborne
fraction of anthropogenic CO2 emissions increasing?, J. Geophys. Res.,
36, L21710, https://doi.org/10.1029/2009GL040613, 2009.
Lee, G., Oh, H.-R., Ho, C.-H., Kim, J., Song, C.-K., Chang, L.-S., Lee, J.-B., and Lee, S.:
Airborne Measurements of High Pollutant Concentration Events in the Free
Troposphere over the West Coast of South Korea between 1997 and 2011,
Aerosol Air Qual. Res, 16, 1118–1130, 2016.
Masarie, K. A., Langenfelds, R. L., Allison, C. E., Conway, T. J.,
Dlugokencky, E. J., Francey, R. J., Novelli, P. C., Steele, L. P., Tans, P. P., Vaughn,
B., and White, J. W. C.: NOAA/CSIRO, Flask Air Intercomparison Experiment: A
Strategy for Directly Assessing Consistency among Atmospheric Measurements
Made by Independent Laboratories, J. Geophys. Res., 106,
20445–20464, 2001.
Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J.,
Karion, A., Miles, N. L., Richardson, S. J., Steinbacher, M., Sweeney, C.,
Wastine, B., and Zellweger, C.: High accuracy measurements of dry mole
fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6,
837–860, https://doi.org/10.5194/amt-6-837-2013, 2013.
Song, B., Park, K. J., Yoo, H. J., and Choi, B. C.: A comparative study on two
consecutive years' CO2 and CH4 measurement from the different
height of air sample inlet at KGAWO, Asia-Pac. J. Atmos.
Sci., 41, 851–895, 2005.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and
Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo
eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res.,
107, 4803, https://doi.org/10.1029/2002JD002090, 2002.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric Carbon dioxide at
Mauna Loa Observatory 2. Analysis of the NOAA GMCC Data, 1984–1985, J.
Geophys. Res., 94, 8549–8565, 1989.
Tohjima, Y., Mukai, H., Hashimoto, S., and Patra, P. K.: Increasing synoptic
scale variability in atmospheric CO2 at Hateruma Island associated with
increasing East-Asian emissions, Atmos. Chem. Phys., 10, 453–462,
https://doi.org/10.5194/acp-10-453-2010, 2010.
Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A.,
Maksyutov, S., Katsumata, K., Machida, T., and Kita, K.: Temporal changes in
the emissions of CH4 and CO from China estimated from CH4∕CO2 and
CO∕CO2 correlations observed at Hateruma Island, Atmos. Chem. Phys., 14, 1663–1677,
https://doi.org/10.5194/acp-14-1663-2014, 2014.
Tucker, C. J., Fung, I. Y., Keeling, C. D., and Gammon, R. H.: Relationship between
atmospheric CO2 variations and a satellite-derived vegetation index,
Nature, 319, 195–199, 1986.
Turnbull, J. C., Rayner, P., Miller, J., Newberger, T., Ciais, P., and Cozic,
A.: On the use of 14CO2 as a tracer for fossil fuel CO2:
Quantifying uncertainties using an atmospheric transport model, J. Geophys.
Res., 114, D22302, https://doi.org/10.1029/2009JD012308, 2009.
Turnbull, J. C., Pieter, P. T., Lehman, S. J., Baker, D.,
Conway, T. J., Chung, Y. S., Gregg, J., Miller, J. B., Southon, J. R., and Zhou, L.-X.: Atmospheric observations of carbon monoxide and fossil fuel CO2
emissions from East Asia, J. Geophys. Res., 116, D24306,
https://doi.org/10.1029/2011JD016691, 2011.
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans,
P. P., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza,
M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanoc, I.: Toward
quantification and sources sector identification of fossil fuel CO2
emissions from an urban area: Results from the INFLUX experiment,
J. Geophys. Res.-Atmos., 120, 292–312, https://doi.org/10.1002/2014JD022555, 2015.
Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman,
S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M.,
Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and
methane measurements from the Los Angeles Megacity Carbon Project – Part 1:
calibration, urban enhancements, and uncertainty estimates, Atmos. Chem.
Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017.
Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri,
Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C.,
Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S.: Global ocean carbon
uptake: magnitude, variability and trends, Biogeosciences, 10, 1983–2000,
https://doi.org/10.5194/bg-10-1983-2013, 2013.
Watanabe, F., Uchino, O., Joo, Y., Aono, M.,
Higashijima, K., Hitano, Y., Tsuboi, K., and Suda, K.:
Interannual variation of growth rate of atmospheric carbon dioxide
concentration observed at the JMA's three monitoring stations: Large
increase in concentration of atmospheric carbon dioxide in 1998, J.
Meteorol. Soc. Jpn., 78, 673–683, 2000.
WCC-Empa: System and performance audit of methane and carbon dioxide at the
regional GAW station Anmyeon-do Republic of Korea Jun, 14/2, 18 pp., 2014.
WCC-Empa: System and performance audit of surface ozone, carbon monoxide,
methane, carbon dioxide and nitrous oxide at the regional GAW station
Anmyeon-do Republic of Korea Jun, 17/1, 48 pp., 2017a.
WCC-Empa: System and performance audit of surface ozone, carbon monoxide,
methane, carbon dioxide and nitrous oxide at the regional GAW station
Jeju-Gosan Republic of Korea Jun, 17/2, 42 pp., 2017b.
WDCGG: WDCGG DATA SUMMARY, Greenhouse gases and other atmospheric gases,
No. 41, 2017.
WDCGG: L2 hourly and daily data of AMY since 1999 and JGS since 2012,
available at: http://gaw.kishou.go.jp, last access: 1 February
2019.
WMO: 18th WMO∕IAEA Meeting on carbon dioxide, other greenhouse gases
and related tracers measurement techniques (GGMT-2015), La Jolla, CA, USA, 13–17 September 2015, No. 229,
2016.
WMO: WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023,
No. 228, 2017.
Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M.,
Kozlova, E., Spain, T. G., Steinbacher, M., van der Schoot, M. V., and
Buchmann, B.: Assessment of recent advances in measurement techniques for
atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech., 9,
4737–4757, https://doi.org/10.5194/amt-9-4737-2016, 2016.
Zhao, C. L. and Tans, P. P.: Estimating uncertainty of the WMO mole
fraction scale for carbon dioxide in air, J. Geophys. Res.,
111, D08S09, https://doi.org/10.1029/2005JD006003, 2006.
Short summary
We introduced our identical systems, which were installed at three S. Korea stations, using CRDS and a drying system. The measurement uncertainty was ~ 0.11 ppm across the stations. CO2 observed in the west of S. Korea was very sensitive to East Asia (e.g., China), indicating that data include CO2 flux information from East Asia. Through long-term comparison to other East Asian stations, it was suggested that they could be affected not only by local vegetation but also by measurement quality.
We introduced our identical systems, which were installed at three S. Korea stations, using CRDS...
Altmetrics
Final-revised paper
Preprint