Articles | Volume 19, issue 24
https://doi.org/10.5194/acp-19-15587-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-15587-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review
School of the Environment, Nanjing University, 163 Xianlin Avenue,
Nanjing, Jiangsu 210023, China
State Key Laboratory of Pollution Control and Resource Reuse,
Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
Peisheng Zhou
School of the Environment, Nanjing University, 163 Xianlin Avenue,
Nanjing, Jiangsu 210023, China
Shuzhen Cao
School of the Environment, Nanjing University, 163 Xianlin Avenue,
Nanjing, Jiangsu 210023, China
Yu Zhao
School of the Environment, Nanjing University, 163 Xianlin Avenue,
Nanjing, Jiangsu 210023, China
State Key Laboratory of Pollution Control and Resource Reuse,
Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
Related authors
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021, https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Short summary
In this study, we use a global chemical transport model to simulate the effects on global air quality and human health due to emission changes in China from 2010 to 2017. By performing sensitivity analysis, we found that the air pollution control policies not only decrease the air pollutant concentration but also bring significant co-benefits in air quality to downwind regions. The benefits for the improved air pollution are dominated by PM2.5.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Y. Yang, Y. Zhao, and L. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 211–217, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, 2019
Yi Tang, Shuxiao Wang, Qingru Wu, Kaiyun Liu, Long Wang, Shu Li, Wei Gao, Lei Zhang, Haotian Zheng, Zhijian Li, and Jiming Hao
Atmos. Chem. Phys., 18, 8279–8291, https://doi.org/10.5194/acp-18-8279-2018, https://doi.org/10.5194/acp-18-8279-2018, 2018
Short summary
Short summary
In this study, 3-year measurements of atmospheric Hg were carried out at a rural site in East China. A significant downward trend was observed during the sampling period. This study used a new approach that considers both cluster frequency and the Hg concentration associated with each cluster, and we calculated that atmospheric Hg from the whole region of China has caused a 70 % decline of GEM concentration at the Chongming monitoring site due to strict air pollution control policies in China.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1769, https://doi.org/10.5194/egusphere-2024-1769, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of Nr deposition till 2060s in China with air quality modeling. We demonstrate China’s clean air and carbon neutrality policies would overcome the adverse effect of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to West Pacific would also be clearly reduced from continuous stringent emission controls.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021, https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Short summary
In this study, we use a global chemical transport model to simulate the effects on global air quality and human health due to emission changes in China from 2010 to 2017. By performing sensitivity analysis, we found that the air pollution control policies not only decrease the air pollutant concentration but also bring significant co-benefits in air quality to downwind regions. The benefits for the improved air pollution are dominated by PM2.5.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Dong Chen, Yu Zhao, Jie Zhang, Huan Yu, and Xingna Yu
Atmos. Chem. Phys., 20, 10193–10210, https://doi.org/10.5194/acp-20-10193-2020, https://doi.org/10.5194/acp-20-10193-2020, 2020
Short summary
Short summary
We studied the characteristics and sources of aerosol scattering for Nanjing. The method of aerosol scattering estimation was optimized based on field measurements, and the impacts of aerosol size and composition were quantified. To explore the reasons for the reduced visibility, source apportionment of aerosol scattering was conducted by pollution level. This work stressed the linkage between aerosols and visibility and improved the understanding of emissions and their role in air quality.
Yu Zhao, Mengchen Yuan, Xin Huang, Feng Chen, and Jie Zhang
Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020, https://doi.org/10.5194/acp-20-4275-2020, 2020
Short summary
Short summary
We estimated the ammonia emissions based on the constant emission factors and those characterizing the agricultural processes for the Yangtze River Delta, China. The discrepancies between the two estimates and their causes were analyzed. Based on ground and satellite observations, the two estimates were evaluated with air quality modeling. This work indicates ways to improve the emission estimation and helps better understand the necessity of multi-pollutant control strategy.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Y. Yang, Y. Zhao, and L. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 211–217, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, 2019
Xuefen Zhao, Yu Zhao, Dong Chen, Chunyan Li, and Jie Zhang
Atmos. Chem. Phys., 19, 2095–2113, https://doi.org/10.5194/acp-19-2095-2019, https://doi.org/10.5194/acp-19-2095-2019, 2019
Short summary
Short summary
This work captured the changes in black carbon (BC) emissions from tightened pollution controls in a city cluster in eastern China through a top-down approach that incorporated available ground observations, a chemistry transport model, and a multiple regression model. The uncertainty from the a priori emission input and wet deposition was evaluated to be moderate. More ground measurements with better spatiotemporal coverage were recommended for constraining BC emissions effectively.
Yang Yang and Yu Zhao
Atmos. Chem. Phys., 19, 327–348, https://doi.org/10.5194/acp-19-327-2019, https://doi.org/10.5194/acp-19-327-2019, 2019
Short summary
Short summary
We estimated and evaluated the air pollutant emissions from open biomass burning in the Yangtze River Delta with three methods. Chemistry transport modeling indicated that the constraining method provided the best emissions. The traditional bottom-up method could often overestimate emissions and could hardly track their interannual trends. The emissions based on fire radiative power might be underestimated, which is attributed to the satellite detection limit on small fires.
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-632, https://doi.org/10.5194/acp-2018-632, 2018
Revised manuscript not accepted
Short summary
Short summary
China has pledged reduction of carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005–2009 to independently evaluate three different CO2 emissions estimates.
Wen Xu, Lei Liu, Miaomiao Cheng, Yuanhong Zhao, Lin Zhang, Yuepeng Pan, Xiuming Zhang, Baojing Gu, Yi Li, Xiuying Zhang, Jianlin Shen, Li Lu, Xiaosheng Luo, Yu Zhao, Zhaozhong Feng, Jeffrey L. Collett Jr., Fusuo Zhang, and Xuejun Liu
Atmos. Chem. Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, https://doi.org/10.5194/acp-18-10931-2018, 2018
Short summary
Short summary
Our main results demonstrate that atmospheric Nr pollution in eastern China is more serious in the northern region than in the southern region. Any effects of current emission controls are not yet apparent in Nr pollution. NH3 emissions from fertilizer use were the largest contributor (36 %) to total inorganic Nr deposition. Our results provide useful information for policy-makers that mitigation of NH3 emissions should be a priority to tackle serious N deposition.
Yi Tang, Shuxiao Wang, Qingru Wu, Kaiyun Liu, Long Wang, Shu Li, Wei Gao, Lei Zhang, Haotian Zheng, Zhijian Li, and Jiming Hao
Atmos. Chem. Phys., 18, 8279–8291, https://doi.org/10.5194/acp-18-8279-2018, https://doi.org/10.5194/acp-18-8279-2018, 2018
Short summary
Short summary
In this study, 3-year measurements of atmospheric Hg were carried out at a rural site in East China. A significant downward trend was observed during the sampling period. This study used a new approach that considers both cluster frequency and the Hg concentration associated with each cluster, and we calculated that atmospheric Hg from the whole region of China has caused a 70 % decline of GEM concentration at the Chongming monitoring site due to strict air pollution control policies in China.
Yu Zhao, Pan Mao, Yaduan Zhou, Yang Yang, Jie Zhang, Shekou Wang, Yanping Dong, Fangjian Xie, Yiyong Yu, and Wenqing Li
Atmos. Chem. Phys., 17, 7733–7756, https://doi.org/10.5194/acp-17-7733-2017, https://doi.org/10.5194/acp-17-7733-2017, 2017
Short summary
Short summary
We improve and evaluate an NMVOC emission inventory for Jiangsu. Field measurements were conducted to obtain NMVOC source profiles of typical chemical engineering processes. The emission inventory of NMVOCs with chemistry profiles was developed for 2005–2014, and the uncertainties were quantified. The discrepancies between various inventories in source profiles and spatial patterns were evaluated. A chemistry transport model was applied to test the improvement of the provincial NMVOC inventory.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Yaduan Zhou, Yu Zhao, Pan Mao, Qiang Zhang, Jie Zhang, Liping Qiu, and Yang Yang
Atmos. Chem. Phys., 17, 211–233, https://doi.org/10.5194/acp-17-211-2017, https://doi.org/10.5194/acp-17-211-2017, 2017
Short summary
Short summary
A high-resolution emission inventory was developed for Jiangsu, China, using the bottom-up approach. Through comparisons with other national and regional inventories, the best agreement between available ground observation and air quality simulation was found when the provincial inventory was applied. The result implied the advantage of improved emission inventory at local scale for high-resolution air quality modeling.
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary
Short summary
An annual simulation of secondary organic aerosol (SOA) concentrations in China with updated SOA formation pathways reveals that SOA can be a significant contributor to PM2.5 in major urban areas. Summer SOA is dominated by emissions from biogenic sources, while winter SOA is dominated by anthropogenic emissions such as alkanes and aromatic compounds. Reactive surface uptake of dicarbonyls throughout the year and isoprene epoxides in summer is the most important contributor.
