Research article
30 Oct 2019
Research article
| 30 Oct 2019
Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model
Kyle Gorkowski et al.
Related authors
No articles found.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Hoi Ki Lam, Sze Man Shum, James F. Davies, Mijung Song, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 19, 9581–9593, https://doi.org/10.5194/acp-19-9581-2019, https://doi.org/10.5194/acp-19-9581-2019, 2019
Short summary
Short summary
We show the presence of dissolved inorganic salts could reduce the overall heterogeneous reactivity of organic compounds with gas–phase OH radicals at the surface by lowering the surface concentration of organic compounds. Until recently, the kinetic parameters reported in the literature were mostly measured based on experiments with pure organic particles. The lifetime of organic compounds or chemical tracers against heterogeneous OH reaction in the atmosphere could be longer than expected.
James F. Davies, Andreas Zuend, and Kevin R. Wilson
Atmos. Chem. Phys., 19, 2933–2946, https://doi.org/10.5194/acp-19-2933-2019, https://doi.org/10.5194/acp-19-2933-2019, 2019
Short summary
Short summary
The formation of cloud droplets involves the condensation of water onto preexisting particles in the atmosphere. The efficiency of this process depends on the nature of the particles, and recent work has shown that organic-rich particles may exhibit a suppressed surface tension that promotes the formation of cloud droplets. In this technical note, we discuss the mechanism for this and highlight the evolution of surface tension as the key factor in the extent of surface effects.
Ting Lei, Andreas Zuend, Yafang Cheng, Hang Su, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 18, 1045–1064, https://doi.org/10.5194/acp-18-1045-2018, https://doi.org/10.5194/acp-18-1045-2018, 2018
Short summary
Short summary
Measurements and thermodynamic equilibrium predictions for organic–inorganic aerosols related to components from biomass burning emissions demonstrate a diversity of hygroscopic growth and shrinking behavior, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). Controlled laboratory experiments with single solutes and/or with mixed organic–inorganic systems of known phase state will be useful to constrain model parameters of thermodynamic equilibrium models.
Havala O. T. Pye, Andreas Zuend, Juliane L. Fry, Gabriel Isaacman-VanWertz, Shannon L. Capps, K. Wyat Appel, Hosein Foroutan, Lu Xu, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, https://doi.org/10.5194/acp-18-357-2018, 2018
Short summary
Short summary
Thermodynamic modeling revealed that some but not all measurements of ammonium-to-sulfate ratios are consistent with theory. The measurement diversity likely explains the previously reported range of results regarding the suitability of thermodynamic modeling. Despite particles being predominantly phase separated, organic–inorganic interactions resulted in increased aerosol pH and partitioning towards the particle phase for highly oxygenated organic compounds compared to traditional methods.
Man Mei Chim, Chiu Tung Cheng, James F. Davies, Thomas Berkemeier, Manabu Shiraiwa, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 17, 14415–14431, https://doi.org/10.5194/acp-17-14415-2017, https://doi.org/10.5194/acp-17-14415-2017, 2017
Short summary
Short summary
In this work, we report that methyl-substituted succinic acid present at or near the surface of aqueous organic droplets can be efficiently oxidized by gas-phase OH radicals. The alkoxy radical chemistry appears to be an important reaction pathway. In addition, our model simulations reveal the relative importance of functionalization and fragmentation processes, alongside volatilization, in the evolution of the particle-phase reaction, which is largely dependent on the extent of oxidation.
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Short summary
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. This work explores the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors.
N. Hodas, A. Zuend, W. Mui, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, https://doi.org/10.5194/acp-15-5027-2015, 2015
G. Ganbavale, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, https://doi.org/10.5194/acp-15-447-2015, 2015
Short summary
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
T. Lei, A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge
Atmos. Chem. Phys., 14, 11165–11183, https://doi.org/10.5194/acp-14-11165-2014, https://doi.org/10.5194/acp-14-11165-2014, 2014
G. Ganbavale, C. Marcolli, U. K. Krieger, A. Zuend, G. Stratmann, and T. Peter
Atmos. Chem. Phys., 14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, https://doi.org/10.5194/acp-14-9993-2014, 2014
A. J. Huisman, U. K. Krieger, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 13, 6647–6662, https://doi.org/10.5194/acp-13-6647-2013, https://doi.org/10.5194/acp-13-6647-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effect of dust on rainfall over the Red Sea coast based on WRF-Chem model simulations
A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation
Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Molecular-level nucleation mechanism of iodic acid and methanesulfonic acid
Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach
Two-way coupled meteorology and air quality models in Asia: a systematic review and meta-analysis of impacts of aerosol feedbacks on meteorology and air quality
OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions – implementation in a global climate model and impacts on clouds
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
The formation and mitigation of nitrate pollution: comparison between urban and suburban environments
Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes
Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario
The impact of chlorine chemistry combined with heterogeneous N2O5 reactions on air quality in China
OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship
A predictive viscosity model for aqueous electrolytes and mixed organic–inorganic aerosol phases
Quantifying the effects of mixing state on aerosol optical properties
The role of organic acids in new particle formation from methanesulfonic acid and methylamine
The number fraction of iron-containing particles affects OH, HO2 and H2O2 budgets in the atmospheric aqueous phase
Source-resolved variability of fine particulate matter and human exposure in an urban area
The impact of atmospheric blocking on the compounding effect of ozone pollution and temperature: a copula-based approach
Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing
Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030
Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation
A numerical framework for simulating the atmospheric variability of supermicron marine biogenic ice nucleating particles
Prediction of secondary organic aerosol from the multiphase reaction of gasoline vapor by using volatility–reactivity base lumping
Secondary Organic Aerosol Formation via Multiphase Reaction of Hydrocarbons in Urban Atmospheres Using the CAMx Model Integrated with the UNIPAR model
Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity
Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects
Modeling secondary organic aerosol formation from volatile chemical products
Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5
Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID–19 lockdown in Europe
Quantifying the structural uncertainty of the aerosol mixing state representation in a modal model
Changes in PM2.5 concentrations and their sources in the US from 1990 to 2010
A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning
Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
How alkaline compounds control atmospheric aerosol particle acidity
Aerosol transport pathways and source attribution in China during the COVID-19 outbreak
Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China
Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing
Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire
A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter
Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning
Development of a new emission reallocation method for industrial sources in China
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Short summary
China has been implementing a sequence of policies for clean air since the year 2013. The aerosol decline produced a 0.09 ± 0.10°C warming during 2013–2017 estimated in this study, and the increase in ozone in the lower troposphere during this time period accelerated the warming, leading to a total 0.16 ± 0.15°C temperature increase in eastern China. Residential emission reductions led to a cooling effect because of a substantial decrease in light-absorbing aerosols.
