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Abstract. Water plays an essential role in aerosol chem-
istry, gas–particle partitioning, and particle viscosity, but it
is typically omitted in thermodynamic models describing the
mixing within organic aerosol phases and the partitioning of
semivolatile organics. In this study, we introduce the Binary
Activity Thermodynamics (BAT) model, a water-sensitive
reduced-complexity model treating the nonideal mixing of
water and organics. The BAT model can process different
levels of physicochemical mixture information enabling its
application in the thermodynamic aerosol treatment within
chemical transport models, the evaluation of humidity effects
in environmental chamber studies, and the analysis of field
observations. It is capable of using organic structure infor-
mation including O : C, H : C, molar mass, and vapor pres-
sure, which can be derived from identified compounds or es-
timated from bulk aerosol properties. A key feature of the
BAT model is predicting the extent of liquid–liquid phase
separation occurring within aqueous mixtures containing hy-
drophobic organics. This is crucial to simulating the abrupt
change in water uptake behavior of moderately hygroscopic
organics at high relative humidity, which is essential for cap-
turing the correct behavior of organic aerosols serving as
cloud condensation nuclei. For gas–particle partitioning pre-
dictions, we complement a volatility basis set (VBS) ap-
proach with the BAT model to account for nonideality and
liquid–liquid equilibrium effects. To improve the computa-
tional efficiency of this approach, we trained two neural net-
works; the first for the prediction of aerosol water content at
given relative humidity, and the second for the partitioning of
semivolatile components. The integrated VBS + BAT model
is benchmarked against high-fidelity molecular-level gas–
particle equilibrium calculations based on the AIOMFAC

(Aerosol Inorganic-Organic Mixtures Functional groups Ac-
tivity Coefficient) model. Organic aerosol systems derived
from α-pinene or isoprene oxidation are used for compari-
son. Predicted organic mass concentrations agree within less
than a 5 % error in the isoprene case, which is a signifi-
cant improvement over a traditional VBS implementation. In
the case of the α-pinene system, the error is less than 2%
up to a relative humidity of 94%, with larger errors past
that point. The goal of the BAT model is to represent the
bulk O : C and molar mass dependencies of a wide range
of water–organic mixtures to a reasonable degree of accu-
racy. In this context, we discuss that the reduced-complexity
effort may be poor at representing a specific binary water–
organic mixture perfectly. However, the averaging effects
of our reduced-complexity model become more representa-
tive when the mixture diversity increases in terms of organic
functionality and number of components.

1 Introduction

In observational and modeling studies, nonideal molecular
interactions in liquid phases play an essential role in or-
ganic aerosol partitioning, cloud droplet activation, and at-
mospheric chemistry (Petters and Kreidenweis, 2007; Zuend
et al., 2010; Pankow et al., 2015; Rastak et al., 2017; Ovad-
nevaite et al., 2017). Common thermodynamic mixing mod-
els and related equilibrium frameworks are highly valuable
for the computation of nonideal mixing effects within liq-
uid (aqueous) inorganic, organic, or mixed organic–inorganic
phases through activity coefficient predictions. Models fre-
quently used by the atmospheric aerosol community include
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the Aerosol Inorganic-Organic Mixtures Functional groups
Activity Coefficient (AIOMFAC) model (Zuend et al., 2008,
2011, 2010), the Universal Quasichemical Functional-group
Activity Coefficients (UNIFAC) model (Fredenslund et al.,
1975; Yan et al., 1999; Compernolle et al., 2009), the Model
for Simulating Aerosol Interactions and Chemistry (MO-
SAIC) (Zaveri et al., 2008), the improved thermodynamic
equilibrium aerosol model (ISORROPIA II, “equilibrium”
in Greek) (Nenes et al., 1998; Fountoukis and Nenes, 2007),
and the Extended Aerosol Inorganics Model (E-AIM) (Clegg
et al., 1992, 2001; Wexler, 2002; Clegg and Seinfeld, 2004,
2006). Each model comes with its specific advantages and
limitations in chemical species and temperature range cov-
ered, as well as the trade-off in computational efficiency
vs. accuracy. Such models, in combination with vapor pres-
sure models, can predict the gas–aerosol partitioning of
volatile and semivolatile inorganic and/or organic species
and thereby the expected aerosol composition and mass con-
centration for given environmental conditions and appro-
priate structural information about the chemical species in-
volved. This makes detailed thermodynamic models very
useful for model–measurement comparisons in the context
of well-characterized laboratory experiments and modeling
case studies of particulate matter (PM).

For inorganic salts, acids, and bases, it is possible to
directly implement equilibrium thermodynamics models in
“online” large-scale chemical transport models (CTMs). A
typical implementation in CTMs is ISORROPIA II, which
uses the availability of molecular-level information about the
abundance of inorganic aerosol constituents or their gaseous
precursors (e.g., ammonia and nitric acid) as model inputs
(Nenes et al., 1998; Zhang et al., 2000, 2012; Fountoukis and
Nenes, 2007). More recently, MOSAIC has been used to ac-
count for the dynamic partitioning of semivolatile inorganic
gases (Zaveri et al., 2008). In the case of organic aerosol and
its volatile precursors, molecular-level chemical constituent
information is generally lacking. Implementations of organic
aerosol nonideality, in current and past CTMs, approach the
problem by choosing representative surrogate molecules for
broad classes of organic compounds or by merely assign-
ing a hygroscopicity parameter to characterize at least the
water affinity of the organic aerosol fraction (Pankow and
Barsanti, 2009; Pankow et al., 2015; Pye et al., 2017; Zhang
et al., 2012; Jathar et al., 2016; Kim et al., 2019). Aside from
mechanistic and implementation challenges, the direct mod-
eling of organic molecular structures would further have very
few validation points as ambient measurements are currently
limited and constrained to a select set of identified organ-
ics (Tsigaridis et al., 2014; Lopez-Hilfiker et al., 2016; Sand
et al., 2017). On top of that, atmospheric organic chemistry
and aerosol formation remain an active area of ongoing re-
search (Öström et al., 2017; Brege et al., 2018; Schum et al.,
2018; McFiggans et al., 2019). However, research shows that
including nonideal water ↔ organic interactions (here“↔”
indicates an interaction) can have a substantial impact on or-

ganic aerosol particulate mass concentrations, water content,
biphasic morphology, and cloud condensation nuclei (CCN)
properties (Buajarern et al., 2007; Zuend and Seinfeld, 2012;
Song et al., 2013; You and Bertram, 2015; Gorkowski et al.,
2016, 2017; Freedman, 2017; Ovadnevaite et al., 2017; Ras-
tak et al., 2017).

Rastak et al. (2017) showed the importance of aerosol wa-
ter content in modeling and understanding both experimen-
tal findings as well as climate impacts via aerosol–radiation
and aerosol–cloud–radiation interactions. In that study, non-
ideal molecular interactions and liquid–liquid equilibrium
were considered for reconciling aerosol simulations with
laboratory measurements of organic aerosol hygroscopic-
ity parameters below and above 100 % relative humidity.
To explore the impact on climate, Rastak et al. (2017) as-
signed a fixed hygroscopicity parameter (κ) to the organic
aerosol fraction, either 0.05 or 0.15, resulting in signifi-
cant changes in the average top-of-the-atmosphere radiative
fluxes in both the NorESM (−1.0 Wm−2) and ECHAM6-
HAM2 (−0.25 Wm−2) climate model simulations. There-
fore, the aerosol effects on climate are sensitive to aerosol
water content and, by extension, the aerosol hygroscopicity
representation in such large-scale models.

A practical model for nonideal thermodynamics needs to
handle varying levels of chemical input information while
producing realistic predictions. The typical models for non-
ideal aqueous organic thermodynamics applicable to a broad
class of compounds, like AIOMFAC and UNIFAC, require
relatively detailed molecular structure information as in-
put. AIOMFAC is a chemical structure-based activity coeffi-
cient model that explicitly incorporates solution nonideality
among organics, water, and inorganic ions (https://aiomfac.
lab.mcgill.ca; Zuend et al., 2008, 2011; Zuend and Seinfeld,
2012). In that model, as in UNIFAC, the computations in-
volving organic compounds follow a group-contribution ap-
proach, which characterizes each organic molecule as a com-
bination of present functional groups and their abundances
within that molecule. In contrast, a thermodynamic model
able to accept either detailed molecular structure informa-
tion or far less detailed bulk chemical properties, e.g., mo-
lar masses and oxygen-to-carbon ratios (O : C) of organics,
would offer more flexibility in environmental chemistry ap-
plications where molecular-level chemical structure informa-
tion is often imperfect or lacking entirely. Only through a
tight coupling of adequate models and measurements can
we decipher observational evidence pointing at thermody-
namic mixing effects, kinetic mass transfer limitations, or
new chemical reaction pathways.