Hui Zhong, Yu Zhao, Marilena Muntean, Lei Zhang, and Jie Zhang
Atmos. Chem. Phys., 16, 15119–15134, https://doi.org/10.5194/acp-16-15119-2016, https://doi.org/10.5194/acp-16-15119-2016, 2016
Short summary
Short summary
A better understanding of the discrepancies in multi-scale emission inventories could provide indications for their limitations and further improvements. We develop a bottom-up inventory of Hg emissions for Jiangsu, China. Compared to the national and global inventories, the largest total Hg emissions and fraction of Hg2+ are estimated. The crucial parameters responsible for the differences include Hg contents in coals/materials, abatement rates of emission control devices, and activity levels.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
Y. Zhao, L. P. Qiu, R. Y. Xu, F. J. Xie, Q. Zhang, Y. Y. Yu, C. P. Nielsen, H. X. Qin, H. K. Wang, X. C. Wu, W. Q. Li, and J. Zhang
Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, https://doi.org/10.5194/acp-15-12623-2015, 2015
Short summary
Short summary
A high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical city in eastern China, is developed, incorporating the best available local information from on-site surveys. The temporal and spatial distribution of the emissions and the correlation between specific species of the inventory are assessed by comparisons with observations and other inventories at larger spatial scale. The emission inventory provides a basis to consider the quality of instrumental observations.
H. Cui, P. Mao, Y. Zhao, C. P. Nielsen, and J. Zhang
Atmos. Chem. Phys., 15, 8657–8678, https://doi.org/10.5194/acp-15-8657-2015, https://doi.org/10.5194/acp-15-8657-2015, 2015
Short summary
Short summary
We present an emission inventory with quantified uncertainties of organic carbon (OC) and elemental carbon (EC) in China. New emission factors from local measurements lead to lower OC emissions than previous studies. We use ground observations to test the levels, trends, and spatial pattern of the emissions. The improvement over prior inventories is indicated by inter-annual comparison and correlation analysis between emissions and observations. Sources with high primary OC/EC are underestimate.
Y. Zhao, H. Zhong, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 15, 4317–4337, https://doi.org/10.5194/acp-15-4317-2015, https://doi.org/10.5194/acp-15-4317-2015, 2015
Short summary
Short summary
China’s atmospheric Hg emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Expansion of technologies with high energy efficiencies and air pollutant removal rates leads to a much slower growth of Hg emissions than that of energy and economy. However, increased uncertainties of Hg emissions are quantified from 2005 to 2012, attributed to the unclear operation status or small sample size of field tests on those technologies.
Y. Zhao, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 14, 8849–8868, https://doi.org/10.5194/acp-14-8849-2014, https://doi.org/10.5194/acp-14-8849-2014, 2014
Y. Zhao, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, https://doi.org/10.5194/acp-13-487-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
NO3 reactivity during a summer period in a temperate forest below and above the canopy
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Elevated oxidized mercury in the free troposphere: Analytical advances and application at a remote continental mountaintop site
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to SOA and O3 under low-sulfur fuel policies
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Biomass burning sources control ambient particulate matter but traffic and industrial sources control VOCs and secondary pollutant formation during extreme pollution events in Delhi
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Measurement Report: Elevated excess-NH3 can promote the redox reaction to produce HONO: Insights from the COVID-19 pandemic
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: implications for tracing NOx oxidation pathways and emission sources
Multi-year observations of variable incomplete combustion in the New York megacity
Measurement report: Method for evaluating CO2 emissions from a cement plant using atmospheric δ(O2 ∕ N2) and CO2 measurements and its implication for future detection of CO2 capture signals
Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the southern North Sea
Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements
Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta
Measurement report: Vertical and temporal variability of near-surface ozone production rate and sensitivity in an urban area in Pearl River Delta (PRD) region, China
The interhemispheric gradient of SF6 in the upper troposphere
Weather regimes and the related atmospheric composition at a Pyrenean observatory characterized by hierarchical clustering of a 5-year data set
Tropospheric bromine monoxide vertical profiles retrieved across the Alaskan Arctic in springtime
Source apportionment of methane emissions from the Upper Silesian Coal Basin using isotopic signatures
Measurement report: Exchange fluxes of HONO over agricultural fields in the North China Plain
HONO chemistry at a suburban site during the EXPLORE-YRD campaign in 2018: formation mechanisms and impacts on O3 production
Evaluation of modelled climatologies of O3, CO, water vapour and NOy in the upper troposphere–lower stratosphere using regular in situ observations by passenger aircraft
Photochemical ageing of aerosols contributes significantly to the production of atmospheric formic acid
Nitrous acid budgets in the coastal atmosphere: potential daytime marine sources
Undetected biogenic volatile organic compounds from Norway spruce drive total ozone reactivity measurements
Quantification of fossil fuel CO2 from combined CO, δ13CO2 and Δ14CO2 observations
Radical chemistry and ozone production at a UK coastal receptor site
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-1223, https://doi.org/10.5194/egusphere-2024-1223, 2024
Short summary
Short summary
In scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical (NO3) towards biogenic volatile organic compounds (BVOCs, e.g. monoterpenes) mainly below, but also above the canopy. NO3 reactivity was highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Eleanor J. Derry, Tyler Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1046, https://doi.org/10.5194/egusphere-2024-1046, 2024
Short summary
Short summary
Mercury (Hg) is a globally-distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg to ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central U.S. Oxidized Hg originated upwind in the low to mid-free troposphere under clean, dry conditions.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Kim, Young R. Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
EGUsphere, https://doi.org/10.5194/egusphere-2024-596, https://doi.org/10.5194/egusphere-2024-596, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)); thus, impact air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Xiangguang Ji, Jingkai Xue, Jinping Ou, Hongyu Wu, and Qihou Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-461, https://doi.org/10.5194/egusphere-2024-461, 2024
Short summary
Short summary
We learned the contributions of O3 and HONO to the production rates of OH in vertical space on the TP. A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than at lower-altitudes areas. This study will enrich the new understanding of vertical distribution of atmospheric components and explained the strong AOC on the TP.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-652, https://doi.org/10.5194/egusphere-2024-652, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel according to global sulfur limit regulation leads to large uncertainty on VOCs emission. Therefore, on-board test of VOCs from 9 typical cargo ships in China were carried out. Results showed that the switch of fuels from heavy fuel oil to diesel increased EFVOCs by 48% on average, enhancing both O3 and secondary organic aerosol formation potentials. This indicated the implementation of globally ultra-low-sulfur oil policy in the near future needs to be optimized.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
EGUsphere, https://doi.org/10.5194/egusphere-2024-501, https://doi.org/10.5194/egusphere-2024-501, 2024
Short summary
Short summary
Our study uses a data set of 111 VOCs from a PTR-ToF-MS 10k, PM10 and PM2.5 in a PMF source-receptor model to resolve 11 pollution sources validated with chemical fingerprints collected at the source. Crop residue burning and heating contribute ~50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOCs burden and SOA formation potential (>60 %). Non-tailpipe emissions from CNG powered commercial vehicles dominate the transport sector contribution to the PM burden.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2913, https://doi.org/10.5194/egusphere-2023-2913, 2024
Short summary
Short summary
Online observational data on particulate matter composition, gaseous pollutants, and meteorological conditions from ten sites in China before and during the COVID-19 pandemic were analyzed to investigate the variation in NH3 concentrations and particle pH and explore the promoting effect of increased pH values on HONO formation. This is the first study to discuss the reasons for the increase in AOC during the pandemic from the perspective of the influence of NH3 on HONO.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
EGUsphere, https://doi.org/10.5194/egusphere-2024-83, https://doi.org/10.5194/egusphere-2024-83, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using four years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024, https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Short summary
A method evaluating techniques for carbon neutrality, such as carbon capture and storage (CCS), is important. This study presents a method to evaluate CO2 emissions from a cement plant based on atmospheric O2 and CO2 measurements. The method will also be useful for evaluating CO2 capture from flue gas at CCS plants, since the plants remove CO2 from the atmosphere without causing any O2 changes, just as cement plants do, differing only in the direction of CO2 exchange with the atmosphere.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
Atmos. Chem. Phys., 24, 977–992, https://doi.org/10.5194/acp-24-977-2024, https://doi.org/10.5194/acp-24-977-2024, 2024
Short summary
Short summary
Many works report NO3 chemistry in inland regions while less target marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite its sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once free from NO emissions in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Jipeng Qi, Minhui Deng, Yibo Huangfu, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2230, https://doi.org/10.5194/egusphere-2023-2230, 2024
Short summary
Short summary
In-depth understanding of near-ground vertical and temporal photochemical ozone (O3) formation is crucial for mitigating O3 pollution. By utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we have diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in Pearl River Delta region, one of the most O3 polluted area in China.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Jérémy Gueffier, François Gheusi, Marie Lothon, Véronique Pont, Alban Philibert, Fabienne Lohou, Solène Derrien, Yannick Bezombes, Gilles Athier, Yves Meyerfeld, Antoine Vial, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 287–316, https://doi.org/10.5194/acp-24-287-2024, https://doi.org/10.5194/acp-24-287-2024, 2024
Short summary
Short summary
This study investigates the link between weather regime and atmospheric composition at a Pyrenean observatory. Five years of meteorological data were synchronized on a daily basis and then, using a clustering method, separated into six groups of observation days, with most showing marked characteristics of different weather regimes (fair and disturbed weather, winter windstorms, foehn). Statistical differences in gas and particle concentrations appeared between the groups and are discussed.