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Short summary
In this study, we investigated the response of secondary pollutants to changes in precursor emissions, focusing on the formation of secondary PM, during the COVID-19 lockdown period. We show that, due to the decrease in primary NOx emissions, atmospheric oxidizing capacity is increased. The nighttime increase in ozone, caused by less NO titration, results in higher NO3 radicals, which contribute significantly to the formation of PM nitrates. O3 should be limited in order to control PM pollution.
An Ning, Ling Liu, Lin Ji, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 6103–6114, https://doi.org/10.5194/acp-22-6103-2022, https://doi.org/10.5194/acp-22-6103-2022, 2022
Short summary
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Chao Gao, Aijun Xiu, Xuelei Zhang, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, and Mengduo Zhang
Atmos. Chem. Phys., 22, 5265–5329, https://doi.org/10.5194/acp-22-5265-2022, https://doi.org/10.5194/acp-22-5265-2022, 2022
Short summary
Short summary
With ever-growing applications of two-way coupled meteorology and air quality models in Asia over the past decade, this paper summarizes the current status and research focuses, as well as how aerosol effects impact model performance, meteorology, and air quality. These models enable investigations of ARI and ACI effects induced by natural and anthropogenic aerosols in Asia, which has serious air pollution problems. The current gaps and perspectives are also presented and discussed.
Susannah M. Burrows, Richard C. Easter, Xiaohong Liu, Po-Lun Ma, Hailong Wang, Scott M. Elliott, Balwinder Singh, Kai Zhang, and Philip J. Rasch
Atmos. Chem. Phys., 22, 5223–5251, https://doi.org/10.5194/acp-22-5223-2022, https://doi.org/10.5194/acp-22-5223-2022, 2022
Short summary
Short summary
Sea spray particles are composed of a mixture of salts and organic substances from oceanic microorganisms. In prior work, our team developed an approach connecting sea spray chemistry to ocean biology, called OCEANFILMS. Here we describe its implementation within an Earth system model, E3SM. We show that simulated sea spray chemistry is consistent with observed seasonal cycles and that sunlight reflected by simulated Southern Ocean clouds increases, consistent with analysis of satellite data.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Short summary
Cooking emissions can self-organise into nanostructured lamellar bilayers, and this can influence reaction kinetics. We developed a kinetic multi-layer model-based description of decay data we obtained from laboratory experiments of the ozonolysis of coated films of such a self-organised system, demonstrating a decreased diffusivity for both oleic acid and ozone. Nanostructure formation can thus increase the reactive half-life of oleic acid by days under typical indoor and outdoor conditions.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022, https://doi.org/10.5194/acp-22-4101-2022, 2022
Short summary
Short summary
Aerosols can influence O3 through aerosol–radiation interactions, including aerosol–photolysis interaction (API) and aerosol–radiation feedback (ARF). The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 9.3–11.4 ppb, with API and ARF contributing 74.6 %–90.0 % and 10.0 %–25.4 % of the O3 decrease in three episodes, respectively, which indicates that API is the dominant way for O3 reduction related to aerosol–radiation interactions.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 3693–3711, https://doi.org/10.5194/acp-22-3693-2022, https://doi.org/10.5194/acp-22-3693-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the detailed mechanisms of OH-initiated oxidation of distinct HHPs. The dominant pathway is H-abstraction from the -OOH group in the initiation reactions of the OH radical with HOCH2OOH and HOC(CH3)2OOH. H-abstraction from -CH group is competitive with that from the -OOH group in the reaction of the OH radical with HOCH(CH3)OOH. The barrier of H-abstraction from the -OOH group is slightly increased as the methyl group number increases.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Yu Yao, Jeffrey Curtis, Joseph Ching, Zhonghua Zheng, and Nicole Riemer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-131, https://doi.org/10.5194/acp-2022-131, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects in calculating aerosol direct radiative forcing.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Pablo Garcia Rivera, Brian T. Dinkelacker, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 22, 2011–2027, https://doi.org/10.5194/acp-22-2011-2022, https://doi.org/10.5194/acp-22-2011-2022, 2022
Short summary
Short summary
The contribution of various pollution sources to the variability of fine PM in an urban area was examined using as an example the city of Pittsburgh. Biomass burning aerosol shows the largest variability during the winter with local maxima within the city and in the suburbs. During both periods the largest contributing source to the average PM2.5 is particles from outside the modeling domain. The average population-weighted PM2.5 concentration does not change significantly with resolution.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Jan Eiof Jonson, Hilde Fagerli, Thomas Scheuschner, and Svetlana Tsyro
Atmos. Chem. Phys., 22, 1311–1331, https://doi.org/10.5194/acp-22-1311-2022, https://doi.org/10.5194/acp-22-1311-2022, 2022
Short summary
Short summary
Ammonia emissions are expected to decrease less than SOx and NOx emissions between 2005 and 2030. As the formation of PM2.5 particles from ammonia depends on the ratio between ammonia on one hand and sulfate (from SOx) and HNO3 (from NOx) on the other hand, the efficiency of particle formation from ammonia is decreasing. Depositions of reduced nitrogen are decreasing much less than oxidized nitrogen. The critical loads for nitrogen deposition will also be exceeded in much of Europe in 2030.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Isabelle Steinke, Paul J. DeMott, Grant B. Deane, Thomas C. J. Hill, Mathew Maltrud, Aishwarya Raman, and Susannah M. Burrows