In this study, we introduce a newly developed, flexible
thermodynamic mixing model and demonstrate its fidelity
for activity coefficient calculations and coupled gas–particle
partitioning predictions of aqueous organic aerosols. This
nonideal mixing model, called the Binary Activity Thermo-
dynamics (BAT) model, accounts for water ↔ organic in-
teractions and thereby offers a method for determining the
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impact of water and the water content of organic phases at
a given temperature and equilibrium relative humidity. The
model was parameterized using a training database gener-
ated with the AIOMFAC model. The training database re-
liably constrains the BAT model coefficients across the full
composition space of interest, as further discussed in Sect. 3.
Such a systematic constraint would likely be unattainable
if we were to use experimental data only. However, via the
use of AIOMFAC, the BAT model is indirectly constrained
by experimental data, since the adjustable parameters of the
AIOMFAC model were optimized using experimental data
(Zuend et al., 2011).

On its own, the BAT model can predict the nonideal
mixing in aqueous organic systems, including a compu-
tationally efficient and implicit treatment of the effects
of liquid–liquid phase separation, which is important for
scarcely water-soluble organic compounds. Moreover, the at-
mospheric chemistry and physics community will be particu-
larly interested in our integration of the BAT model within an
equilibrium gas–particle partitioning model. The partitioning
model we use is a form of the nonideal volatility basis set
(VBS) approach, which is introduced in Sect. 2.

2 Theory: volatility basis set with consideration of
nonideality and liquid–liquid equilibria

Our VBS describes the gas–liquid equilibria of organics and
water using mass concentrations in the derivation, which al-
lows for an easier interpretation of aerosol measurements.
The partitioning components can also be lumped into loga-
rithmically spaced volatility bins forming a basis set, which
is typically done in CTMs for computational efficiency. In
this VBS derivation, with nonideality and liquid–liquid equi-
libria considered, we bring together published information
and outline more clearly important considerations and adap-
tations for a general multiphase case. The vapor–liquid equi-
librium for a single liquid phase is derived from the modified
Raoult’s law (e.g., Pankow, 1994; Zuend et al., 2010). Sub-
sequently, the general nonideal VBS framework introduced
here accounts for the potential presence of multiple liquid
phases in equilibrium. This VBS framework is independent
of the activity coefficient model used – as long as compatible
activity coefficient reference states are applied (conversions
are possible among different choices). Thus, the fundamen-
tal equations do not change as activity coefficient models im-
prove.

Derivation of a nonideal VBS starts from Raoult’s law
with the inclusion of activity coefficients (Eq. 1). Nonideal
refers here to the mixing behavior in the liquid phase, while
the gas phase is assumed to be an ideal gas mixture, which
is a good approximation for air under atmospheric pressure
(the use of fugacity coefficients would extend it to nonideal
gas mixtures).

The j th component in the π liquid phase has a pure-
component liquid-state saturation vapor pressure psat

j (a
function of temperature only), a mole fraction xπj , and a
composition- and temperature-dependent activity coefficient
γ
(x),π
j . The (x) superscript denotes it as a mole-fraction-

based activity coefficient, and the π superscript stands for the
π liquid phase. The component’s equilibrium partial pressure
(vapor pressure) over a bulk solution, pj , is

pj = p
sat
j x

π
j γ

(x),π
j . (1)

On the general notation adhered to hereafter: the subscripts
j or k index chemical species, while a subscript 6k (or 6j )
is a short-hand notation referring to the summed total cover-
ing all species. The superscripts indicate the corresponding
phase: g for gas, 6π for all liquid phases, and g+6π for
the combined total of the gas phase plus all liquid phases.
Multiple liquid phases are indexed by π and labeled by the
superscripts α, β, and so on until the � phase. Where ap-
plicable, a superscript in parentheses indicates the reference
state (e.g., (x) for a mole-fraction-based quantity).

The mass-concentration-based VBS framework is related
to Eq. (1) by using the ideal gas law to convert vapor pres-
sures and pure-component saturation vapor pressures into
gas-phase concentrations (i.e., Cg

j and Csat
j ). This step yields

Eq. (2), with the liquid-phase composition expressed via
component mole fractions as

C
g
j = C

sat
j x

π
j γ

(x),π
j . (2)

The mole fractions (xπj ) in that phase can be calculated
from liquid-phase concentrations Cπj if the molar masses
(Mj ) of all components are known (or reasonably estimable),
resulting in

xπj =
Cπj

Mj

∑
k

Cπk
Mk

. (3)

The equilibrium gas-phase concentration of species j , ex-
pressed by mass concentrations, is obtained by combining
Eqs. (2) and (3) into

C
g
j = C

sat
j

Cπj

Mj

∑
k

Cπk
Mk

γ
(x),π
j . (4)

In Eq. (4), we have essentially converted Raoult’s law into
a mass-concentration-based framework while accounting for
nonideality on a mole fraction basis.

2.1 Consideration of multiple liquid phases

We have thus far considered the classical case referring to
a single liquid phase, for which Eq. (4) is sufficient to ex-
press the gas-phase concentration. If there are multiple liq-
uid phases, like α and β, they too must be in thermody-
namic equilibrium with each other as well as the common
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gas phase. Meaning the total liquid concentration (C6πj =∑
πC

π
j ) further separates into distinct liquid phases.

We define the fraction of species j in each liquid phase
(relative to total of j in liquids) by qπj (e.g.,Cαj = q

α
j ×C

6π
j ).

By this definition, the summation of qπj for a single species
over all phases is equal to one and the cumulative liquid-
phase amounts of j can be determined using any phase of
choice, since

C
6π
j =

Cαj

qαj
=
C
β
j

q
β
j

= . . .=
C�j

q�j
. (5)

With Cg
j and multiple liquid phases defined, we can estab-

lish a relationship with the effective saturation concentration
(C∗j ), also called the gas–particle partitioning coefficient or
effective volatility. The initial definition of C∗j by Donahue
et al. (2006) targeted mixtures of organic compounds only,
but Zuend et al. (2010) pointed out its interpretation in a more
general form. The effective saturation concentration of each
species, including water and other inorganic constituents in
liquid phase π , is defined by Eq. (6). The distribution of a
species j among multiple phases π is accounted for in the
effective saturation concentration by using Eq. (5). The sum-
mation over k covers all species and is equal to the total mass
concentration from all liquid phases, C6π6k (=

∑
k

∑
πC

π
k );

this has also been denoted as CPM or COA for organic aerosol
systems in other studies. In this derivation, C6π6k is used as
we include all liquid-phase species while excluding potential
solid phases. Therefore,

C
∗,π
j =

C
g
jC

6π
6k

Cπj
qπj . (6)

The classical single-phase limit is obtained from Eq. (6) by
setting qπj = 1 and simplifying C6π6k to C6k or CPM, which
is valid in that case. Continuing the derivation, we then sub-
stitute Eq. (4) into Eq. (6) to arrive at a general expression of
C
∗,π
j as follows:

C
∗,π
j = Csat

j C
6π
6k

γ
(x),π
j qπj

Mj

∑
k

Cπk
Mk

. (7)

The superscript π in C∗,πj denotes that the π th liquid-

phase properties (Cπk , γ (x),πj , and qπj ) are used in this com-
putation.

The fraction of j partitioned to the condensed phase (i.e.,
the total of liquid phases), ξj , follows this general definition,

ξj =

(
1+

C∗j

C
6π
6k

)−1

. (8)

Lastly, the total species concentration C
g+6π
j (i.e., the

summed concentrations of j in gas phase plus liquid phases)

multiplied by ξj yields the total concentration present in the
liquid phase or phases (without specifying amounts in indi-
vidual liquid phases),

C
6π
j = C

g+6π
j ξj . (9)

The theoretical core for the equilibrium between multiple
liquid phases and a single gas phase is built into Eqs. (7) and
(8) – however, without information about how the phase frac-
tions at equilibrium are determined in practice. Moreover, if
the system is at thermodynamic equilibrium, then C∗j would
be independent of which set of liquid-phase properties are
used in the calculation, i.e.,

C∗j = C
∗,α
j = C

∗,β
j = . . .= C

∗,�
j . (10)

In the following applications, we have only considered up
to two liquid phases, α and β, even though the theory de-
rived in this section applies to any number of liquid phases.
Our convention is to use phase α as the water-rich phase
and phase β as the water-poor (therefore organic-rich) phase.
Since we use two phases, only qαj needs to be known as 1−qαj
is equal to qβj in the context here. Lastly, we emphasize again
that any mole-fraction-based activity coefficient model can
be used in applications of the vapor–liquid equilibrium the-
ory derived in this section.