Nathaniel Brockway, Peter K. Peterson, Katja Bigge, Kristian D. Hajny, Paul B. Shepson, Kerri A. Pratt, Jose D. Fuentes, Tim Starn, Robert Kaeser, Brian H. Stirm, and William R. Simpson
Atmos. Chem. Phys., 24, 23–40, https://doi.org/10.5194/acp-24-23-2024, https://doi.org/10.5194/acp-24-23-2024, 2024
Short summary
Short summary
Bromine monoxide (BrO) strongly affects atmospheric chemistry in the springtime Arctic, yet there are still many uncertainties around its sources and recycling, particularly in the context of a rapidly changing Arctic. In this study, we observed BrO as a function of altitude above the Alaskan Arctic. We found that BrO was often most concentrated near the ground, confirming the ability of snow to produce and recycle reactive bromine, and identified four common vertical distributions of BrO.
Alina Fiehn, Maximilian Eckl, Julian Kostinek, Michał Gałkowski, Christoph Gerbig, Michael Rothe, Thomas Röckmann, Malika Menoud, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Mila Stanisavljević, Justyna Swolkień, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 23, 15749–15765, https://doi.org/10.5194/acp-23-15749-2023, https://doi.org/10.5194/acp-23-15749-2023, 2023
Short summary
Short summary
During the CoMet mission in the Upper Silesian Coal Basin (USCB) ground-based and airborne air samples were taken and analyzed for the isotopic composition of CH4 to derive the mean signature of the USCB and source signatures of individual coal mines. Using δ2H signatures, the biogenic emissions from the USCB account for 15 %–50 % of total emissions, which is underestimated in common emission inventories. This demonstrates the importance of δ2H-CH4 observations for methane source apportionment.
Yifei Song, Chaoyang Xue, Yuanyuan Zhang, Pengfei Liu, Fengxia Bao, Xuran Li, and Yujing Mu
Atmos. Chem. Phys., 23, 15733–15747, https://doi.org/10.5194/acp-23-15733-2023, https://doi.org/10.5194/acp-23-15733-2023, 2023
Short summary
Short summary
We present measurements of HONO flux and related parameters over an agricultural field during a whole growing season of summer maize. This dataset allows studies on the characteristics and influencing factors of soil HONO emissions, determination of HONO emission factors, estimation of total HONO emissions at a national scale, and the discussion on future environmental policies in terms of mitigating regional air pollution.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 15455–15472, https://doi.org/10.5194/acp-23-15455-2023, https://doi.org/10.5194/acp-23-15455-2023, 2023
Short summary
Short summary
In this study, combining comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Yifan Jiang, Men Xia, Zhe Wang, Penggang Zheng, Yi Chen, and Tao Wang
Atmos. Chem. Phys., 23, 14813–14828, https://doi.org/10.5194/acp-23-14813-2023, https://doi.org/10.5194/acp-23-14813-2023, 2023
Short summary
Short summary
This study provides the first estimate of high rates of formic acid (HCOOH) production from the photochemical aging of real ambient particles and demonstrates the potential importance of this pathway in the formation of HCOOH under ambient conditions. Incorporating this pathway significantly improved the performance of a widely used chemical model. Our solution irradiation experiments demonstrated the importance of nitrate photolysis in HCOOH production via the production of oxidants.
Xuelian Zhong, Hengqing Shen, Min Zhao, Ji Zhang, Yue Sun, Yuhong Liu, Yingnan Zhang, Ye Shan, Hongyong Li, Jiangshan Mu, Yu Yang, Yanqiu Nie, Jinghao Tang, Can Dong, Xinfeng Wang, Yujiao Zhu, Mingzhi Guo, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 23, 14761–14778, https://doi.org/10.5194/acp-23-14761-2023, https://doi.org/10.5194/acp-23-14761-2023, 2023
Short summary
Short summary
Nitrous acid (HONO) is vital for atmospheric oxidation. In research at Mount Lao, China, models revealed a significant unidentified marine HONO source. Overlooking this could skew our understanding of air quality and climate change. This finding emphasizes HONO’s importance in the coastal atmosphere, uncovering previously unnoticed interactions.
Steven Job Thomas, Toni Tykkä, Heidi Hellén, Federico Bianchi, and Arnaud P. Praplan
Atmos. Chem. Phys., 23, 14627–14642, https://doi.org/10.5194/acp-23-14627-2023, https://doi.org/10.5194/acp-23-14627-2023, 2023
Short summary
Short summary
The study employed total ozone reactivity to demonstrate how emissions of Norway spruce readily react with ozone and could be a major ozone sink, particularly under stress. Additionally, this approach provided insight into the limitations of current analytical techniques that measure the compounds present or emitted into the atmosphere. The study shows how the technique used was not enough to measure all compounds emitted, and this could potentially underestimate various atmospheric processes.
Jinsol Kim, John B. Miller, Charles E. Miller, Scott J. Lehman, Sylvia E. Michel, Vineet Yadav, Nick E. Rollins, and William M. Berelson
Atmos. Chem. Phys., 23, 14425–14436, https://doi.org/10.5194/acp-23-14425-2023, https://doi.org/10.5194/acp-23-14425-2023, 2023
Short summary
Short summary
In this study, we present the partitioning of CO2 signals from biogenic, petroleum and natural gas sources by combining CO, 13CO2 and 14CO2 measurements. Using measurements from flask air samples at three sites in the greater Los Angeles region, we find larger and positive contributions of biogenic signals in winter and smaller and negative contributions in summer. The largest contribution of natural gas combustion generally occurs in summer.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
Cited articles
Aas, W. (Ed.): Data quality 2004, quality assurance, and field comparisons,
C587 EMEP/CCC-Report 4/2006, NILU, Kjeller, Norway, 2006.
Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New
constraints on terrestrial surface atmosphere fluxes of gaseous elemental
mercury using a global database, Environ. Sci. Technol., 50, 507–524,
https://doi.org/10.1021/acs.est.5b04013, 2016.
Ahn, M. C., Yi, S. M., Holsen, T. M., and Han, Y. J.: Mercury wet deposition
in rural Korea: concentrations and fluxes, J. Environ. Monitor., 13,
2748–2754, https://doi.org/10.1039/c1em10014a, 2011.
Åkerblom, S., Meili, M., and Bishop, K.: Organic matter in rain: an
overlooked influence on mercury deposition, Environ. Sci. Tech. Let., 2,
128–132, https://doi.org/10.1021/acs.estlett.5b00009, 2015.
Bash, J. O.: Description and initial simulation of a dynamic bidirectional
air-surface exchange model for mercury in Community Multiscale Air Quality
(CMAQ) model, J. Geophys. Res., 115, D06305, https://doi.org/10.1029/2009jd012834, 2010.
Baya, A. P. and Van Heyst, B.: Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons, Atmos. Chem. Phys., 10, 8617–8628, https://doi.org/10.5194/acp-10-8617-2010, 2010.
Benoit, J. M., Cato, D. A., Denison, K. C., and Moreira, A. E.: Seasonal
mercury dynamics in a New England vernal pool, Wetlands, 33, 887–894,
https://doi.org/10.1007/s13157-013-0447-4, 2013.
Bieser, J., De Simone, F., Gencarelli, C., Geyer, B., Hedgecock, I.,
Matthias, V., Travnikov, O., and Weigelt, A.: A diagnostic evaluation of
modeled mercury wet depositions in Europe using atmospheric speciated
high-resolution observations, Environ. Sci. Pollut. R., 21, 9995–10012,
https://doi.org/10.1007/s11356-014-2863-2, 2014.
Blackwell, B. D. and Driscoll, C. T.: Using foliar and forest floor mercury
concentrations to assess spatial patterns of mercury deposition, Environ.
Pollut., 202, 126–134, https://doi.org/10.1016/j.envpol.2015.02.036, 2015a.
Blackwell, B. D. and Driscoll, C. T.: Deposition of mercury in forests
along a montane elevation gradient, Environ. Sci. Technol., 49, 5363–5370,
https://doi.org/10.1021/es505928w, 2015b.
Brunke, E.-G., Walters, C., Mkololo, T., Martin, L., Labuschagne, C.,
Silwana, B., Slemr, F., Weigelt, A., Ebinghaus, R., and Somerset, V.:
Mercury in the atmosphere and in rainwater at Cape Point, South Africa,
Atmos. Environ., 125, 24–32, https://doi.org/10.1016/j.atmosenv.2015.10.059, 2016.
Buch, A. C., Correia, M. E., Teixeira, D. C., and Silva-Filho, E. V.:
Characterization of soil fauna under the influence of mercury atmospheric
deposition in Atlantic Forest, Rio de Janeiro, Brazil, J. Environ. Sci., 32,
217–227, https://doi.org/10.1016/j.jes.2015.01.009, 2015.
Bullock, O. R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A.,
Davignon, D., Ku, J. Y., Lohman, K., Myers, T. C., Park, R. J., Seigneur,
C., Selin, N. E., Sistla, G., and Vijayaraghavan, K.: The North American
Mercury Model Intercomparison Study (NAMMIS): Study description and
modelto-model comparisons, J. Geophys. Res.-Atmos., 113, D17310,
https://doi.org/10.1029/2008jd009803, 2008.
Bullock, O. R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A.,
Davignon, D., Ku, J.-Y., Lohman, K., Myers, T. C., Park, R. J., Seigneur,
C., Selin, N. E, Sistla, G., and Vijayaraghavan, K.: An analysis of
simulated wet deposition of mercury from the North American Mercury Model
Intercomparison Study, J. Geophys. Res.-Atmos., 114, D08301,
https://doi.org/10.1029/2008jd011224, 2009.
Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.:
Mercury dynamics of a northern hardwood canopy, Atmos. Environ., 42,
6905–6914, https://doi.org/10.1016/j.atmosenv.2008.05.043, 2008.
Castelle, S., Schäfer, J., Blanc, G., Dabrin, A., Lanceleur, L., and
Masson, M.: Gaseous mercury at the air–water interface of a highly turbid
estuary (Gironde Estuary, France), Mar. Chem., 117, 42–51,
https://doi.org/10.1016/j.marchem.2009.01.005, 2009.
Castro, M. S., Moore, C., Sherwell, J., and Brooks, S. B.: Dry deposition of
gaseous oxidized mercury in Western Maryland, Sci. Total Environ., 417–418,
232–240, https://doi.org/10.1016/j.scitotenv.2011.12.044, 2012.
Chen, L., Li, Y., Liu, C., Guo, L., and Wang, X.: Wet deposition of mercury
in Qingdao, a coastal urban city in China: Concentrations, fluxes, and
influencing factors, Atmos. Environ., 174, 204–213,
https://doi.org/10.1016/j.atmosenv.2017.11.059, 2018.
Cheng, I. and Zhang, L.: Uncertainty assessment of gaseous oxidized mercury
measurements collected by Atmospheric Mercury Network, Environ. Sci.
Technol., 51, 855–862, 2017.
Cheng, I., Zhang, L., and Mao, H.: Relative contributions of gaseous
oxidized mercury and fine and coarse particle-bound mercury to mercury wet
deposition at nine monitoring sites in North America, J. Geophys. Res.-Atmos., 120, 8549–8562, https://doi.org/10.1002/2015jd023769, 2015.
Cheng, Z. L., Luo, Y., Zhang, T., and Duan, L.: Deposition of Sulfur,
Nitrogen and Mercury in Two Typical Forest Ecosystems in Southern China,
Environ. Sci., 38, 5004–5011, https://doi.org/10.13227/j.hjkx.201705103, 2017 (in Chinese).
Choi, H.-D., Sharac, T. J., and Holsen, T. M.: Mercury deposition in the
Adirondacks: A comparison between precipitation and throughfall, Atmos.
Environ., 42, 1818–1827, https://doi.org/10.1016/j.atmosenv.2007.11.036, 2008.
Ci, Z., Peng, F., Xue, X., and Zhang, X.: Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai–Tibet Plateau, Atmos. Chem. Phys., 16, 14741–14754, https://doi.org/10.5194/acp-16-14741-2016, 2016.
Ci, Z. J., Zhang, X. S., and Wang, Z. W.: Enhancing atmospheric mercury
research in China to improve the current understanding of the global mercury
cycle: The need for urgent and closely coordinated efforts, Environ. Sci.
Technol., 46, 5636–5642, 2012.
Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier,
B., and Le Cavelier, S.: Wet and dry deposition of particles associated
metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France,
Atmos. Environ., 67, 394–403, https://doi.org/10.1016/j.atmosenv.2012.11.029, 2013.
Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal variability
in gaseous mercury fluxes measured in a high-elevation meadow, Atmos.
Environ., 44, 2176–2185, https://doi.org/10.1016/j.atmosenv.2010.03.024, 2010.
Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal contribution
of dewfall to mercury deposition determined using a micrometeorological
technique and dew chemistry, J. Geophys. Res.-Atmos., 119, 284–292,
https://doi.org/10.1002/2013JD020491, 2014.
Dastoor, A. P. and Larocque, Y.: Global circulation of atmospheric mercury:
a modelling study, Atmos. Environ., 38, 147–161,
https://doi.org/10.1016/j.atmosenv.2003.08.037, 2004.
Dutt, U., Nelson, P. F., Morrison, A. L., and Strezov, V.: Mercury wet
deposition and coal-fired power station contributions: An Australian study,
Fuel Process. Technol., 90, 1354–1359, https://doi.org/10.1016/j.fuproc.2009.06.019, 2009.
Enrico, M., Roux, G. L., Marusczak, N., Heimburger, L. E., Claustres, A.,
Fu, X., Sun, R., and Sonke, J. E.: Atmospheric mercury transfer to peat bogs
dominated by gaseous elemental mercury dry deposition, Environ. Sci.
Technol., 50, 2405–2412, https://doi.org/10.1021/acs.est.5b06058, 2016.
Fang, G.-C., Tsai, J.-H., Lin, Y.-H., and Chang, C.-Y.: Dry deposition of
atmospheric particle-bound mercury in the Middle Taiwan, Aerosol Air Qual.
Res., 12, 1298–1308, https://doi.org/10.4209/aaqr.2012.04.0093, 2012a.
Fang, G. C., Zhang, L., and Huang, C. S.: Measurements of size-fractionated
concentration and bulk dry deposition of atmospheric particulate bound
mercury, Atmos. Environ., 61, 371–377, https://doi.org/10.1016/j.atmosenv.2012.07.052,
2012b.
Fang, G.-C., Lin, Y.-H., and Chang, C.-Y.: Use of mercury dry deposition
samplers to quantify dry deposition of particulate-bound mercury and
reactive gaseous mercury at a traffic sampling site, Environ. Forensics, 14,
182–186, https://doi.org/10.1080/15275922.2013.814177, 2013.
Fernandez, D., Torregrosa, A., Weiss-Penzias, P., Zhang, B. J., Sorensen, D.,
Cohen, R. E., McKinley, G. H., Kleingartner, L., Oliphant, A., and Bowman, M.: Fog
Water Collection Effectiveness: Mesh Intercomparisons, Aerosol Air Qual.
Res., 18, 270–283, https://doi.org/10.4209/aaqr.2017.01.0040, 2018.
Fisher, L. S. and Wolfe, M. H.: Examination of mercury inputs by
throughfall and litterfall in the Great Smoky Mountains National Park,
Atmos. Environ., 47, 554–559, https://doi.org/10.1016/j.atmosenv.2011.10.017, 2012.
Fostier, A. H., Melendez-Perez, J. J., and Richter, L.: Litter mercury
deposition in the Amazonian rainforest, Environ. Pollut., 206, 605–610,
https://doi.org/10.1016/j.envpol.2015.08.010, 2015.
Fragoso, C. P., Bernini, E., Araújo, B. F., Almeida, M. G. D., and
Rezende, C. E. D.: Mercury in litterfall and sediment using elemental and
isotopic composition of carbon and nitrogen in the mangrove of Southeastern
Brazil, Estuar. Coast. Shelf S., 202, 30–39,
https://doi.org/10.1016/j.ecss.2017.12.005, 2018.
Fritsche, J., Obrist, D., Zeeman, M., Conen, F., Eugster, W., and Alewell,
C.: Elemental mercury fluxes over a sub-alpine grassland determined with two
micrometeorological methods, Atmos. Environ., 42, 2922–2933,
https://doi.org/10.1016/j.atmosenv.2007.12.055, 2008.
Fu, X., Feng, X., Zhu, W., Zheng, W., Wang, S., and Lu, J. Y.: Total
particulate and reactive gaseous mercury in ambient air on the eastern slope
of the Mt. Gongga area, China, Appl. Geochem., 23, 408–418,
https://doi.org/10.1016/j.apgeochem.2007.12.018, 2008.
Fu, X., Feng, X., Zhu, W., Rothenberg, S., Yao, H., and Zhang, H.: Elevated
atmospheric deposition and dynamics of mercury in a remote upland forest of
southwestern China, Environ. Pollut., 158, 2324–2333,
https://doi.org/10.1016/j.envpol.2010.01.032, 2010a.
Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., and Zhang, H.: Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China, Atmos. Chem. Phys., 10, 2425–2437, https://doi.org/10.5194/acp-10-2425-2010, 2010b.
Fu, X., Feng, X., Sommar, J., and Wang, S.: A review of studies on
atmospheric mercury in China, Sci. Total Environ., 421–422, 73–81,
https://doi.org/10.1016/j.scitotenv.2011.09.089, 2012.
Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., Yan, H., Lin, C.-J., and Feng, X.: Atmospheric wet and litterfall mercury deposition at urban and rural sites in China, Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, 2016a.
Fu, X., Marusczak, N., Heimbürger, L.-E., Sauvage, B., Gheusi, F., Prestbo, E. M., and Sonke, J. E.: Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmos. Chem. Phys., 16, 5623–5639, https://doi.org/10.5194/acp-16-5623-2016, 2016b.
Gerson, J. R., Driscoll, C. T., Demers, J. D., Sauer, A. K., Blackwell, B.
D., Montesdeoca, M. R., Shanley, J. B., and Ross, D. S.: Deposition of
mercury in forests across a montane elevation gradient: Elevational and
seasonal patterns in methylmercury inputs and production, J. Geophys. Res.-Biogeo., 122, 1922–1939, https://doi.org/10.1002/2016jg003721, 2017.
Gichuki, S. W. and Mason, R. P.: Mercury and metals in South African
precipitation, Atmos. Environ., 79, 286–298,
https://doi.org/10.1016/j.atmosenv.2013.04.009, 2013.