Atmos. Chem. Phys., 22, 847–859, https://doi.org/10.5194/acp-22-847-2022, https://doi.org/10.5194/acp-22-847-2022, 2022
Short summary
Short summary
Over the oceans, sea spray aerosol is an important source of particles that may initiate the formation of cloud ice, which then has implications for the radiative properties of marine clouds. In our study, we focus on marine biogenic particles that are emitted episodically and develop a numerical framework to describe these emissions. We find that further cloud-resolving model studies and targeted observations are needed to fully understand the climate impacts from marine biogenic particles.
Sanghee Han and Myoseon Jang
Atmos. Chem. Phys., 22, 625–639, https://doi.org/10.5194/acp-22-625-2022, https://doi.org/10.5194/acp-22-625-2022, 2022
Short summary
Short summary
The gasoline SOA formation potential was simulated by using the UNIPAR model coupled with CB6r3 mechanism under varying NOx levels, aerosol acidity, humidity, temperature, and concentrations of aqueous salts and gasoline vapor. The model predicts SOA formation via multiphase reactions in the absence of wall bias. The simulation shows that both heterogeneous reactions in the aqueous phase and the implementation of model parameters corrected for GWP are critical to accurately predict SOA mass.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1002, https://doi.org/10.5194/acp-2021-1002, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The UNIPAR model was incorporated with the CAMx model to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. The CAMx-UNIPAR model significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas-aqueous partitioning into the wet inorganic aerosol.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1091, https://doi.org/10.5194/acp-2021-1091, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Philippe Thunis, Alain Clappier, Alexander de Meij, Enrico Pisoni, Bertrand Bessagnet, and Leonor Tarrason
Atmos. Chem. Phys., 21, 18195–18212, https://doi.org/10.5194/acp-21-18195-2021, https://doi.org/10.5194/acp-21-18195-2021, 2021
Short summary
Short summary
Air pollution's origin in cities is still a point of discussion, and approaches to assess the city's responsibility for its pollution are not harmonized and thus not comparable, resulting in sometimes contradicting interpretations. We show that methodological choices can easily lead to differences of a factor of 2 in terms of responsibility outcome and stress that methodological choices and assumptions most often lead to a systematic and important underestimation of the city's responsibility.
Simon Felix Reifenberg, Anna Martin, Matthias Kohl, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna Holanda, Ovid O. Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1005, https://doi.org/10.5194/acp-2021-1005, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissionsare located in the upper troposphere, around the aircraft cruise altitude, while largest absolute changes are present at the surface.
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021, https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary
Short summary
Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. We present a framework for evaluating the error in aerosol mixing state induced by aerosol representation assumptions, which is one of the important contributors to structural uncertainty in aerosol models. Our study provides insights into potential improvements to model process representation for aerosols.
Ksakousti Skyllakou, Pablo Garcia Rivera, Brian Dinkelacker, Eleni Karnezi, Ioannis Kioutsioukis, Carlos Hernandez, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021, https://doi.org/10.5194/acp-21-17115-2021, 2021
Short summary
Short summary
Significant reductions in pollutant emissions took place in the US from 1990 to 2010. The reductions in sulfur dioxide emissions from electric-generating units have dominated the reductions in fine particle mass. The reductions in transportation emissions have led to a 30 % reduction of elemental concentrations and of organic particulate matter by a factor of 3. On the other hand, changes in biomass burning and biogenic secondary organic aerosol have been modest.
Nønne L. Prisle
Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, https://doi.org/10.5194/acp-21-16387-2021, 2021
Short summary
Short summary
A mass-based Gibbs adsorption model is presented to enable predictive Köhler calculations of droplet growth and activation with considerations of surface partitioning, surface tension, and non-ideal water activity for chemically complex and unresolved surface active aerosol mixtures, including actual atmospheric samples. The model is used to calculate cloud condensation nuclei (CCN) activity of aerosol particles comprising strongly surface-active model atmospheric humic-like substances (HULIS).
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021, https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Short summary
We apply process-based and observation-constrained schemes to simulate organic aerosol in China and conduct comprehensive model–observation comparisons. The results show that anthropogenic semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) are the main sources of secondary organic aerosol (SOA) in polluted regions, for which the residential sector is perhaps the predominant contributor. The hydroxyl radical level is also important for SOA modeling in polluted regions.