3 Binary Activity Thermodynamics (BAT)

The goal of the BAT model is to produce realistic re-
sults of nonideal water–organic mixing behavior using min-
imal chemical information. Our target application is organic
aerosol thermodynamics, but the BAT model may find appli-
cations in a variety of other fields. In any research problem
constrained by limited chemical structure information about
organic molecules interacting with water in solution, the BAT
model can aid in elucidating those nonideal interactions.

For organic aerosol, the missing thermodynamic effects,
which have a significant impact on simulations within
CTMs or in the context of controlled laboratory studies,
are the pseudo-binary interactions among water↔ organic,
ion ↔ organic, and organic ↔ organic pairs of solution
species. In complex solution systems, such pair interactions
occur among and in the presence of a multitude of organic
and inorganic ion species. Thus, our initial foray in this work
is in predicting activity coefficients of binary mixtures of wa-
ter and one organic component, which are then applied to
estimate the nonideal mixing in aqueous multi-organic so-
lutions. At this point, we focus on aqueous organic aerosol
phases in the absence of inorganic ions. Most observations
and CTMs will report relative humidity (RH) rather than
constraining the total water (vapor) mass concentration. Un-
der the typical low mass concentrations of organic particu-
late matter, the RH constraint allows for the prediction of
the equilibrium water content and the organic activity coef-
ficient associated with each binary organic–water mixture.
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Figure 1. (a) Schematic of a realistic model for mixture compo-
nent activity coefficients, accounting for nonideal interactions be-
tween all species. (b) The BAT approximation separates the organic
species and treats each organic species as a binary mixture with
water. The water mole fraction in each binary mixture is then equi-
librated with the gas-phase water activity (i.e., RH). The water and
organic masses in the equilibrated binary mixtures are then added
together to represent the total liquid mixture.

This functional dependence of organic activity coefficients
on water content can then be used in aerosol partitioning
models to simulate co-condensation of several organics with
water (e.g., as RH increases) and to determine the possi-
bility and extent of a liquid–liquid equilibrium. For exam-
ple, this can be performed as a coupled activity–partitioning
scheme within the nonideal VBS partitioning model outlined
in Sect. 2.

Reducing the complexity of multicomponent mixing to
a system characterized by binary interactions for numeri-
cal simplicity is where we elect to introduce a first approx-
imation. In general, the activity coefficients used in Eq. (7)
should account for the effects of nonideal interactions among
all species of a liquid phase. However, we approximate the
activity coefficient of the j th organic in the liquid phase as
being established solely due to interactions with its associ-
ated water fraction at given RH. This concept is shown in
Fig. 1 and is related to the idea of the Zdanovskii–Stokes–
Robinson (ZSR) mixing rule, which is often applied to de-
termine the water content of multicomponent aqueous (elec-
trolyte) solutions (Zdanovskii, 1948; Stokes and Robinson,
1966; Clegg and Seinfeld, 2004). We are effectively saying
that the only nonideal interactions of a given organic species
j are those with its associated water amount and not with
other organic species. For typical secondary organic aerosol
(SOA) systems, we will show that the resulting error is less
than 5 % for the majority of ambient RH.

3.1 BAT activity coefficient model

With the scope of the BAT model outlined, we describe the
theoretical thermodynamic framework for the binary activity
coefficient calculations in the following. In a binary system,
the only requirement for a thermodynamically sound activity
coefficient model is satisfying the Duhem–Margules relation
(Eq. 11), which implies conformance with the more familiar
Gibbs–Duhem relation (Margules, 1895; McGlashan, 1963;

Gokcen, 1996);

(
1− xorg

) dln
(
γ
(x)
w

)
dxorg

+ xorg

dln
(
γ
(x)
org

)
dxorg

= 0,

(for T , p constant). (11)

Here, xorg is the mole fraction of the organic component,
T is the temperature, p the total pressure, and R the ideal
gas constant. Note that the binary case implies xw = 1−xorg
for the mole fraction of water. Consistent with the Duhem–
Margules relation, the molar excess Gibbs energy of mixing
(GE) is here defined as

GE/RT =
(
1− xorg

)
ln
(
γ (x)w

)
+ xorg ln

(
γ (x)org

)
. (12)

This function describes the excess portion of the molar
Gibbs energy of mixing, i.e., the contribution from nonideal
mixing behavior leading to deviations from the ideal molar
Gibbs energy of mixing. The two mole-fraction-based activ-
ity coefficients are then related to GE via

ln
(
γ (x)w

)
=
(
GE/RT

)
− xorg

d
(
GE/RT

)
dxorg

; (13)

ln
(
γ (x)org

)
=
(
GE/RT

)
+ (1− xorg)

d
(
GE/RT

)
dxorg

. (14)

Equations (12–14) are generally valid for a wide range of
functional forms of the composition dependence of GE. The
only thermodynamic constraint is that a GE function must
also satisfy Eq. (11), which means GE must be zero for both
xorg = 0 and xorg = 1. In addition GE must be capable of ex-
pressing maxima and minima within the mixed composition
space (0< xorg < 1) to correctly capture possible phase sepa-
ration behavior. To accomplish this dependence, Redlich and
Kister (1948) and McGlashan (1963) used a power series ex-
pansion in xorg of the following form:

GE/RT = xorg
(
1− xorg

)[
c′1+ c

′

2
(
1− 2xorg

)
+ . . .

+ c′n
(
1− 2xorg

)n−1
]
. (15)

Using Eq. (15) with Eqs. (13, 14), this power series with
adjustable coefficients, c′n (n= 1,2, . . .), can be used to fit
measured activity coefficient data for any binary system.
By increasing the number of adjustable coefficients, any de-
sired level of precision can be achieved – a powerful fea-
ture of such a model. In practice, fitting of four or fewer
coefficients (not necessarily in sequence) usually leads to
model–measurement agreement within experimental uncer-
tainty (e.g., Clegg and Seinfeld, 2006; Zuend et al., 2011).
Determining the coefficients for a binary mixture (e.g., mal-
onic acid + water) using Eq. (15) will result in a set of co-
efficients only meaningful for that system (but unlikely ap-
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plicable to other similar systems, say succinic acid + wa-
ter). Therefore, in an attempt to design a more general or-
ganic activity coefficient model, we made two important
changes. First, we change the independent composition vari-
able used in Eq. (15). Instead of mole fraction xorg, we intro-
duce a scaled volume fraction (φorg) in the series expansion
of GE/RT , which can be expressed as a function of xorg as
follows:

φorg = xorg

(
xorg+

(
1− xorg

) ρorg

ρw

Mw

Morg

[
s1(1+O : C)s2

])−1

. (16)

The activity coefficients in Eqs. (13) and (14) remain on
a mole-fraction-based scale, because the scaled volume frac-
tion is accounted for in the derivative of the molar Gibbs ex-
cess energy with respect to xorg by using

d(GE/RT )

dxorg
=

d(GE/RT )

dφorg

dφorg

dxorg
. (17)

The exact equations and derivatives are listed in Sect. S2
of the Supplement.

In Eq. (16), ρorg and ρw are the liquid-state densities of
the organic component and water, respectively, while s1 and
s2 are two scaling parameters determined during the model
fitting to training data. Note that without the scaling factor in
brackets [. . .], this equation would simply relate volume frac-
tions to mole fractions. The densities of organic components
are calculated using the relatively simple model by Girolami
(1994) outlined in Supplement Sect. S4. This is advantageous
for the reduced-complexity application of this work, because
the Girolami (1994) model allows for an estimation of den-
sity based on molar mass, O : C, H : C, and N : C only –
compatible with limited input information about the chem-
ical structures of organics.