Gichuki, S. W. and Mason, R. P.: Wet and dry deposition of mercury in
Bermuda, Atmos. Environ., 87, 249–257, https://doi.org/10.1016/j.atmosenv.2014.01.025,
2014.
Gong, P., Wang, X. P., Xue, Y. G., Xu, B. Q., and Yao, T. D.: Mercury
distribution in the foliage and soil profiles of the Tibetan forest:
processes and implications for regional cycling, Environ. Pollut., 188,
94–101, https://doi.org/10.1016/j.envpol.2014.01.020, 2014.
Gratz, L. E. and Keeler, G. J.: Sources of mercury in precipitation to
Underhill, VT, Atmos. Environ., 45, 5440–5449,
https://doi.org/10.1016/j.atmosenv.2011.07.001, 2011.
Guo, J., Kang, S., Huang, J., Zhang, Q., Rupakheti, M., Sun, S., Tripathee,
L., Rupakheti, D., Panday, A. K., Sillanpaa, M., and Paudyal, R.:
Characterizations of atmospheric particulate-bound mercury in the Kathmandu
Valley of Nepal, South Asia, Sci. Total Environ., 579, 1240–1248,
https://doi.org/10.1016/j.scitotenv.2016.11.110, 2017.
Guo, Y., Feng, X., Li, Z., He, T., Yan, H., Meng, B., Zhang, J., and Qiu,
G.: Distribution and wet deposition fluxes of total and methyl mercury in
Wujiang River Basin, Guizhou, China, Atmos. Environ., 42, 7096–7103,
https://doi.org/10.1016/j.atmosenv.2008.06.006, 2008.
Gustin, M. S., Lindberg, S. E., and Weisberg, P. J.: An update on the
natural sources and sinks of atmospheric mercury, Appl. Geochem., 23,
482–493, https://doi.org/10.1016/j.apgeochem.2007.12.010, 2008.
Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A.,
Ambrose, J., Finley, B. D., Lyman, S. N., Call, K., Talbot, R., Feddersen,
D., Mao, H., and Lindberg, S. E.: Do we understand what the mercury
speciation instruments are actually measuring? Results of RAMIX, Environ.
Sci. Technol., 47, 7295–7306, https://doi.org/10.1021/es3039104, 2013.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
Hall, N. L., Dvonch, J. T., Marsik, F. J., Barres, J. A., and Landis, M. S.:
An artificial turf-based surrogate surface collector for the direct
measurement of atmospheric mercury dry deposition, Int. J. Environ. Res.
Public Health, 14, 173, https://doi.org/10.3390/ijerph14020173, 2017.
Han, J.-S., Seo, Y.-S., Kim, M.-K., Holsen, T. M., and Yi, S.-M.: Total atmospheric mercury deposition in forested areas in South Korea, Atmos. Chem. Phys., 16, 7653–7662, https://doi.org/10.5194/acp-16-7653-2016, 2016.
Hansen, A. M. and Gay, D. A.: Observations of mercury wet deposition in
Mexico, Environ. Sci. Pollut. R. Int., 20, 8316–8325,
https://doi.org/10.1007/s11356-013-2012-3, 2013.
Holloway, T., Voigt, C., Morton, J., Spak, S. N., Rutter, A. P., and Schauer, J. J.: An assessment of atmospheric mercury in the Community Multiscale Air Quality (CMAQ) model at an urban site and a rural site in the Great Lakes Region of North America, Atmos. Chem. Phys., 12, 7117–7133, https://doi.org/10.5194/acp-12-7117-2012, 2012.
Holmes, H. A., Pardyjak, E. R., Perry, K. D., and Abbott, M. L.: Gaseous dry
deposition of atmospheric mercury: A comparison of two surface resistance
models for deposition to semiarid vegetation, J. Geophys. Res., 116,
S14306, https://doi.org/10.1029/2010jd015182, 2011.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Huang, J. and Gustin, M. S.: Use of passive sampling methods and models to
understand sources of mercury deposition to high elevation sites in the
Western United States, Environ. Sci. Technol., 49, 432–441,
https://doi.org/10.1021/es502836w, 2015a.
Huang, J. and Gustin, M. S.: Uncertainties of gaseous oxidized mercury
measurements using KCl-coated denuders, cation-exchange membranes, and nylon
membranes: Humidity influences, Environ. Technol., 49, 6102–6108,
https://doi.org/10.1021/acs.est.5b00098, 2015b.
Huang, J., Choi, H. D., Landis, M. S., and Holsen, T. M.: An application of
passive samplers to understand atmospheric mercury concentration and dry
deposition spatial distributions, J. Environ. Monit., 14, 2976–2982,
https://doi.org/10.1039/c2em30514c, 2012a.
Huang, J., Kang, S. C., Zhang, Q. G., Yan, H. Y., Guo, J. M., Jenkins, M.
G., Zhang, G. S., and Wang, K.: Wet deposition of mercury at a remote site
in the Tibetan Plateau: Concentrations, speciation, and fluxes, Atmos.
Environ., 62, 540–550, https://doi.org/10.1016/j.atmosenv.2012.09.003, 2012b.
Huang, J., Kang, S., Wang, S., Wang, L., Zhang, Q., Guo, J., Wang, K.,
Zhang, G., and Tripathee, L.: Wet deposition of mercury at Lhasa, the
capital city of Tibet, Sci. Total Environ., 447, 123–132,
https://doi.org/10.1016/j.scitotenv.2013.01.003, 2013a.
Huang, J. Y., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.:
Comparison of Gaseous Oxidized Hg Measured by KCl-Coated Denuders, and Nylon
and Cation Exchange Membranes, Environ. Sci. Technol., 47, 7307–7316,
2013b.
Huang, J., Lyman, S. N., Hartman, J. S., and Gustin, M. S.: A review of
passive sampling systems for ambient air mercury measurements,
Environ. Sci.-Proc. Imp., 16, 374–392, https://doi.org/10.1039/c3em00501a, 2014.
Huang, J., Kang, S., Zhang, Q., Guo, J., Sillanpaa, M., Wang, Y., Sun, S.,
Sun, X., and Tripathee, L.: Characterizations of wet mercury deposition on a
remote high-elevation site in the southeastern Tibetan Plateau, Environ.
Pollut., 206, 518–526, https://doi.org/10.1016/j.envpol.2015.07.024, 2015.
Huang, J., Kang, S., Guo, J., Zhang, Q., Cong, Z., Sillanpää, M.,
Zhang, G., Sun, S., and Tripathee, L.: Atmospheric particulate mercury in
Lhasa city, Tibetan Plateau, Atmos. Environ., 142, 433–441,
https://doi.org/10.1016/j.atmosenv.2016.08.021, 2016.
Huang, J., Miller, M. B., Edgerton, E., and Sexauer Gustin, M.: Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA, Atmos. Chem. Phys., 17, 1689–1698, https://doi.org/10.5194/acp-17-1689-2017, 2017.
Jaffe, D. A., Lyman, S., Amos, H. M., Gustin, M. S., Huang, J., Selin, N.
E., Levin, L., ter Schure, A., Mason, R. P., Talbot, R., Rutter, A., Finley,
B., Jaeglé, L., Shah, V., McClure, C., Ambrose, J., Gratz, L., Lindberg,
S., Weiss-Penzias, P., Sheu, G.-R., Feddersen, D., Horvat, M., Dastoor, A.,
Hynes, A. J., Mao, H., Sonke, J. E., Slemr, F., Fisher, J. A., Ebinghaus,
R., Zhang, Y., and Edwards, G.: Progress on Understanding Atmospheric
Mercury Hampered by Uncertain Measurements, Environ. Sci. Technol., 48,
7204–7206, https://doi.org/10.1021/es5026432, 2014.
Juillerat, J. I., Ross, D. S., and Bank, M. S.: Mercury in litterfall and
upper soil horizons in forested ecosystems in Vermont, USA, Environ.
Toxicol. Chem., 31, 1720–1729, https://doi.org/10.1002/etc.1896, 2012.
Katata, G.: Fogwater deposition modeling for terrestrial ecosystems: A
review of developments and measurements, J. Geophys. Res.-Atmos., 119, 8137–8159,
https://doi.org/10.1002/2014jd021669, 2014.
Kim, M.-G., Lee, B.-K., and Kim, H.-J.: Cloud/fog water chemistry at a high
elevation site in South Korea, J. Atmos. Chem., 55, 13–29,
https://doi.org/10.1007/s10874-005-9004-8, 2006.
Lai, S. O., Huang, J., Hopke, P. K., and Holsen, T. M.: An evaluation of
direct measurement techniques for mercury dry deposition, Sci. Total
Environ., 409, 1320–1327, https://doi.org/10.1016/j.scitotenv.2010.12.032, 2011.
Larssen, T., de Wit, H. A., Wiker, M., and Halse, K.: Mercury budget of a
small forested boreal catchment in southeast Norway, Sci. Total Environ.,
404, 290–296, https://doi.org/10.1016/j.scitotenv.2008.03.013, 2008.
Lawson, S. T., Scherbatskoy, T. D., Malcolm, E. G., and Keeler, G. J.: Cloud
water and throughfall deposition of mercury and trace elements in a high
elevation spruce–fir forest at Mt. Mansfield, Vermont, J. Environ. Monitor.,
5, 578–583, https://doi.org/10.1039/b210125d, 2003.