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021, https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Short summary
In this study, we use a global chemical transport model to simulate the effects on global air quality and human health due to emission changes in China from 2010 to 2017. By performing sensitivity analysis, we found that the air pollution control policies not only decrease the air pollutant concentration but also bring significant co-benefits in air quality to downwind regions. The benefits for the improved air pollution are dominated by PM2.5.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021, https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
Short summary
Six heterogeneous HONO chemistry updates in CMAQ significantly improve HONO concentration. HONO production is primarily controlled by the heterogeneous reactions on ground and aerosol surfaces during haze. Additional HONO chemistry updates increase OH and production of secondary aerosols: sulfate, nitrate, and SOA.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021, https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Short summary
Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans. Potential future changes in agricultural NH3 must be accompanied by strong reductions of SO2 and NOx to avoid particles becoming highly acidic, with implications for human health (aerosol toxicity), ecosystems (acid deposition), clouds, and climate (aerosol hygroscopicity).
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021, https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary
Short summary
Due to the COVID-19 pandemic, human activities were strictly restricted in China. Even though anthropogenic aerosol emissions largely decreased, haze events still occurred. Our results shows that PM2.5 over the North China Plain is largely contributed by local sources. For other regions in China, PM2.5 is largely contributed from nonlocal sources. As emission reduction is a future goal, aerosol long-range transport and unfavorable meteorology are increasingly important to air quality.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021, https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Short summary
Secondary sulfate aerosols are an important component of fine particles in severe air pollution events. We calculated the sulfate formation rates via a state-of-the-art multiphase model constrained to the observed values. We showed that transition metals in urban aerosols contribute significantly to sulfate formation during haze periods and thus play an important role in mitigation strategies and public health measures in megacities worldwide.
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Yun Fat Lam, Chi Chiu Cheung, Xuguo Zhang, Joshua S. Fu, and Jimmy Chi Hung Fung
Atmos. Chem. Phys., 21, 12895–12908, https://doi.org/10.5194/acp-21-12895-2021, https://doi.org/10.5194/acp-21-12895-2021, 2021
Short summary
Short summary
In recent years, air pollution forecasting has become an important municipal service of the government. In this study, a new spatial allocation method based on satellite remote sensing and GIS techniques was developed to address the spatial deficiency of industrial source emissions in China, providing a substantial improvement on NO2 and PM2.5 forecast for the Pearl River Delta/Greater Bay Area.
Cited articles
Boender, C. G. E., Kan, A. H. G. R., Timmer, G. T., and Stougie, L.: A
stochastic method for global optimization, Math. Program., 22, 125–140,
https://doi.org/10.1007/BF01581033, 1982. a
Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Cristina Facchini, M.,
and Mazzoleni, L. R.: Molecular insights on aging and aqueous-phase
processing from ambient biomass burning emissions-influenced Po Valley fog
and aerosol, Atmos. Chem. Phys., 18, 13197–13214,
https://doi.org/10.5194/acp-18-13197-2018, 2018. a
Broekhuizen, K., Kumar, P. P., and Abbatt, J. P.: Partially soluble organics
as cloud condensation nuclei: Role of trace soluble and surface active
species, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2003GL018203, 2004. a, b
Brooks, S. D., DeMott, P. J., and Kreidenweis, S. M.: Water uptake by
particles containing humic materials and mixtures of humic materials with
ammonium sulfate, Atmos. Environ., 38, 1859–1868,
https://doi.org/10.1016/j.atmosenv.2004.01.009, 2004. a, b
Buajarern, J., Mitchem, L., and Reid, J. P.: Characterizing Multiphase
Organic/Inorganic/Aqueous Aerosol Droplets, J. Phys. Chem. A, 111,
9054–9061, https://doi.org/10.1021/jp074366a, 2007. a
Cain, K. P. and Pandis, S. N.: A technique for the measurement of organic
aerosol hygroscopicity, oxidation level, and volatility distributions,
Atmos. Meas. Tech., 10, 4865–4876, https://doi.org/10.5194/amt-10-4865-2017, 2017. a
Cappa, C. D., Che, D. L., Kessler, S. H., Kroll, J. H., and Wilson, K. R.:
Variations in organic aerosol optical and hygroscopic properties upon
heterogeneous OH oxidation, J. Geophys. Res., 116, 1–12,
https://doi.org/10.1029/2011JD015918, 2011. a
Chang, R. Y., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt,
S. J., Leaitch, W. R., and Abbatt, J. P.: The hygroscopicity parameter
(κ) of ambient organic aerosol at a field site subject to biogenic and
anthropogenic influences: Relationship to degree of aerosol oxidation,
Atmos. Chem. Phys., 10, 5047–5064, https://doi.org/10.5194/acp-10-5047-2010, 2010. a
Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin, S. T.:
Particle-phase chemistry of secondary organic material: Modeled compared to
measured O:C and H:C Elemental ratios provide constraints, Environ. Sci.