Second, we introduce a parameterization of the scalar c′n
coefficients by means of multivariate functions, which are
dependent on common characteristics of organic molecules.
The notation change from c′n to cn denotes the use of the
scaled volume fraction composition scale and the use of a
parameterization for cn. Here we use the elemental oxygen-
to-carbon ratio (O : C) and molar mass (Morg) to characterize
the organic compounds. We also explored the use of the el-
emental H : C ratio as an additional molecular property but
found that this descriptor did not noticeably improve the
model at the attempted reduced-complexity level. The func-
tional form for the parameterized coefficients based on or-
ganic properties is shown by Eq. (18), where an,1 to an,4 are
the scalar fit parameters for the nth coefficient and exp(. . .)
is the natural exponential function;

cn = an,1 exp(an,2×O : C)+ an,3 exp
(
an,4

Mw

Morg

)
. (18)

With these changes, we can state a different series expan-
sion of the GE function using our scaled volume fraction

formulation, including the parameterized coefficients cn (via
Eq. 18),

GE/RT = φorg
(
1−φorg

)[
c1+ c2

(
1− 2φorg

)
+ . . .cn

(
1− 2φorg

)n−1
]
. (19)

The introduced change of composition scale improves the
flexibility of this model when optimized for a wide range of
binary systems characterized by the same set of model pa-
rameters (s1, s2, an,1, an,2, an,3, etc., with n= 1,2. . .). The
mole fraction scale works well for binary systems involv-
ing two components of similar molecular size and shape.
However, this is rarely the case in aqueous organic mixtures
with organic compounds of substantially higher molar mass
than water. The volume fraction scale implicitly accounts to
some extent for the size difference between organic and wa-
ter molecules, which means that the coefficient functions cn
do not need to correct for the molecular size and composition
dependences as much as when mole fraction is used. It is for
a similar reason why local composition models like UNIFAC
describe organic molecules as a combination of similar-sized
segments (subgroups) occupying a regular lattice, which con-
tributes to the so-called combinatorial activity in those mod-
els. The scaled volume fraction acknowledges that neither
mole fraction nor volume fraction (nor mass fraction) per-
fectly accounts for the composition dependence of activity
coefficients when describing various binary systems. Alter-
natively, a scaled mole fraction composition scale could have
been used, but we chose to scale volume fractions as the scal-
ing coefficient values constitute a smaller adjustment when
used with this composition scale, meaning that a simpler
scaling function was sufficient. Importantly, Eq. (19) remains
consistent with all thermodynamic relations, including that
GE becomes zero at both limits: φorg = 0 (when xorg = 0);
φorg = 1 (when xorg = 1).

Equations (16–19) establish a thermodynamically sound
activity coefficient model capable of describing various bi-
nary organic–water systems with a common set of model
parameters, as shown subsequently. Note, due to the nor-
malization by RT , when optimizing our GE/RT model,
we are implicitly accounting for a part of the tempera-
ture dependence of activity coefficients, notwithstanding the
temperature-independent form of the cn function. Activity
coefficients are weakly dependent on temperature, so the er-
ror caused by a temperature deviation from 298 K will be
relatively small for tropospheric conditions. With the equa-
tions for the BAT model derived, the fitted coefficients can
subsequently be determined based on suitable experimental
or model-generated data sets.
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3.2 BAT model: training data and parameter
optimization

The adjustable parameters of our BAT model were deter-
mined by numerical optimization using a database gener-
ated by the AIOMFAC model to cover a wide range of or-
ganic O : C ratios, molar masses, and mixture compositions
at room temperature (298.15 K). The use of the AIOMFAC
model as a benchmark allows for generating xorg, γ (x)org , and
γ
(x)
w data from highly dilute to highly concentrated binary

aqueous organic mixtures for each system considered, cov-
ering the full parameter space of interest. Since the AIOM-
FAC model includes a UNIFAC group contribution model for
short-range molecular mixing, the data we generate in this
work reflect the AIOMFAC flavor of a modified UNIFAC
model (Zuend et al., 2011) as we do not cover interactions of
organics with inorganic ions at this stage. In future, we plan
to include ion↔ organic and organic↔ organic interactions,
in which case AIOMFAC may serve again as a benchmark
model to generate training data.

We generated a database of 37 known organic chemical
structures and 123 artificial, yet possible, chemical struc-
tures. There were an additional 16 organic chemicals used
for a validation database (Supplement Table S6), and there-
fore not included in the fitting of the model. The artificial
chemical structures start with a carbon chain backbone of
variable length, to which a number of OH functional groups
are attached. The chain lengths and the number of OH groups
were varied such that a comprehensive population of the
2-dimensional O : C versus molar mass parameter space is
achieved. The 37 known chemical structures (mainly dicar-
boxylic acids) provide some diversity in the covered types of
oxygen-bearing functional groups. For each structure there
are an additional 40 data points at varying mole fractions,
which means the training database has 6400 points and the
validation database has 640 points.

Figure 2a shows the data used in the model parameter
optimization. This training database was used to simultane-
ously fit the scalar a and s coefficients of the BAT model
(Eqs. 16–19) using a constrained global optimization method
(known as GLOBAL) by Csendes (1988), which offers a For-
tran implementation of the Boender–Rinnooy Kan–Stougie–
Timmer algorithm (Boender et al., 1982). Through trial-and-
error optimization tests, we arrived at the functional forms
of the eight power series coefficients (an,1−4; n= 1,2) in
Eq. (18) and the two volume fraction scaling coefficients (s1,
s2) in Eq. (16). Only the first two terms (involving c1 and c2)
in the power series expansion (Eq. 19) were found to be justi-
fied given the diversity of organic structures to be represented
by a common parameterization. Moreover, we split the model
parameterization into three different domains based on the
limit of complete miscibility of organics with water and fur-
ther separated by O : C, shown in Fig. 2a as blue, light green,
and dark green regions. The blue domain includes compo-

nents that have no miscibility limit with water. The light
green domain starts at ∼ 30% of the O : C ratio reached at
the miscibility limit and covers up to the blue domain. The
dark green region covers the remaining lower O : C space,
which is populated by nonpolar, poorly water-soluble organic
compounds. In contrast, the blue domain represents relatively
hydrophilic organic compounds, whereas the light green do-
main contains moderately hydrophobic molecules. These do-
mains represent the three regions where each set of optimized
parameters dominates. Parameter optimization for each sets
of coefficients was carried out on a wider and overlapping
O : C range than shown in Fig. 2a. A sigmoidal function was
introduced to provide a smooth transition when traversing
from one of the domains to the next in the 2-D parameter
space (e.g., when O : C is increased gradually at a constant
molar mass coordinate) – otherwise, spurious discontinuities
would occur. The sigmoidal function provides a weighted
mapping between the parameters from one domain to the
next (over a short range in the boundary region). The optimal
BAT model parameter sets and transition functions are tabu-
lated in Supplement Sect. S2. An example of the sigmoidal
transition function is shown in the Supplement Fig. S1.

The limit of miscibility line in Fig. 2a marks the onset of
a potential liquid–liquid phase separation in O : C vs. molar
mass space. In the domain below that line (at lower organic
O : C), a miscibility gap is expected over a certain compo-
sition range (and corresponding water activity), while above
that line there is none predicted. The miscibility limit was
determined through an initial BAT fit using only the data in
the O : C range from 0.05 to 0.45, prior to the division of the
2-D space into the three domains (details in Sect. S2.2).

Generally, the BAT model showed good agreement with
the training database with a root mean squared error (RMSE)
in aw of 0.058 (5.8 % RH) and in organic activity (aorg)
of 0.090. The validation database showed a similar agree-
ment with a RMSE in aw of 0.066 and in aorg of 0.096
(details in Sect. S5). The BAT model is valid for organic
molecules within the following domain: 0 ≤ O : C ≤ 2
and 75 ≤ Morg ≤ 500gmol−1 with realistic behavior up to
750gmol−1. Additional error analysis for the BAT model
is shown in Sect. S5. In panels (b) and (c) of Fig. 2, we
show two examples of the BAT predictions, after domain-
specific optimization, compared to the AIOMFAC-generated
data. The BAT model tends to perform very well for the or-
ganics of the blue domain, as shown by the citric acid + wa-
ter example. Citric acid is marked by a blue star in the co-
ordinate space of Fig. 2a. The deviations of the BAT model
prediction compared to AIOMFAC increases for hydropho-
bic compounds; an example is shown for 1-hexanol + wa-
ter. Even though the model–model deviation increases, those
discrepancies are typically amplified where one of the activ-
ities (i.e., the product of mole fraction times activity coeffi-
cient of a component) is greater than one, which refers to a
nonequilibrium state. That is, over the related binary com-
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position range, a miscibility gap would occur at equilibrium,
consideration of which is further discussed in Sect. 4.