Lin, C.-J., Pongprueksa, P., Lindberg, S. E., Pehkonen, S. O., Byun, D., and
Jang, C.: Scientific uncertainties in atmospheric mercury models I: Model
science evaluation, Atmos. Environ., 40, 2911–2928, 2006.
Lin, C.-J., Pongprueksa, P., Lindberg, S. E., Pehkonen, S. O., Jang, C.,
Braverman, T., and Ho, T. C.: Scientific uncertainties in atmospheric
mercury models II: Sensitivity analysis in the CONUS domain, Atmos.
Environ., 41, 6544–6560, 2007.
Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, Atmos. Chem. Phys., 10, 1853–1864, https://doi.org/10.5194/acp-10-1853-2010, 2010.
Lindberg, S. and Meyers, T.: Development of an automated micrometeorological
method for measuring the emission of mercury vapor from wetland vegetation,
Wetl. Ecol. Manag., 9, 333–347, 2001.
Lindberg, S. E., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B.,
Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of
progress and uncertainties in attributing the sources of mercury in
deposition, Ambio, 36, 19–32, 2007.
Lombard, M. A. S., Bryce, J. G., Mao, H., and Talbot, R.: Mercury deposition in Southern New Hampshire, 2006–2009, Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, 2011.
Lu, A. and Liu, H.: Study on the time distribution characteristics and
source of wet deposition mercury in weinan city, Journal of Arid Land
Resources and Environment, 32, 62–67, https://doi.org/10.13448/j.cnki.jalre.2018.108, 2018 (in Chinese).
Luo, Y., Duan, L., Driscoll, C. T., Xu, G. Y., Shao, M. S., Taylor, M.,
Wang, S. X., and Hao, J. M.: Foliage/atmosphere exchange of mercury in a
subtropical coniferous forest in south China, J. Geophys. Res.-Biogeo., 121,
2006–2016, https://doi.org/10.1002/2016jg003388, 2016.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation
of dry deposition of atmospheric mercury in Nevada by direct and indirect
methods, Environ. Sci. Technol., 41, 1970–1976, 2007.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., Kilner, P. I., Edgerton, E.,
and Hartsell, B.: Testing and application of surrogate surfaces for
understanding potential gaseous oxidized mercury dry deposition, Environ.
Sci. Technol., 43, 6235–6241, 2009.
Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides from KCl denuders in the presence of ozone, Atmos. Chem. Phys., 10, 8197–8204, https://doi.org/10.5194/acp-10-8197-2010, 2010.
Lynam, M., Dvonch, J. T., Barres, J., and Percy, K.: Atmospheric wet
deposition of mercury to the Athabasca Oil Sands Region, Alberta, Canada,
Air Qual. Atmos. Health, 11, 83–93, https://doi.org/10.1007/s11869-017-0524-6, 2017.
Lynam, M. M., Dvonch, J. T., Hall, N. L., Morishita, M., and Barres, J. A.:
Spatial patterns in wet and dry deposition of atmospheric mercury and trace
elements in central Illinois, USA, Environ. Sci. Pollut. R. Int., 21,
4032–4043, https://doi.org/10.1007/s11356-013-2011-4, 2014.
Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., and Wei, S.: Atmospheric
mercury deposition and its contribution of the regional atmospheric
transport to mercury pollution at a national forest nature reserve,
southwest China, Environ. Sci. Pollut. R. Int., 22, 20007–20018,
https://doi.org/10.1007/s11356-015-5152-9, 2015.
Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., and Wei, S.: Mercury dynamics and mass balance in a subtropical forest, southwestern China, Atmos. Chem. Phys., 16, 4529–4537, https://doi.org/10.5194/acp-16-4529-2016, 2016.
Malcolm, E. G. and Keeler, G. J.: Measurements of Mercury in Dew:
Atmospheric Removal of Mercury Species to a Wetted Surface, Environ. Sci.
Technol., 36, 2815–2821, https://doi.org/10.1021/es011174z, 2002.
Malcolm, E. G., Keeler, G. J., Lawson, S. T., and Sherbatskoy, T. D.:
Mercury and trace elements in cloud water and precipitation collected on Mt.
Mansfield, Vermont, J. Environ. Monitor., 5, 584–590, https://doi.org/10.1039/b210124f, 2003.
Marsik, F. J., Keeler, G. J., and Landis, M. S.: The dry-deposition of
speciated mercury to the Florida Everglades: Measurements and modeling,
Atmos. Environ., 41, 136–149, https://doi.org/10.1016/j.atmosenv.2006.07.032, 2007.
Marumoto, K. and Matsuyama, A.: Mercury speciation in wet deposition
samples collected from a coastal area of Minamata Bay, Atmos. Environ., 86,
220–227, https://doi.org/10.1016/j.atmosenv.2013.12.011, 2014.
McClure, C. D., Jaffe, D. A., and Edgerton, E. S.: Evaluation of the KCl
denuder method for gaseous oxidized mercury using HgBr2 at an in-service
AMNet site, Environ. Sci. Technol., 48, 11437–11444, https://doi.org/10.1021/es502545k,
2014.
Meier, C. E., Stanturf, J. A., and Gardiner, E. S.: Litterfall in the hardwood
forest of a minor alluvial floodplain, Forest Ecol. Manag., 234, 60–57,
https://doi.org/10.1016/j.foreco.2006.06.026, 2006.
Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.: Use of the
modified Bowen-ratio technique to measure fluxes of trace gases, Atmos.
Environ., 30, 3321–3329, 1996.
Miller, M. B., Gustin, M. S., and Eckley, C. S.: Measurement and scaling of
air-surface mercury exchange from substrates in the vicinity of two Nevada
gold mines, Sci. Total Environ., 409, 3879–3886,
https://doi.org/10.1016/j.scitotenv.2011.05.040, 2011.
Montecinos, S., Carvajal, D., and Cereceda, P., Concha, M.: Collection
efficiency of fog events, Atmos. Res., 209, 163–169,
https://doi.org/10.1016/j.atmosres.2018.04.004, 2018.
Navrátil, T., Shanley, J., Rohovec, J., Hojdová, M.,
Penížek, V., and Buchtová, J.: Distribution and pools of
mercury in Czech forest soils, Water Air Soil Poll., 225,
1829, https://doi.org/10.1007/s11270-013-1829-1, 2014.
Nguyen, D. L., Kim, J. Y., Shim, S. G., Ghim, Y. S., and Zhang, X. S.:
Shipboard and ground measurements of atmospheric particulate mercury and
total mercury in precipitation over the Yellow Sea region, Environ. Pollut.,
219, 262–274, https://doi.org/10.1016/j.envpol.2016.10.020, 2016.
Obrist, D., Johnson, D. W., and Lindberg, S. E.: Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen, Biogeosciences, 6, 765–777, https://doi.org/10.5194/bg-6-765-2009, 2009.
Obrist, D., Johnson, D. W., and Edmonds, R. L.: Effects of vegetation type
on mercury concentrations and pools in two adjacent coniferous and deciduous
forests, J. Plant Nutr. Soil Sc., 175, 68–77,
https://doi.org/10.1002/jpln.201000415, 2012.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
Peterson, C., Alishahi, M., and Gustin, M. S.: Testing the use of passive
sampling systems for understanding air mercury concentrations and dry
deposition across Florida, USA, Sci. Total Environ., 424, 297–307,
https://doi.org/10.1016/j.scitotenv.2012.02.031, 2012.
Poissant, L., Pilote, M., Xu, X., and Zhang, H.: Atmospheric mercury
speciation and deposition in the Bay St. Francois wetlands, J. Geophys.
Res., 109, D11301, https://doi.org/10.1029/2003JD004364,2004.
Poissant, L., Pilote, M., Yumvihoze, E., and Lean, D.: Mercuryconcentrations
and foliage/atmosphere fluxes in a maple forestecosystem in Quebec, Canada,
J. Geophys. Res.-Atmos., 113, 10307–10319,
https://doi.org/10.1029/2007jd009510, 2008.
Prestbo, E. M. and Gay, D. A.: Wet deposition of mercury in the US and
Canada, 1996–2005: Results and analysis of the NADP mercury deposition
network (MDN), Atmos. Environ., 43, 4223–4233,
https://doi.org/10.1016/j.atmosenv.2009.05.028, 2009.
Qin, C., Wang, Y., Peng, Y., and Wang, D.: Four-year record of mercury wet
deposition in one typical industrial city in southwest China, Atmos.
Environ., 142, 442–451, https://doi.org/10.1016/j.atmosenv.2016.08.016, 2016.
Richardson, J. B. and Friedland, A. J.: Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change, Biogeosciences, 12, 6737–6749, https://doi.org/10.5194/bg-12-6737-2015, 2015.
Risch, M. and Kenski, D.: Spatial Patterns and Temporal Changes in
Atmospheric-Mercury Deposition for the Midwestern USA, 2001–2016,
Atmosphere, 9, 29, https://doi.org/10.3390/atmos9010029, 2018.
Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., and Zhang,
L.: Mercury in Litterfall at Selected National Atmospheric Deposition
Program Mercury Deposition Network Sites in the Eastern United States,
2007–2009, Environ. Pollut., 161, 284–290, 2012.
Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., and
Krabbenhoft, D. P.: Atmospheric mercury deposition to forests in the eastern
USA, Environ. Pollut., 228, 8–18, https://doi.org/10.1016/j.envpol.2017.05.004, 2017.
Ritchie, C. D., Richards, W., and Arp, P. A.: Mercury in fog on the Bay of
Fundy (Canada), Atmos. Environ., 40, 6321–6328,
https://doi.org/10.1016/j.atmosenv.2006.05.057, 2006.
Rutter, A. P. and Schauer, J. J.: The effect of temperature on the
gas-particle partitioning of reactive mercury in atmospheric aerosols,
Atmos. Environ., 41, 8647–8657,
https://doi.org/10.1016/j.atmosenv.2007.07.024, 2007.
Sather, M. E., Mukerjee, S., Smith, L., Mathew, J., Jackson, C., Callison,
R., Scrapper, L., Hathcoat, A., Adam, J., Keese, D., Ketcher, P., Brunette,
R., Karlstrom, J., and Van der Jagt, G.: Gaseous oxidized mercury dry
deposition measurements in the Four Corners area and Eastern Oklahoma,
U.S.A, Atmos. Pollut. Res., 4, 168–180, https://doi.org/10.5094/apr.2013.017, 2013.
Sather, M. E., Mukerjee, S., Allen, K. L., Smith, L., Mathew, J., Jackson,
C., Callison, R., Scrapper, L., Hathcoat, A., Adam, J., Keese, D., Ketcher,
P., Brunette, R., Karlstrom, J., and Van der Jagt, G.: Gaseous oxidized
mercury dry deposition measurements in the southwestern USA: A comparison
between Texas, Eastern Oklahoma, and the Four Corners Area, Sci. World J.,
2014, 580723, https://doi.org/10.1155/2014/580723, 2014.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – An overview, Atmos.
Environ., 32, 809–822, 1998.
Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D.,
Demerjian, K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., and
Dukett, J. E.: Atmospheric chemistry measurements at Whiteface Mountain, NY:
Cloud water chemistry, precipitation chemistry, and particulate matter,
Aerosol Air Qual. Res., 16, 841–854, https://doi.org/10.4209/aaqr.2015.05.0344, 2016.
Selin, N. E. and Jacob, D. J.: Seasonal and spatial patterns of mercury wet
deposition in the United States: Constraints on the contribution from North
American anthropogenic sources, Atmos. Environ., 42, 5193–5204,
https://doi.org/10.1016/j.atmosenv.2008.02.069, 2008.
Seo, Y.-S., Han, Y.-J., Choi, H.-D., Holsen, T. M., and Yi, S.-M.:
Characteristics of total mercury (TM) wet deposition: Scavenging of
atmospheric mercury species, Atmos. Environ., 49, 69–76,
https://doi.org/10.1016/j.atmosenv.2011.12.031, 2012.
Sexauer Gustin, M., Weiss-Penzias, P. S., and Peterson, C.: Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA, Atmos. Chem. Phys., 12, 9201–9219, https://doi.org/10.5194/acp-12-9201-2012, 2012.
Shen, G., Chen, D., Wu, Y., Liu, L., and Liu, C.: Spatial patterns and
estimates of global forest litterfall, Ecosphere, 10, 1–13,
https://doi.org/10.1002/ecs2.2587, 2019.
Sheu, G.-R. and Lin, N.-H.: Mercury in cloud water collected on Mt. Bamboo
in northern Taiwan during the northeast monsoon season, Atmos. Environ., 45,
4454–4462, https://doi.org/10.1016/j.atmosenv.2011.05.036, 2011.
Sheu, G.-R. and Lin, N.-H.: Characterizations of wet mercury deposition to
a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean,
Atmos. Environ., 77, 474–481, https://doi.org/10.1016/j.atmosenv.2013.05.038, 2013.
Sheu, G.-R., Gay, D. A., Schmeltz, D., Olson, M., Chang, S.-C., Lin, D.-W.,
and Nguyen, L. S. P.: A new monitoring effort for Asia: the Asia Pacific
Mercury Monitoring Network (APMMN), Atmosphere, 10, 481, https://doi.org/10.3390/atmos10090481, 2019.
Siudek, P., Kurzyca, I., and Siepak, J.: Atmospheric deposition of mercury
in central Poland: Sources and seasonal trends, Atmos. Res., 170, 14–22,
https://doi.org/10.1016/j.atmosres.2015.11.004, 2016.
Skov, H., Brooks, S. B., Goodsite, M. E., Lindberg, S. E., Meyers, T. P.,
Landis, M. S., Larsen, M. R. B., Jensen, B., McConville, G., and
Christensen, J.: Fluxes of reactive gaseous mercury measured with a newly
developed method using relaxed eddy accumulation, Atmos. Environ., 40,
5452–5463, https://doi.org/10.1016/j.atmosenv.2006.04.061, 2006.
Sommar, J., Zhu, W., Lin, C.-J., and Feng, X.: Field approaches to measure
Hg exchange between natural surfaces and the atmosphere – A review,
Crit. Rev. Env. Sci. Tec., 43, 1657–1739, https://doi.org/10.1080/10643389.2012.671733,
2013a.
Sommar, J., Zhu, W., Shang, L., Lin, C.-J., and Feng, X.: Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat–corn rotation cropland in the North China Plain, Biogeosciences, 13, 2029–2049, https://doi.org/10.5194/bg-13-2029-2016, 2016.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C., Brunke, E.-G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Fu, X., Garcia, P. E., Gawlik, B. M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Ramirez Islas, M., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., and Zhang, H.: Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres, Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, 2017.
Stankwitz, C., Kaste, J. M., and Friedland, A. J.: Threshold increases in
soil lead and mercury from tropospheric deposition across an elevational
gradient, Environ. Sci. Technol., 46, 8061–8068, https://doi.org/10.1021/es204208w, 2012.
Streets, D. G., Hao, J. M., Wu, Y., Jiang, J. K., Chan, M., Tian, H. Z., and
Feng, X. B.: Anthropogenic mercury emissions in China, Atmos. Environ., 39,
7789–7806, https://doi.org/10.1016/j.atmosenv.2005.08.029, 2005.
Teixeira, D. C., Montezuma, R. C., Oliveira, R. R., and Silva-Filho, E. V.:
Litterfall mercury deposition in Atlantic forest ecosystem from SE-Brazil,
Environ. Pollut., 164, 11–15, https://doi.org/10.1016/j.envpol.2011.10.032, 2012.
Teixeira, D. C., Lacerda, L. D., and Silva-Filho, E. V.: Mercury
sequestration by rainforests: The influence of microclimate and different
successional stages, Chemosphere, 168, 1186–1193,
https://doi.org/10.1016/j.chemosphere.2016.10.081, 2017.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Travnikov, O., Angot, H., Artaxo, P., Bencardino, M., Bieser, J., D'Amore, F., Dastoor, A., De Simone, F., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Magand, O., Martin, L., Matthias, V., Mashyanov, N., Pirrone, N., Ramachandran, R., Read, K. A., Ryjkov, A., Selin, N. E., Sena, F., Song, S., Sprovieri, F., Wip, D., Wängberg, I., and Yang, X.: Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation, Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, 2017.
UN Environment: Global Mercury Assessment 2018, UN Environment Programme,
Chemicals and Health Branch, Geneva, Switzerland, 2019.
USEPA: Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, United States Environmental Protection Agency, Washington, DC, USA, 10–46, available at: http://water.epa.gov/scitech/methods/cwa/metals/mercury/index.cfm (last access: 27 December 2014), 2002.
Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Li, P., Han, S., and Xu, H.:
Atmospheric mercury in Changbai Mountain area, northeastern China II. The
distribution of reactive gaseous mercury and particulate mercury and mercury
deposition fluxes, Environ. Res., 109, 721–727,
https://doi.org/10.1016/j.envres.2009.05.006, 2009.
Wang, X., Lin, C.-J., and Feng, X.: Sensitivity analysis of an updated bidirectional air–surface exchange model for elemental mercury vapor, Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, 2014.
Wang, X., Bao, Z., Lin, C. J., Yuan, W., and Feng, X.: Assessment of global
mercury deposition through litterfall, Environ. Sci. Technol., 50,
8548–8557, https://doi.org/10.1021/acs.est.5b06351, 2016a.
Wang, X., Lin, C.-J., Lu, Z., Zhang, H., Zhang, Y., and Feng, X.: Enhanced
accumulation and storage of mercury on subtropical evergreen forest floor:
Implications on mercury budget in global forest ecosystems, J. Geophys. Res.-Biogeo., 121, 2096–2109, https://doi.org/10.1002/2016jg003446, 2016b.
Wang, Z., Zhang, X., Xiao, J., Ci, Z., and Yu, P.: Mercury fluxes and pools
in three subtropical forested catchments, southwest China, Environ. Pollut.,
157, 801–808, https://doi.org/10.1016/j.envpol.2008.11.018, 2009.
Weiss-Penzias, P., Fernandez, D., Moranville, R., and Saltikov, C.: A low
cost system for detecting fog events and triggering an active fog water
collector, Aerosol Air Qual. Res., 18, 214–233, https://doi.org/10.4209/aaqr.2016.11.0508,
2018.
Weiss-Penzias, P. S., Gustin, M. S., and Lyman, S. N.: Sources of gaseous
oxidized mercury and mercury dry deposition at two southeastern U.S. sites,
Atmos. Environ., 45, 4569–4579, https://doi.org/10.1016/j.atmosenv.2011.05.069, 2011.