Technol., 45, 4763–4770, https://doi.org/10.1021/es104398s, 2011. a
Clegg, S. L. and Seinfeld, J. H.: Improvement of the
Zdanovskii–Stokes–Robinson Model for Mixtures Containing Solutes of
Different Charge Types, J. Phys. Chem. A, 108, 1008–1017,
https://doi.org/10.1021/jp030827q, 2004. a, b
Clegg, S. L. and Seinfeld, J. H.: Thermodynamic models of aqueous solutions
containing inorganic electrolytes and dicarboxylic acids at 298.15 K, 1. The
acids as nondissociating components, J. Phys. Chem. A, 110, 5692–5717,
https://doi.org/10.1021/jp056149k, 2006. a, b
Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of
multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical
electrolytes, J. Phys. Chem., 96, 9470–9479, https://doi.org/10.1021/j100202a074,
1992. a
Clegg, S. L., Seinfeld, J. H., and Brimblecombe, P.: Thermodynamic modelling
of aqueous aerosols containing electrolytes and dissolved organic compounds,
J. Aerosol Sci., 32, 713–738, https://doi.org/10.1016/S0021-8502(00)00105-1, 2001. a
Compernolle, S., Ceulemans, K., and Müller, J. F.: Influence of
non-ideality on condensation to aerosol, Atmos. Chem. Phys., 9, 1325–1337,
https://doi.org/10.5194/acp-9-1325-2009, 2009. a
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new
vapour pressure estimation methodfor organic molecules including
non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11,
9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011. a
Csendes, T.: Nonlinear Parameter Estimation by Global Optimization - Efficiency
and Reliability, Acta Cybernetica, 8, 361–370, 1988. a
Davies, J. F., Zuend, A., and Wilson, K. R.: Technical note: The role of
evolving surface tension in the formation of cloud droplets, Atmos. Chem.
Phys., 19, 2933–2946, https://doi.org/10.5194/acp-19-2933-2019, 2019. a
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
Partitioning, Dilution, and Chemical Aging of Semivolatile Organics,
Environ. Sci. Technol., 40, 2635–2643,
https://doi.org/10.1021/es052297c, 2006. a
Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A.,
Barmpadimos, I., Prevot, A. S. H., Weingartner, E., Tritscher, T., Gysel, M.,
Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins,
D. R., Tomlinson, J., and Baltensperger, U.: Relating hygroscopicity and
composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11,
1155–1165, https://doi.org/10.5194/acp-11-1155-2011, 2011. a
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O,
Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. a, b
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group‐contribution
estimation of activity coefficients in nonideal liquid mixtures, Aiche J.,
21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. a
Freedman, M. A.: Phase separation in organic aerosol, Chem. Soc. Rev., 46,
7694–7705, https://doi.org/10.1039/C6CS00783J, 2017. a
Frosch, M., Zardini, A. A., Platt, S. M., Müller, L., Reinnig, M.-C.,
Hoffmann, T., and Bilde, M.: Thermodynamic properties and cloud droplet
activation of a series of oxo-acids, Atmos. Chem. Phys., 10, 5873–5890,
https://doi.org/10.5194/acp-10-5873-2010, 2010. a, b
Frosch, M., Bilde, M., DeCarlo, P. F., Jurányi, Z., Tritscher, T.,
Dommen, J., Donahue, N. M., Gysel, M., Weingartner, E., and Baltensperger,
U.: Relating cloud condensation nuclei activity and oxidation level of
α-pinene secondary organic aerosols, J. Geophys. Res.-Atmos., 116,
1–9, https://doi.org/10.1029/2011JD016401, 2011. a, b
Ganbavale, G., Zuend, A., Marcolli, C., and Peter, T.: Improved AIOMFAC model
parameterisation of the temperature dependence of activity coefficients for
aqueous organic mixtures, Atmos. Chem. Phys., 15, 447–493,
https://doi.org/10.5194/acp-15-447-2015, 2015. a
Girolami, G. S.: A Simple “Back of the Envelope” Method for Estimating the
Densities and Molecular Volumes of Liquids and Solids, J. Chem. Educ., 71,
962–964, https://doi.org/10.1021/ed071p962, 1994. a, b
Gokcen, N. A.: Gibbs-duhem-margules laws, J. Phase Equilibria, 17, 50–51,
https://doi.org/10.1007/BF02648369, 1996. a
Gorkowski, K., Beydoun, H., Aboff, M., Walker, J. S., Reid, J. P., and
Sullivan, R. C.: Advanced aerosol optical tweezers chamber design to
facilitate phase-separation and equilibration timescale experiments on
complex droplets, Aerosol Sci. Technol., 50, 1327–1341,
https://doi.org/10.1080/02786826.2016.1224317, 2016. a
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Emulsified and
Liquid–Liquid Phase–Separated States of α-Pinene Secondary Organic
Aerosol Determined Using Aerosol Optical Tweezers, Environ. Sci. Technol.,
51, 12154–12163, https://doi.org/10.1021/acs.est.7b03250, 2017. a
Gorkowski, K., Preston, T. C., and Zuend, A.: Binary Activity Coefficent Model, available at: https://github.com/Gorkowski/Binary_Activity_Thermodynamics_Model, last access: 8 August 2019. a
Hodas, N., Zuend, A., Schilling, K., Berkemeier, T., Shiraiwa, M., Flagan,
R. C., and Seinfeld, J. H.: Discontinuities in hygroscopic growth below and
above water saturation for laboratory surrogates of oligomers in organic