The nonideal behavior of water–organic mixtures is now
explored using the fitted BAT model. In Fig. 3, we can ex-
plore where nonideal behavior is substantial enough to re-
quire consideration in aerosol thermodynamic modeling. Iso-
lation of a single parameter in the BAT model can be more in-
formative than using the more detailed AIOMFAC model. In
the example of Fig. 3, we fix the molar mass at 200 gmol−1

and then scan the O : C ratio from 0 to 1.2. The first items
of note are the contours and the associated color space show-
ing water activity, which clearly indicates nonideal mixing
behavior. If the binary mixture were ideal, the white con-
tour lines would be vertical lines referring to aw = xw. We
show an example for xw = 0.2= aw(ideal) in Fig. 3. In the
rather hydrophobic region (O : C ≤ 0.4), the equilibrium wa-
ter uptake in terms of xw at given water activity (i.e., bulk
equilibrium RH) is less than that of an ideal mixture. For ex-
ample, an organic compound of O : C≈ 0.19 would require
aw = 0.4 to result in a mixture water content of xw = 0.2,
while an ideal mixture would achieve this water content al-
ready for aw = 0.2. Moving up towards higher O : C, there is
a transition to rather hydrophilic behavior and the water up-
take at given equilibrium RH is predicted to become higher
than that of an ideal mixture (aw < xw). A narrow O : C zone
bridges the hydrophilic and hydrophobic domains, there the
binary mixture would behave like an ideal mixture. In the pa-
rameter space displayed, the behavior of any specific binary
water–organic system is nonideal over nearly the whole xw
range. As the mole fraction of water increases beyond 0.9, a
binary mixture approaches ideal behavior for high-O : C or-
ganic compounds (O : C&0.8).

The composition and O : C dependence of liquid–liquid
phase separation (LLPS) within binary water–organic sys-
tems is also evident from Fig. 3. In general, LLPS is ex-
pected to occur when the Gibbs energy of the whole system
is minimized (globally) by splitting the system into two (or
more) liquid phases of distinct compositions (Zuend et al.,
2010, e.g.,). In the case of binary aqueous systems, LLPS
is indicated when an identical activity (either aw or aorg) is
predicted for two different mole fractions of water, with the
composition range in between defining the miscibility gap
(Ganbavale et al., 2015). An example of this is occurring
along the aw = 0.99 contour line, denoted by a dashed line
in Fig. 3. A clearer example of identifying this phase sepa-
ration is also shown in Fig. S2. In a binary mixture, LLPS
is also clearly indicated anywhere a component activity is
(predicted) to be greater than 1.0 when assuming a single
liquid phase in the calculation (gray areas in Fig. 3). These
gray areas mark initial compositions that would be unstable
and quickly lead to separation into two phases of distinct wa-
ter mole fractions; in the case of Fig. 3 with the final phase
compositions given by the two intersection points of a line
of constant O : C (of compound in question) and the water
activity contour at the edge of the phase separation area. Ad-

ditional isopleths at different organic molar masses (75 to
2000 gmol−1) are shown in Sect. S6. Based on BAT predic-
tions, in comparison to the case shown in Fig. 3, this phase
separation region moves to higher O : C as the molar mass
of the organics increases and to lower O : C as molar mass
decreases.

3.3 Molecular functionality translation

The BAT model described so far is tailored towards
molecules dominated by hydroxyl functional groups in terms
of oxygen-bearing groups. To increase the model’s versa-
tility, we will discuss our approach for incorporating other
important oxygen-bearing functional groups into the BAT
model framework. One option would involve generating an-
other AIOMFAC training database focused on other func-
tional groups with the subsequent fitting of new BAT model
coefficients. This is possible, but for large functional groups
the coverage in the O : C vs. Morg space would be sparse,
leading to poorly constrained parameters. Due to that limi-
tation, we went with a molecule functionality translation ap-
proach. This approach assumes that the O : C ratio is pro-
portional to a molecule’s polarizability, which is then de-
pendent on the type of oxygen-bearing functional group. If
that assumption holds to good approximation, the effects
of oxygen-bearing groups on activity coefficients can all be
translated using a common polarizability scale based on the
molecule’s O : C ratio. Similarly, if molar mass mainly pro-
vides information about the molecules effective volume, then
a translation to a new volume scale (affecting the organic vol-
ume fraction) is needed as well. The density used in the BAT
model is also modified since it is calculated from the O : C
and Morg inputs.

Based on these assumptions, we use the hydroxyl func-
tionality as a reference oxygen-bearing group and translate
the specific properties of all other functionalized molecules
to a hypothetical hydroxyl-equivalent molecule of modified
O : C and Morg. We introduce a two-coefficient sigmoidal
function to perform this translation (see details in Sect. S2.4).
The coefficients of the translation function were fitted us-
ing AIOMFAC-generated data (xorg, γorg, and γw) for each
molecular functionality. For example, a common function-
ality formed via atmospheric chemistry is the hydroperox-
ide (CHnOOH) group. If a molecule consisted of only hy-
droperoxide functional groups as oxygen-bearing groups,
with an O : C ratio of 1.0 andMorg of 200 gmol−1, the trans-
lated hydroxyl-equivalent molecule would have an O : C ra-
tio of 0.51 and Morg of 137 gmol−1. Those two hydroxyl-
equivalent molecular parameters are used as inputs for the
(hydroxyl-based) BAT model to compute the activity coef-
ficients of water and the actual organic molecule compris-
ing the hydroperoxide functional groups. We reiterate that
the BAT model is describing the whole molecule, and so
these translations are not for the individual functional groups.
This method is different from the group contribution ap-

Atmos. Chem. Phys., 19, 13383–13407, 2019 www.atmos-chem-phys.net/19/13383/2019/



K. Gorkowski et al.: Relative-humidity-dependent organic aerosol thermodynamics 13391

Figure 2. (a) The 160 molecular structures (black symbols) used in optimizing the BAT model for hydroxyl functional groups. The three
colored regions indicate distinct sets of BAT model fit parameters: the blue region represents high-O : C, the light green medium-O : C and the
dark green low-O : C organic molecules. The black line marks the determined miscibility limit, meaning that at lower O : C, organic molecules
exhibit a miscibility gap with water (according to BAT) over a certain composition range, while at higher O : C complete miscibility with
water is predicted. (b, c) Comparison of the training data generated by AIOMFAC (open circles) with the BAT model (dashed lines) for two
examples: (b) citric acid + water and (c) 1-hexanol + water. Predicted water activity is shown in blue and organic activity in black.

proach taken by UNIFAC and AIOMFAC, as here the whole
molecule is assigned one effective functionality. For multi-
functional molecules, a distinct multifunctional translation
may be derived, like we did for the SOA oxidation prod-
ucts (see Fig. 4b). This can be done by using AIOMFAC to
generate training data for multifunctional molecules that are
representative of volatile organic compound (VOC) oxida-
tion products. The molecular translation coefficients are then
fitted using the generated training database. If this fitting of
the translation coefficients is not practical, then the predom-
inant or most representative oxygen-bearing functionality on
the molecule should be chosen for an approximate molecule
functionality translation. Extensions to include organic ni-
trate and sulfate functionalities will be a topic of future de-
velopment. In principle, additional molecular functionality
translations for each combination of molecular functionali-
ties could be developed, which would be practical if the num-
ber of permutations is small. If the number of combinatorial
permutations of molecular functionalities is large, then that
development direction would lead to increased complexity,
which is not the goal of the BAT model. We will explore dif-
ferent weighting and scaling methods of the translations co-
efficients based on N : C and S : C elemental ratios to retain
the reduced-complexity approach. If accurate activity coeffi-
cient predictions of a known set of multifunctional molecules
are desired and the molecular structures are known, then the
use of AIOMFAC or a system specific model instead of BAT
is recommended.

Figure 4b shows an example for the translation of a
multifunctional hydroperoxide molecule (i.e., containing hy-
droxyl, ketone and hydroperoxide functionalities). Such mul-
tifunctional hydroperoxide molecules are among the most

difficult to represent well when using the functional group
translation approach. We show two BAT model activity
predictions, BAT (OH) directly used the molecules O : C
and Morg, whereas the BAT (translated) predictions use the
translated molecule properties. In general, the translation
gives the correct characteristics in terms of predicted wa-
ter and organic activities but can have large errors. For
the multifunctional hydroperoxide example, the BAT (trans-
lated) prediction is more hydrophobic than the untranslated
BAT (OH) prediction. The more hydrophobic behavior is
consistent with the AIOMFAC predictions. The PEG-414
translation example (Fig. 4c) shows how close PEG is to a
hydroxyl molecule, as the BAT (OH) activity curves agree
with AIOMFAC. However, the BAT (translated) prediction
does show improvement at xw > 0.85. If there is ever a con-
cern about the prediction accuracy for a given molecule,
the BAT model output should be compared to experimen-
tal data (where available) and/or the AIOMFAC-web model
(https://aiomfac.lab.mcgill.ca, last access: 23 January 2019).