Weiss-Penzias, P. S., Gay, D. A., Brigham, M. E., Parsons, M. T., Gustin, M.
S., and Ter Schure, A.: Trends in mercury wet deposition and mercury air
concentrations across the U.S. and Canada, Sci. Total Environ., 568,
546–556, https://doi.org/10.1016/j.scitotenv.2016.01.061, 2016a.
Weiss-Penzias, P., Coale, K., Heim, W., Fernandez, D., Oliphant, A., Dodge, C., Hoskins,
D., Farlin, J., Moranville, R., and Olson, A.: Total- and monomethyl-mercury and major
ions in coastal California fog water: Results from two years of sampling on
land and at sea, Elem. Sci. Anth., 4, 1–18,
https://doi.org/10.12952/journal.elementa.000101, 2016b.
Wetang'ula: Preliminary assessment of total mercury in bulk precipitation
around Olkaria Area, Kenya, Journal of Environmental Science and
Engineering, 1585–1595, 2011.
Wetherbee, G. A.: Precipitation collector bias and its effects on temporal
trends and spatial variability in National Atmospheric Deposition
Program/National Trends Network data, Environ. Pollut., 223, 90–101,
https://doi.org/10.1016/j.envpol.2016.12.036, 2017.
Wetherbee, G. A. and Martin, R. A.: External Quality Assurance Project Report
for the National Atmospheric Deposition Program's National Trends Network
and Mercury Deposition Network, 2015–2016, U.S. Geological Survey, Reston,
Virginia, 2018.
Wetherbee, G. A., Latysh, N. E., Gordon, J. D., and Krabbenhoft, D. P.:
Spatial and temporal variability of the overall error of National
Atmospheric Deposition Program measurements determined by the USGS
co-located–sampler program, water years 1989–2001, Environ. Pollut., 135,
407–418, https://doi.org/10.1016/j.envpol.2004.11.014, 2005.
Wright, G., Gustin, M. S., Weiss-Penzias, P., and Miller, M. B.:
Investigation of mercury deposition and potential sources at six sites from
the Pacific Coast to the Great Basin, USA, Sci. Total Environ., 470–471,
1099–1113, https://doi.org/10.1016/j.scitotenv.2013.10.071, 2014.
Wright, L. P. and Zhang, L.: An approach estimating bidirectional
air-surface exchange for gaseous elemental mercury at AMNet sites, J. Adv.
Model. Earth Sy., 7, 35–49, https://doi.org/10.1002/2014ms000367, 2015.
Wright, L. P., Zhang, L., and Marsik, F. J.: Overview of mercury dry deposition, litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, 2016.
Xu, L., Chen, J., Yang, L., Yin, L., Yu, J., Qiu, T., and Hong, Y.:
Characteristics of total and methyl mercury in wet deposition in a coastal
city, Xiamen, China: Concentrations, fluxes and influencing factors on Hg
distribution in precipitation, Atmos. Environ., 99, 10–16,
https://doi.org/10.1016/j.atmosenv.2014.09.054, 2014.
Yu, Q., Luo, Y., Wang, S., Wang, Z., Hao, J., and Duan, L.: Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China, Atmos. Chem. Phys., 18, 495–509, https://doi.org/10.5194/acp-18-495-2018, 2018.
Zhang, H. H., Poissant, L., Xu, X. H., and Pilote, M.: Explorative and
innovative dynamic flux bag method development and testing for mercury
air-vegetation gas exchange fluxes, Atmos. Environ., 39, 7481–7493,
https://doi.org/10.1016/j.atmosenv.2005.07.068, 2005.
Zhang, L. and He, Z.: Technical Note: An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles, Atmos. Chem. Phys., 14, 3729–3737, https://doi.org/10.5194/acp-14-3729-2014, 2014.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J. A., Louis, V. L. St., and Dalziel, J.: Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America, Atmos. Chem. Phys., 12, 4327–4340, https://doi.org/10.5194/acp-12-4327-2012, 2012.
Zhang, L., Wang, S. X., Wang, L., and Hao, J. M.: Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources, Atmos. Chem. Phys., 13, 10505–10516, https://doi.org/10.5194/acp-13-10505-2013, 2013.
Zhang, L., Wang, S., Wu, Q., Wang, F., Lin, C.-J., Zhang, L., Hui, M., Yang, M., Su, H., and Hao, J.: Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review, Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, 2016a.
Zhang, L., Wu, Z., Cheng, I., Wright, L. P., Olson, M. L., Gay, D. A.,
Risch, M. R., Brooks, S., Castro, M. S., Conley, G. D., Edgerton, E. S.,
Holsen, T. M., Luke, W., Tordon, R., and Weiss-Penzias, P.: The estimated
six-year mercury dry deposition across North America, Environ. Sci.
Technol., 50, 12864–12873, https://doi.org/10.1021/acs.est.6b04276, 2016b.
Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated
particle dry deposition scheme for an atmospheric aerosol module, Atmos.
Environ., 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, L. M., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S. L.:
Modelling gaseous dry deposition in AURAMS: A unified regional air-quality
modelling system, Atmos. Environ., 36, 537–560, https://doi.org/10.1016/S1352-2310(01)00447-2, 2002.
Zhang, L. M., Wright, L. P., and Blanchard, P.: A review of current
knowledge concerning dry deposition of atmospheric mercury, Atmos. Environ.,
43, 5853–5864, https://doi.org/10.1016/j.atmosenv.2009.08.019, 2009.
Zhang, Y., Jaeglé, L., van Donkelaar, A., Martin, R. V., Holmes, C. D., Amos, H. M., Wang, Q., Talbot, R., Artz, R., Brooks, S., Luke, W., Holsen, T. M., Felton, D., Miller, E. K., Perry, K. D., Schmeltz, D., Steffen, A., Tordon, R., Weiss-Penzias, P., and Zsolway, R.: Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., 12, 6095–6111, https://doi.org/10.5194/acp-12-6095-2012, 2012.
Zhang, Y., Liu, R., Wang, Y., Cui, X., and Qi, J.: Change characteristic of
atmospheric particulate mercury during dust weather of spring in Qingdao,
China, Atmos. Environ., 102, 376–383, https://doi.org/10.1016/j.atmosenv.2014.12.005, 2015.
Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M.,
Krabbenhoft, D. P., Slemr, F., St Louis, V. L., and Sunderland, E. M.:
Observed decrease in atmospheric mercury explained by global decline in
anthropogenic emissions, P. Natl. Acad. Sci. USA, 113, 526–531,
2016.
Zhao, L. S., Xu, L. L., Wu, X., Zhao, G. Q., Jiao, L., Chen, J. S., Hong Y. W.,
Deng J. J., Chen, Y. T., Yang, K., Hu, G. R., and Yu, R. L.: Characteristics and
sources of mercury in precipitation collected at the urban, suburban and
rural sites in a city of Southeast China, Atmos. Res., 211, 21–29,
https://doi.org/10.1016/j.atmosres.2018.04.019, 2018.
Zhao, Z., Wang, D., Wang, Y., Mu, Z., and Zhu, J.: Wet deposition flux and
runoff output flux of mercury in a typical small agricultural watershed in
Three Gorges Reservoir areas, Environ. Sci. Pollut. R. Int., 22,
5538–5551, https://doi.org/10.1007/s11356-014-3701-2, 2015.
Zhou, J., Wang, Z., Sun, T., Zhang, H., and Zhang, X.: Mercury in
terrestrial forested systems with highly elevated mercury deposition in
southwestern China: The risk to insects and potential release from
wildfires, Environ. Pollut., 212, 188–196, https://doi.org/10.1016/j.envpol.2016.01.003,
2016.
Zhou, J., Wang, Z., Zhang, X., and Gao, Y.: Mercury concentrations and pools
in four adjacent coniferous and deciduous upland forests in Beijing, China,
J. Geophys. Res.-Biogeo., 122, 1260–1274, https://doi.org/10.1002/2017jg003776, 2017.
Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Sun, J., Zhuang, B., Li, S., Han, Y., and Xie, M.: Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China, Atmos. Chem. Phys., 14, 2233–2244, https://doi.org/10.5194/acp-14-2233-2014, 2014.
Zhu, J., Wang, T., Bieser, J., and Matthias, V.: Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg, Atmos. Chem. Phys., 15, 8767–8779, https://doi.org/10.5194/acp-15-8767-2015, 2015.
Zhu, W., Sommar, J., Lin, C.-J., and Feng, X.: Mercury vapor air–surface exchange measured by collocated micrometeorological and enclosure methods – Part I: Data comparability and method characteristics, Atmos. Chem. Phys., 15, 685–702, https://doi.org/10.5194/acp-15-685-2015, 2015.
Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review, Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, 2016.
Short summary
One of the most important processes in the global mercury biogeochemical cycling is the deposition of atmospheric mercury to the land surfaces. In this paper, results of wet, dry, and forest Hg deposition from global observation networks, individual monitoring studies, and observation-based simulations are reviewed. Uncertainties in the observation and simulation of global speciated atmospheric Hg deposition to the land surfaces are systemically estimated.
One of the most important processes in the global mercury biogeochemical cycling is the...
Altmetrics
Final-revised paper
Preprint