atmospheric aerosols, Atmos. Chem. Phys., 16, 12767–12792,
https://doi.org/10.5194/acp-16-12767-2016, 2016. a
Huff Hartz, K. E., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M.,
and Pandis, S. N.: Cloud condensation nuclei activation of limited
solubility organic aerosol, Atmos. Environ., 40, 605–617,
https://doi.org/10.1016/j.atmosenv.2005.09.076, 2006. a, b
Jathar, S. H., Mahmud, A., Barsanti, K. C., Asher, W. E., Pankow, J. F., and
Kleeman, M. J.: Water uptake by organic aerosol and its influence on
gas/particle partitioning of secondary organic aerosol in the United States,
Atmos. Environ., 129, 142–154, https://doi.org/10.1016/j.atmosenv.2016.01.001, 2016. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, a. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
a. C., Docherty, K. S., Ulbrich, I. M., Grieshop, a. P., Robinson, a. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. a., Hueglin, C., Sun,
Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. a., Onasch, T. B., Alfarra, M. R., Williams,
P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S.,
Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami,
A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M.,
Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, a. M., Williams, L. R., Wood, E. C., Middlebrook, a. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols
in the atmosphere., Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353,
2009. a
Kim, Y., Sartelet, K., and Couvidat, F.: Modeling the effect of non-ideality,
dynamic mass transfer and viscosity on SOA formation in a 3-D air quality
model, Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019,
2019. a
Kuwata, M., Shao, W., Lebouteiller, R., and Martin, S. T.: Classifying organic
materials by oxygen-to-carbon elemental ratio to predict the activation
regime of Cloud Condensation Nuclei (CCN), Atmos. Chem. Phys., 13,
5309–5324, https://doi.org/10.5194/acp-13-5309-2013, 2013. a, b
Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P.,
Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits,
P.: Laboratory studies of the chemical composition and cloud condensation
nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary
organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928,
https://doi.org/10.5194/acp-11-8913-2011, 2011. a
Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H.,
Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S.,
Kleindienst, T. E., Gold, A., and Surratt, J. D.: Isoprene Epoxydiols as
Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive
Uptake Studies with Authentic Compounds, Environ. Sci. Technol., 46,
250–258, https://doi.org/10.1021/es202554c, 2012. a
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E.: A survey of
deep neural network architectures and their applications, Neurocomputing,
234, 11–26, https://doi.org/10.1016/j.neucom.2016.12.038, 2017. a
Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P.,
Gaston, C. J., Iyer, S., Zhang, Z., Gold, A., Surratt, J. D., Lee, B. H.,
Kurten, T., Hu, W., Jimenez, J., Hallquist, M., and Thornton, J. A.:
Molecular Composition and Volatility of Organic Aerosol in the Southeastern
U.S.: Implications for IEPOX Derived SOA, Environ. Sci. Technol., 50,
2200–2209, https://doi.org/10.1021/acs.est.5b04769, 2016. a
Malila, J. and Prisle, N. L.: A monolayer partitioning scheme for droplets of
surfactant solutions, J. Adv. Model. Earth Syst., 10, 3233–3251,
https://doi.org/10.1029/2018MS001456, 2018. a
Margules, M.: Uber die Zummensetzung der gesattigten Dampfe von Mischungen,
Sitzungber, Akad. der Wissenschaften Wien, 104, 1243–1278, 1895. a
Marsh, A., Rovelli, G., Miles, R. E. H., and Reid, J. P.: Complexity of
Measuring and Representing the Hygroscopicity of Mixed Component Aerosol, J.
Phys. Chem. A, 123, 1648–1660, https://doi.org/10.1021/acs.jpca.8b11623, 2019. a, b, c, d
Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M.,
Mikkilä, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne,
J. T., Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E.,
Davidovits, P., and Worsnop, D. R.: Relationship between aerosol oxidation
level and hygroscopic properties of laboratory generated secondary organic
aerosol (SOA) particles, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL045258, 2010. a, b
McFiggans, G., Mentel, T. F., Wildt, J., Pullinen, I., Kang, S., Kleist, E.,
Schmitt, S., Springer, M., Tillmann, R., Wu, C., Zhao, D., Hallquist, M.,
Faxon, C., Le Breton, M., Hallquist, Å. M., Simpson, D.,
Bergström, R., Jenkin, M. E., Ehn, M., Thornton, J. A., Alfarra, M. R.,
Bannan, T. J., Percival, C. J., Priestley, M., Topping, D., and
Kiendler-Scharr, A.: Secondary organic aerosol reduced by mixture of
atmospheric vapours, Nature, 565, 587–593, https://doi.org/10.1038/s41586-018-0871-y,
2019. a
McGlashan, M. L.: Deviations from Raoult's law, J. Chem. Educ., 40, 516–518,
https://doi.org/10.1021/ed040p516, 1963. a, b
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A New Thermodynamic
Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols, Aquat.