This translation approach can work in both directions, so
we can also move the whole BAT model to a different func-
tional group basis, e.g., resulting in carboxyl-based, ketone-
based, and ether-based parameterizations of the BAT model
(here for the purpose of illustration). We use such translations
to plot the limit-of-miscibility lines for all of the fitted func-
tional group types considered (Fig. 4a). The dotted pink line
is from the multifunctional hydroperoxide translation and the
gold line is from the PEG translation, both having example
translations shown in Fig. 4b and c, respectively. The uncer-
tainty range in the O : C prediction of a limit of miscibil-
ity is also shown in Fig. 4a as a shaded gray region. These
miscibility limit lines represent the same process (phase sep-
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Figure 3. Predicted water activity contours generated by the BAT
model for binary aqueous mixtures of generic organic compounds
of constant molar mass of 200 gmol−1 yet variable O : C at T =
298.15 K. The contours link water mole fraction and the organic
O : C to the resulting water activity in a binary water–organic mix-
ture. The combined shaded regions in dark (aw > 1) and light gray
(aorg > 1) represent the minimum extent of liquid–liquid phase sep-
aration for a certain O : C. The dashed tie-line shows an example
of phase separation occurring over a limited range in composition
along the aw = 0.99 contour, as evident due to two possible xw val-
ues at the same aw. The bumps in the contours at O : C of 0.12
and 0.4 stem from the transitions between the BAT model’s low-,
medium-, and high-O : C parameterization domains.

aration limit) but for different functional groups, so it is
informative to compare their relative positions in Fig. 4a.
The higher in O : C the curve is, the more hydrophobic that
functional group makes a molecule compared to hydroxyl
groups, as it requires a higher O : C to become completely
miscible in water (at all proportions of mixing). The rela-
tively large variability among the miscibility limits in terms
of O : C ratio emphasizes the importance of distinguishing
among different types of oxygen-bearing functional groups.
In the case of ambient and laboratory-generated aerosol mix-
tures containing inorganic salts, the transition from LLPS to
completely miscible (at any composition) spans a O : C ra-
tio range from 0.4 to 0.8 based on experimental data (Song
et al., 2012; You et al., 2014; You and Bertram, 2015). That
O : C range is comparable to the difference between a hy-
droperoxide molecule with a molar mass of 100 gmol−1 vs.
400 gmol−1. The wide O : C range can also be achieved by
fixing molar mass at 400 gmol−1 and either having a hy-
droxyl or a hydroperoxide functionalization. This similarity
suggests that the types and abundances of oxygen-bearing
functional groups are as important as the salting-out effect by

dissolved inorganic ions – at least concerning the miscibility
with water. A future investigation on the limit of miscibility
line for mixtures with and without dissolved inorganic ions
may help elucidate that characteristic.

By the nature of this translation approach, each functional
group case will have a similar curvature in the miscibil-
ity limit line, as it was propagated from the hydroxyl-based
curve. After accounting for the RMSE of the different molec-
ular translations the overall BAT model error in the water ac-
tivity separation point was <±0.01, the aw prediction error
was<±0.09, and the aorg prediction error was<±0.15 (see
Sect. S5). Also, note that organic molecules with only ester
functional groups are predicted to be the only ones having
a miscibility gap up to O : C of 1.0 according to the BAT
model – and by extension AIOMFAC. Esters are among the
poorly constrained functional groups in AIOMFAC, whereas
the hydroxyl functional group is among the well-constrained
groups (Zuend et al., 2011). This is the case because the hy-
droxyl functional group benefits from a large amount of ex-
perimental data covering aqueous mixtures of alcohols, poly-
ols, and sugars, enabling tight constraints for its interactions
with water and other organic groups. This justifies the use
of the hydroxyl group as a reference oxygen-bearing group
during our initial fit of the BAT model’s coefficients.

4 Coupled VBS + BAT model

The nonideal BAT model and the VBS approach can now
be integrated into a coupled VBS + BAT model to simulate
the gas–particle partitioning of organic aerosol systems. This
integrated model will be benchmarked against high-fidelity
AIOMFAC gas–liquid equilibrium simulations with consid-
eration of liquid–liquid phase separation. Conceptually, the
VBS + BAT approach assumes that each organic is contribut-
ing its own water content to the total water content. We use
the water mass fractions per organic compound predicted by
the BAT model for a given water activity (equivalent to a
given equilibrium RH for a bulk solution case) to sum up all
the water contributions. This approach is closely related to
the ZSR mixing rule for aqueous solutions. Aside from the
organic mass concentrations (traditional VBS), the variable
C
6π
6j

includes the cumulative water mass concentration from
all particle phases, which in turn affects the C∗j values of all
the organic species.

A conceptual flow chart of our VBS + BAT computational
approach is shown in Fig. 6. The current version of the pro-
gram is written in MathWorks ® MATLAB (R2018b) and is
available for download (see “Code and data availability” sec-
tion).

4.1 Consideration of liquid–liquid phase partitioning

The first nontrivial change in the integrated VBS + BAT
model is the consideration and treatment of a potential mis-
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Figure 4. (a) Predicted limit-of-miscibility lines for different types of oxygen-bearing functional groups, generated from a translation of the
hydroxyl-based BAT model (see text and Sect. S2.4). Above the line, the organic is completely miscible in water, and below the line it has a
miscibility gap with water. The uncertainty range (gray shaded region) for the hydroxyl-based limit is the average difference in O : C for the
seven molecules that did not conform to the hydroxyl-based miscibility limit line. We propagated the uncertainty range from the hydroxyl-
based to the hydroperoxide-based line. The dotted pink line is the translation used in (b), and the gold line is the translation used in (c). (b,
c) Comparison of the data generated from AIOMFAC (circles), the BAT model with hydroxyl-based (OH) parameters (dashed lines) and
the BAT model with translated input values for O : C and Morg (solid lines). The change in the model input parameters are shown in (a) as
stars for the original value (used in the BAT (OH) line) and circles indicating the translated values used as input for the BAT (translated)
calculation. Water activity is in blue and organic activity in black. The comparison for a multifunctional hydroperoxide (C97OOH) is shown
in (b). The BAT (translated) curve represents a more hydrophobic organic than the BAT (OH) curve and it shows an aw > 1 range, which is
qualitatively consistent with AIOMFAC. The PEG-414 comparison is shown in (c) and highlights that the BAT (OH) model already captures
most of the PEG behavior. The BAT (translated) curve for PEG-414 shows an improved treatment at xw > 0.85. All cases for T = 298.15 K.

cibility gap. In the case of a liquid–liquid equilibrium, the
relative phase preferences are described by qαj , the fractional
liquid–liquid partitioning of a component to phase α (qαj ≤
1.0 in the two-liquid-phases case). Liquid–liquid phase sepa-
ration in a binary water–organic system at RH< 100% is re-
duced to a point and manifests itself by a jump discontinuity
(Fig. 5a). The liquid phase is either a water-poor (β) or water-
rich (α) phase, with a sharp transition between these two pos-
sible states at a certain water activity (qαj = 1 or 0). How-
ever, in the more general case of multicomponent aqueous
organic mixtures, there is no discontinuity; rather, a smooth
transition occurs in terms of individual component fractions
partitioned to each phase depending on phase preference (re-
lated to polarity). Hence, the component fractions in phase
alpha follow a smooth transition function for qαj with chang-
ing RH. In AIOMFAC-based equilibrium calculations, the
smooth transition results from the numerical minimization
of a system’s Gibbs energy, which depends on water content
and therefore water activity. For our VBS + BAT model, re-
gardless of binary or multicomponent cases, we represent the
transition from a water-poor phase to a water-rich phase as a
smooth transition occurring over a finite range in water ac-
tivity. Instead of using a computationally expensive explicit
numerical solution for the individual component’s liquid–
liquid partitioning, we approximate this transition behavior

in a simplified, computationally efficient manner by prescrib-
ing a sigmoidal functional form for qαj of the organic com-
ponents in the aw transition range. This functional form is
not arbitrary; rather, it is a result of liquid–liquid equilibrium
theory relating qαj to activity coefficient ratios in coexisting
phases (Zuend and Seinfeld, 2013). Contrary to the organic
species, the qαw value for water is a derived quantity and not
prescribed, since the mass fraction of water contributions are
accounted for on a per organic basis in each phase, resulting
in a qαw value that depends on the liquid–liquid partitioning
of all organics.