Geochem., 4, 123–152, https://doi.org/10.1023/A:1009604003981, 1998. a, b
Öström, E., Putian, Z., Schurgers, G., Mishurov, M., Kivekäs,
N., Lihavainen, H., Ehn, M., Rissanen, M. P., Kurtén, T., Boy, M.,
Swietlicki, E., and Roldin, P.: Modeling the role of highly oxidized
multifunctional organic molecules for the growth of new particles over the
boreal forest region, Atmos. Chem. Phys., 17, 8887–8901,
https://doi.org/10.5194/acp-17-8887-2017, 2017. a
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546,
637–641, https://doi.org/10.1038/nature22806, 2017. a, b, c
Pankow, J. F.: An absorption model of gas/particle partitioning of organic
compounds in the atmosphere, Atmos. Environ., 28, 185–188,
https://doi.org/10.1016/1352-2310(94)90093-0, 1994. a
Pankow, J. F. and Barsanti, K. C.: The carbon number-polarity grid : A means
to manage the complexity of the mix of organic compounds when modeling
atmospheric organic particulate matter, Atmos. Environ., 43, 2829–2835,
https://doi.org/10.1016/j.atmosenv.2008.12.050, 2009. a
Pankow, J. F., Marks, M. C., Barsanti, K. C., Mahmud, A., Asher, W. E., Li, J.,
Ying, Q., Jathar, S. H., and Kleeman, M. J.: Molecular view modeling of
atmospheric organic particulate matter: Incorporating molecular structure and
co-condensation of water, Atmos. Environ., 122, 400–408,
https://doi.org/10.1016/j.atmosenv.2015.10.001, 2015. a, b
Petters, M. D., Kreidenweis, S. M., Snider, J. R., Koehler, K. A., Wang, Q.,
Prenni, A. J., and Demott, P. J.: Cloud droplet activation of polymerized
organic aerosol, Tellus B, 58, 196–205,
https://doi.org/10.1111/j.1600-0889.2006.00181.x, 2006. a, b
Petters, M. D., Kreidenweis, S. M., Prenni, A. J., Sullivan, R. C., Carrico,
C. M., Koehler, K. A., and Ziemann, P. J.: Role of molecular size in cloud
droplet activation, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL040131, 2009. a, b
Petters, M. D., Kreidenweis, S. M., and Ziemann, P. J.: Prediction of cloud
condensation nuclei activity for organic compounds using functional group
contribution methods, Geosci. Model Dev., 9, 111–124,
https://doi.org/10.5194/gmd-9-111-2016, 2016. a, b, c, d
Poulain, L., Wu, Z., Petters, M. D., Wex, H., Hallbauer, E., Wehner, B.,
Massling, a., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap
between hygroscopic growth and CCN activation for secondary organic aerosols
– Part 3: Influence of the chemical composition on the hygroscopic
properties and volatile fractions of aerosols, Atmos. Chem. Phys., 10,
3775–3785, https://doi.org/10.5194/acp-10-3775-2010, 2010. a
Pradeep Kumar, P., Broekhuizen, K., and Abbatt, J. P.: Organic acids as
cloud condensation nuclei: Laboratory studies of highly soluble and insoluble
species, Atmos. Chem. Phys., 3, 509–520, https://doi.org/10.5194/acp-3-509-2003,
2003. a, b
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H.,
Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt,
J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal,
P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and
phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369,
https://doi.org/10.5194/acp-17-343-2017, 2017. a
Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge,
D. G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A.,
Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T.,
Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M., Nenes, A.,
Martin, S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K.,
Zuend, A., Virtanen, A., and Riipinen, I.: Microphysical explanation of the
RH-dependent water affinity of biogenic organic aerosol and its importance
for climate, Geophys. Res. Lett., 44, 5167–5177,
https://doi.org/10.1002/2017GL073056, 2017. a, b, c, d, e, f, g, h, i
Raymond, T. M.: Formation of cloud droplets by multicomponent organic
particles, J. Geophys. Res., 108, 4469–4477, https://doi.org/10.1029/2003JD003503,
2003. a, b
Redlich, O. and Kister, A. T.: Algebraic Representation of Thermodynamic
Properties and the Classification of Solutions, Ind. Eng. Chem., 40,
345–348, https://doi.org/10.1021/ie50458a036, 1948. a, b
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson,
J. W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and
implications of liquid–liquid phase separation at high relative humidities
in secondary organic material produced by
α-pinene
ozonolysis without inorganic salts, Atmos. Chem. Phys., 16, 7969–7979,
https://doi.org/10.5194/acp-16-7969-2016, 2016. a
Rickards, A. M., Miles, R. E., Davies, J. F., Marshall, F. H., and Reid, J. P.:
Measurements of the sensitivity of aerosol hygroscopicity and the κ
parameter to the O∕C ratio, J. Phys. Chem. A, 117, 14120–14131,
https://doi.org/10.1021/jp407991n, 2013. a, b
Rovelli, G., Miles, R. E., Reid, J. P., and Clegg, S. L.: Accurate
Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative
Humidity, J. Phys. Chem. A, 120, 4376–4388, https://doi.org/10.1021/acs.jpca.6b04194,
2016. a
Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for
cloud droplet formation on organic aerosols, Science, 351, 1447–1450,
https://doi.org/10.1126/science.aad4889, 2016. a
Sand, M., Samset, B. H., Balkanski, Y., Bauer, S., Bellouin, N., Berntsen,
T. K., Bian, H., Chin, M., Diehl, T., Easter, R., Ghan, S. J., Iversen, T.,
Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Luo, G., Myhre, G., van
Noije, T., Penner, J. E., Schulz, M., Seland, Ø., Skeie, R. B., Stier, P.,
Takemura, T., Tsigaridis, K., Yu, F., Zhang, K., and Zhang, H.: Aerosols at
the poles: an AeroCom Phase II multi-model evaluation, Atmos. Chem. Phys.,
17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, 2017. a
Schum, S. K., Zhang, B., Džepina, K., Fialho, P., Mazzoleni, C.,
Mazzoleni, L. R., Dzepina, K., Fialho, P., Mazzoleni, C., and Mazzoleni,
L. R.: Molecular and physical characteristics of aerosol at a remote free
troposphere site: implications for atmospheric aging, Atmos. Chem. Phys.,
18, 14017–14036, https://doi.org/10.5194/acp-18-14017-2018, 2018. a
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid–liquid phase separation in aerosol particles: Dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett.,
39, 1–5, https://doi.org/10.1029/2012GL052807, 2012. a
Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T.:
Morphologies of mixed organic/inorganic/aqueous aerosol droplets, Faraday
Discuss., 165, 289–316, https://doi.org/10.1039/c3fd00049d, 2013. a
Stokes, R. H. and Robinson, R. A.: Interactions in aqueous nonelectrolyte
solutions. I. Solute-solvent equilibria, J. Phys. Chem., 70, 2126–2131,
https://doi.org/10.1021/j100879a010, 1966. a
Suda, S. R., Petters, M. D., Yeh, G. K., Strollo, C., Matsunaga, A., Faulhaber,
A., Ziemann, P. J., Prenni, A. J., Carrico, C. M., Sullivan, R. C., and
Kreidenweis, S. M.: Influence of Functional Groups on Organic Aerosol Cloud
Condensation Nucleus Activity, Environ. Sci. Technol., 48, 10182–10190,
https://doi.org/10.1021/es502147y, 2014. a, b
Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini,
M. C., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn,
T.: Hygroscopic growth and critical supersaturations for mixed aerosol
particles of inorganic and organic compounds of atmospheric relevance,
Atmos. Chem. Phys., 6, 1937–1952, https://doi.org/10.5194/acp-6-1937-2006, 2006. a, b
Thalman, R., De Sá, S. S., Palm, B. B., Barbosa, H. M., Pöhlker,
M. L., Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A.,
Kuang, C., Manzi, A., Ng, N. L., Sedlacek, A. J., Souza, R., Springston, S.,
Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P.,
Jimenez, J. L., Martin, S. T., and Wang, J.: CCN activity and organic
hygroscopicity of aerosols downwind of an urban region in central Amazonia:
Seasonal and diel variations and impact of anthropogenic emissions, Atmos.
Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, 2017. a
Topping, D., Connolly, P., and McFiggans, G.: Cloud droplet number enhanced by
co-condensation of organic vapours, Nat. Geosci., 6, 443–446,
https://doi.org/10.1038/ngeo1809, 2013. a
Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P.,
Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A.,
Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin,
M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic,
A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W.,
Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo,
G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller,
J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner,
J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J.,
Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D.,
Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost,
H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang,
Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The
AeroCom evaluation and intercomparison of organic aerosol in global models,
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014,
2014. a
Wang, J., Shilling, J. E., Liu, J., Zelenyuk, A., Bell, D. M., Petters, M. D.,
Thalman, R., Mei, F., Zaveri, R. A., and Zheng, G.: Cloud droplet activation
of secondary organic aerosol is mainly controlled by molecular weight, not
water solubility, Atmos. Chem. Phys., 19, 941–954,
https://doi.org/10.5194/acp-19-941-2019, 2019. a, b, c
Wexler, A. S.: Atmospheric aerosol models for systems including the ions H+,
, Na+, , NO3, Cl− , Br−, and H2O, J. Geophys. Res., 107, 1–14,
https://doi.org/10.1029/2001JD000451, 2002. a
Wong, J. P., Lee, A. K., Slowik, J. G., Cziczo, D. J., Leaitch, W. R.,
MacDonald, A., and Abbatt, J. P.: Oxidation of ambient biogenic secondary
organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei
activity, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL049351, 2011. a
Yan, W., Topphoff, M., Rose, C., and Gmehling, J.: Prediction of vapor-liquid
equilibria in mixed-solvent electrolyte systems using the group contribution
concept, Fluid Phase Equilib., 162, 97–113,
https://doi.org/10.1016/S0378-3812(99)00201-0, 1999. a
You, Y. and Bertram, A. K.: Effects of molecular weight and temperature on
liquid–liquid phase separation in particles containing organic species and
inorganic salts, Atmos. Chem. Phys., 15, 1351–1365,
https://doi.org/10.5194/acp-15-1351-2015, 2015. a, b
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem.,
33, 43–77, https://doi.org/10.1080/0144235X.2014.890786, 2014.
a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.,
113, 1–29, https://doi.org/10.1029/2007JD008782, 2008. a, b
Zdanovskii, A. B.: New methods for calculating solubilities of electrolytes in
multicomponent systems, Zh. Fiz. Khim., 22, 1478–1485, 1948. a
Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U.,
Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.:
The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to
improvements in process representations, Atmos. Chem. Phys., 12, 8911–8949,
https://doi.org/10.5194/acp-12-8911-2012, 2012. a, b
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., and
Binkowski, F. S.: A comparative review of inorganic aerosol thermodynamic
equilibrium modules: similarities, differences, and their likely causes,
Atmos. Environ., 34, 117–137, https://doi.org/10.1016/S1352-2310(99)00236-8, 2000. a
Zuend, A. and Seinfeld, J. H.: A practical method for the calculation of
liquid-liquid equilibria in multicomponent organic-water-electrolyte systems
using physicochemical constraints, Fluid Phase Equilib., 337, 201–213,
https://doi.org/10.1016/j.fluid.2012.09.034, 2013. a
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of
mixed organic-inorganic aerosols to predict activity coefficients, Atmos.
Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008. a, b
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of
liquid-liquid equilibria and phase stabilities: Implications for RH-dependent
gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys.,
10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010. a, b, c, d, e
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger,
U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New
and extended parameterization of the thermodynamic model AIOMFAC: Calculation
of activity coefficients for organic-inorganic mixtures containing carboxyl,
hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional
groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011,
2011. a, b, c, d, e, f
Short summary
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive reduced-complexity organic aerosol thermodynamics model. It can use bulk properties like O : C, molar mass, and RH to predict organic activity coefficients and water uptake behavior. We show applications in RH-dependent organic co-condensation, liquid–liquid phase separation, and Kohler curve predictions, and we validate the BAT model against laboratory measurements.
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive...
Altmetrics
Final-revised paper
Preprint