To approximate the location and aw width over which the
liquid–liquid phase separation is prescribed to occur, we first
determine a designated reference point, the so-called water
activity separation point (aw,sep). When an organic is in a bi-
nary mixture with water, this point denotes the aw value at
which the organic jumps from the water-poor to the water-
rich phase (α phase) according to the BAT model predic-
tion (refer to Fig. 5a). The aw,sep is determined using the
BAT model activities and associated Gibbs energy of mix-
ing; see Sect. S3 of the Supplement for the specifics. Note,
the BAT model does not directly output aw,sep, but aw,sep is
derived from the BAT model predicted activities. When there
are multiple organic components, each has it’s own defined
aw,sep derived from its mixing behavior with water in the bi-
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nary case. Alternatively, in our model implementation, there
is a program option to use a single aw,sep for a multi-organic
mixture, with the aw,sep value based on average molecular
properties of all organics. These average molecular proper-
ties are the means of O : C and Morg calculated from the
liquid-phase species in a β-phase-only VBS + BAT equi-
librium calculation (where qαorg = 0). This step allows us to
estimate a single representative aw,sep value for the multi-
component organic-rich phase, even though in reality each
organic species may deviate from this average behavior. We
then use the aw,sep value as a reference point when approxi-
mating the liquid–liquid phase separation of multicomponent
organic mixtures. Since both the behavior of average organic
mixtures as well as individual organic compounds can be ap-
proximated by single aw,sep values, the following broaden-
ing treatment for the liquid–liquid transition can be applied
in both situations.

In our approximation, we set qαorg = 0.99
(
= qαw,sep

)
at the

aw,sep point. Then, for the curve broadening (of the step-like
discontinuity), we use a sigmoidal function to approximate
the qαorg values representative of a multicomponent aqueous
organic mixture (Fig. 5b). With the functional form and one
point on the sigmoidal curve determined, we further need to
constrain the width of the curve (or alternatively the slope at
midpoint). We use the aw gap from aw,sep to complete aque-
ous dilution, where aw→ 1, to set a case-dependent transi-
tion function width (1aw,sep = 1−aw,sep). Choosing1aw,sep
as the sigmoid half-width results in a gradual two-phase tran-
sition and allows the transition range to change for each or-
ganic mixture (or organic molecule in the binary case). For
molecules that are more hydrophobic than the example rep-
resented in Fig. 5, the aw,sep value would be closer to 1.0,
leading to a smaller 1aw,sep, which is consistent with the
expected behavior predicted by independent AIOMFAC cal-
culations. We place a minimum limit of 10−6 on 1aw,sep, so
that 1aw,sep retains a nonzero width. However, this limit re-
mains a customizable model parameter. Based on these defi-
nitions, the sigmoid curve parameter (sc) can be determined
as

sc = ln

(
1

1− qαw,sep
− 1

)
1

1aw,sep
. (20)

The value of qαorg as a function of aw is then obtained as

qαorg = 1−
1

1+ exp
[
sc
(
aw− aw,sep+1aw,sep

)] . (21)

Even with this approach, the liquid–liquid equilibrium par-
titioning can sometimes be unrealistic due to the binary mix-
ture approximation. Unrealistic cases are identified by the
VBS + BAT-predicted liquid organic aerosol mass dropping
below that predicted for a corresponding single-phase simu-
lation (only a single, organic-rich phase present). In such an
unrealistic case, we use the average of the ξj coefficients of

Figure 5. Example of the liquid–liquid phase partitioning for 1-
hexanol as a function of water activity, expressed by qαorg. The qαorg
value is only relevant for mixtures that exhibit a miscibility gap.
(a) The sharp transition present in a two-component water–organic
mixture. (b) The broadening of the organic qαorg to better represent
behavior in multicomponent organic mixtures (Eq. 21).

the single-phase prediction and that from a two-phase simu-
lation. Lastly, it is important to note that the qα broadening
treatment is only applied when the properties of any of the
organic mixture species points to a possible miscibility gap
at the water activity of interest. Otherwise, complete misci-
bility is assumed.

4.2 Deep learning neural networks

Moving on from the phase separation treatment, we describe
in the following a number of key computational features of
our implementation. In designing the VBS + BAT model and
its implementation, we aimed both for flexibility and mini-
mal computational overhead. The main computational bur-
den is associated with the nonideal VBS solver when com-
pared to a VBS solver assuming ideal mixing in the liquid
phase, since the number of independent variables increases.
The increase is because the C∗ values cannot be approxi-
mated as constants because they are dependent on the mole
fractions of the organics and water as well as the activity co-
efficients. This means achieving convergence iteratively by
varying only C6π6j is not possible; instead, iteration over the
partitioning coefficients ξj is necessary, i.e., solving a system
of coupled algebraic equations numerically to a desired level
of precision. A simple way to speed up convergence towards
the equilibrium state is by improving the initial guess for the
ξj vector. Here we introduce a powerful application of deep
learning neural networks (NN) for that purpose.

We employ a so-called deep belief network, which con-
sists of multiple layers of artificial neurons (Liu et al., 2017).
The neurons are arranged in a matrix and use a sigmoidal ac-
tivation function which takes inputs from the neurons in the
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preceding layer, leading to a degree of activation of each neu-
ron, which is then providing input to the next neuron layer.
Artificial neural networks require large data sets of desired
inputs and outputs to fit the activation function coefficients
for each neuron. This allows the NN to learn the unspecified
functional relationship between known inputs and outputs. In
our case, large data sets can easily be generated with random
VBS + BAT simulations, allowing for the training of the NN.
We found useful applications for NNs for both an inversion
of the BAT model and the coupled VBS + BAT model calcu-
lations, as noted in Fig. 6.

We use NNs with the BAT model to find the correct xorg, j
input, since in most applications aw is known but not xorg, j .
For example, in CTM applications RH is a known quan-
tity and, for bulk equilibrium simulations, the RH in the gas
phase is equal to the aw in the liquid phase (when the Kelvin
effect is negligible). The BAT model calculates aw for a given
xorg, j , so a computationally more expensive approach would
be to iterate over xorg, j until the given RH in the gas phase
and aw in the liquid phase match (using a solver for non-
linear equations). The NN approach attempts to shortcut this
costly iterative method by directly guessing xorg, j for a given
aw. To fit the neuron activation functions, we generate a ran-
dom data set of O : Cj ,Morg, j , xorg, j , and aw using the BAT
model. The data corresponding to systems with a miscibility
gap are parsed into two separate categories to train a separate
NN. We generated a database of 9.8× 106 data points for
miscible organics and 4.6× 105 data points for phase sepa-
rated systems. Each database was then split into training data
(70 %), validation data (15 %), and test data (15 %), which
was used to train the BAT-NN. Our NN inputs are O : Cj ,
Morg, j , and aw with xorg, j as the target output. The NN is
then generated and its parameters fitted using MATLAB’s
Neural Network Toolbox. The resulting BAT-NN inverts the
BAT model quite well over the full aw space up to water
activities of ∼ 0.95, above which an iterative refinement is
required for good agreement with the targeted aw. For the
aw < 0.95 cases, the evaluation time for the BAT model is
insignificant, only the iterative refinement of xorg to match
the given aw (for aw > 0.95) causes the 0.58 ms computa-
tion time indicated in Fig. 6. The reported computation times
were all determined by using a single core on an Intel Core
i7-6500 U processor clocked at 2.50 GHz.

Next, we attempted to reduce the computational cost of
the VBS + BAT equilibrium solver. For this purpose, we
employ a distinct artificial neural network to estimate the
equilibrium gas–liquid partitioning coefficient (ξj ) of each
species. To facilitate using an NN, we first group the species
into 11 decadal Csat bins from 10−6 to 104 µgm−3. We
tested different NN input combinations and settled on us-
ing Cg+6πj , O : Cj ,Morg, j , BAT-derived water mass fraction
(ww, j ), and aw associated with organic component j . Using
the VBS + BAT equilibrium solver, we generated a random
database of 13 000 data points split into training data (70 %),
validation data (15 %), and test data (15 %). This generated

database was then used for the training of the NN. The NN
output target is the vector of partitioning coefficients, which
is subsequently used as the initial guess for solving the cou-
pled VBS + BAT system of nonlinear equations. This two-
step process (first NN, then numerical equilibrium solver)
takes on average 12.8 ms for a system with 11 species (the
time required for the VBS + BAT equilibrium solver step
scales approximately linearly with number of species).

The VBS-NN shows a smaller error for lower-O : C (<
0.5) systems, but in all cases it still needs some refinement
by an iterative equation solver to achieve a target precision
of less than 10−5 in ξj error. With that said, the VBS-NN ini-
tial guess is successful in approximating the nontrivial equi-
librium solution, which facilitates using an efficient, though
less robust, gradient descent method. Our VBS + BAT equi-
librium implementation in MATLAB uses the fmincon solver
with the sequential quadratic programming algorithm for an
average evaluation time of ∼ 10 ms. Without the VBS-NN
initial guess, a more robust interior-point algorithm must be
used to find the nontrivial solution, resulting in an average
evaluation time of ∼ 40 ms.

The total evaluation time for a system comprised of 11 or-
ganic species plus water at a given aw is between 13 and
19 ms, depending on whether the iterative refinement loop
within the BAT evaluation is active or skipped. This eval-
uation time is similar to that for a standard (ideal mixing)
VBS, which on the same CPU results in an evaluation time
of 7.2–15 ms (either using the sequential quadratic program-
ming or interior-point algorithm, respectively). Moreover, we
expect an optimized Fortran implementation to further im-
prove computational efficiency; thus, the penalty for a higher
fidelity organic aerosol model may be even lower. With these
implementation issues addressed, the integrated VBS + BAT
model can be used to assess the impact of nonideal mixing
thermodynamics on predicted gas–aerosol partitioning and
water content, both at low and high RH and for different lev-
els of molecular-level input information.

5 Results: comparison of VBS + BAT and AIOMFAC
predictions

The model comparison focuses on the predictions of bulk
liquid aerosol mass concentration and how that metric
changes when input data of lower chemical fidelity is used.
AIOMFAC-based equilibrium gas–particle partitioning pre-
dictions are used as a benchmark. These calculations ac-
count for liquid–liquid phase separation and consider rel-
atively high-fidelity input, as the AIOMFAC model uses
functional group information for chemical structures and ac-
counts for nonideal interactions among all species. In con-
trast, the VBS + BAT approach only includes nonideal wa-
ter ↔ organic interactions (implicitly assuming ideal or-
ganic↔ organic mixing) and rather limited molecular struc-
ture information (O : Cj and Morg, j ).
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Figure 6. High-level program outline for the VBS + BAT model,
including the use of two artificial neural networks. The listed times
represent time per single evaluation call, averaged over 13 000 ran-
dom simulations for a system comprised of 11 species. The H : C
value, used in the component density calculation, is estimated when
not given (see Sect. S4).

For our simulated aerosol systems, we use surrogate sys-
tems representing α-pinene SOA and isoprene SOA prod-
ucts based on predictions from the Master Chemical Mecha-
nism, as was detailed in Zuend and Seinfeld (2012) and Chen
et al. (2011), respectively. The α-pinene SOA system used
here contains 10 organic species as surrogates of the SOA
and the isoprene SOA system is comprised of 21 organic
surrogate species; these are listed in Sect. S7 of the Sup-
plement. Both systems have been compared to experimen-
tal data using AIOMFAC equilibrium calculations (Zuend
and Seinfeld, 2012; Rastak et al., 2017). The pure compound
liquid-state vapor pressures used in AIOMFAC equilibrium
calculations were predicted by the EVAPORATION model
(Compernolle et al., 2011). We use the equilibrium state at
∼ 0 % RH (i.e., dry conditions) from the AIOMFAC equi-
librium simulation to approximate organic particulate matter
amounts, comparable to experimental measurements under
dry conditions. From the dry AIOMFAC equilibrium simula-
tion, the effective Csat

dry for each organic species is calculated,

which is used as an input in the VBS + BAT simulations. This
process allows for a fair comparison between AIOMFAC and
VBS + BAT equilibrium simulations, since we are starting
with the same dry mass concentrations, the only difference
being the treatment of nonideality and phase equilibria as a
function of RH.

5.1 Co-condensation of organic matter

Organic matter co-condensation is the first improvement the
VBS + BAT model offers over the standard VBS (dry) model.
Here, co-condensation refers to the RH-dependent gas–
particle partitioning of different organic compounds along-
side changes in aerosol water content (Topping et al., 2013).
In Fig. 7a, the VBS + BAT model, using the individual or-
ganic molecule properties (O : Cj , H : Cj , Mj , and effec-
tive Csat

j,dry), is compared to a standard VBS (dry) prediction
(inputs: Mj and effective Csat

j,dry) and a VBS + BAT pre-
diction using average molecular properties for representing
the organic aerosol fraction. The average inputs (O : Cavg,
H : Cavg and Mavg) used in the VBS + BAT (avg. prop.) sim-
ulation case are mass-weighted means obtained from the dry
AIOMFAC equilibrium calculation output. That calculation
case uses a recalculated effective Csat

avg. dry. The recalculated
Csat

avg. dry is needed to force all the simulations to be equal
in total organic aerosol mass concentration at 0 % RH. The
VBS + BAT (avg. prop.) case mimics a situation where mea-
surements of the volatility distribution (Csat

dry) and of bulk or-
ganic properties (O : Cavg, H : Cavg, and Mavg) are available,
e.g., from laboratory or field experiments. This also reflects
a situation comparable to using the minimal input properties
needed for a implementation of VBS + BAT in a CTM.

The percentage difference in PM organic mass of both the
high fidelity and averaged VBS + BAT simulations compared
to the benchmark calculation is less than 5% over the ma-
jority of the RH range (Fig. 7b). A notable deviation occurs
only at high (> 96%) RH, where a relatively sharp transi-
tion to a water-rich phase occurs in the α-pinene SOA sys-
tem (affected by the approximation via the prescribed qα

function in VBS + BAT). At an RH of 99.95% the error in
VBS + BAT, VBS + BAT (avg. prop.), and VBS (dry) are, re-
spectively, 43%, −12%, and −21% for α-pinene SOA. The
agreement is closer for the isoprene SOA case, for which the
error in VBS + BAT, VBS + BAT (avg. prop.), and VBS (dry)
are, respectively, 0.01%, −0.2%, and −44% at an RH of
99.95%. The VBS + BAT model performs remarkably well
and represents a clear improvement over the standard VBS
(dry) model, which ignores relevant water uptake of the iso-
prene SOA system over a large range in RH and the high-
RH change to a water-rich phase in the α-pinene SOA case.
The latter is particularly relevant for capturing more realistic
CCN activation behavior, further discussed in Sect. 5.3.

A second AIOMFAC equilibrium calculation probes the
effect of inorganic salts by adding a 50% dry mass fraction of
ammonium sulfate. The salting-out effect does not drastically
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affect the resulting organic particulate matter mass concen-
tration. However, there is room for improvement of the BAT
model by accounting for ion↔ organic interactions. The in-
organic salts will affect which phase or phases the organics
partition into, yet the present VBS + BAT model is not ac-
counting for this. This result suggests a CTM implementation
could use a ZSR approximation to combine the water content
contributed by inorganic salts and organics (treated as com-
pletely phase separated). To validate that approach and its
limitations, we will need to evaluate a much broader set of
organic species and salt concentrations in future work.

5.2 Hygroscopic growth

Equilibrium water uptake as a function of RH and its indi-
rect effect on the partitioning of organics is a crucial pro-
cess. The VBS + BAT simulations account for this process,
while traditional VBS implementations do not. Referring to
the SOA systems shown in Fig. 7, the hygroscopic growth
predictions by VBS + BAT and the AIOMFAC-equilibrium
model are compared in Fig. 8. Panel (a) shows the abso-
lute PM water mass concentrations as a function of RH,
while panel (b) represents hygroscopicity in terms of pre-
dicted κHGF parameters. According to the AIOMFAC-based
equilibrium prediction, the water uptake by α-pinene SOA
is low for RH < 98%, as expected from previous studies
(Rastak et al., 2017; Zuend and Seinfeld, 2012), which the
VBS + BAT model captures well. For isoprene-derived SOA,
the VBS + BAT (avg. prop.) simulation underpredicts the
water content by a substantial amount, while the case with
individual surrogate components performs well. We traced
this discrepancy back to the treatment of the isoprene epoxy-
diol (IEPOX) oxidation products in the VBS + BAT (avg.
prop.) run. In the molecule-specific VBS + BAT simula-
tion, the IEPOX products are treated using hydroxyl func-
tional groups, and all other components are multifunctional
hydroperoxides, whereas the VBS + BAT (avg. prop.) run
forces all species to be multifunctional hydroperoxides,
which causes the IEPOX products to be represented as less
hygroscopic than they actually are. To alleviate this side
effect, one could split average organic properties into two
groups: one assuming hydroxyl functionality and one assum-
ing multifunctional hydroperoxides (e.g., 50% by mass be-
ing from the hydroxyl class and 50% from the hydroperox-
ide class). Lastly, it is interesting that at 90% RH the large
relative deviation in water mass (55%) for isoprene SOA
only translated to a 4% error in predicted PM organic mass
(Fig. 7a). This characteristic is mainly due to one of the sur-
rogate species, a 2-methyl tetrol dimer (Lin et al., 2012),
which is always partitioned to the PM (low vapor pressure)
but the change in the applied molecular functionality (in avg.
prop. case) changes its effective hygroscopicity and thereby
the water content of the simulated aerosol at high RH. See
Tables S7 and S8 for details about the surrogate species of
the SOA systems.

Figure 7. (a) Comparison of predicted PM organic mass concentra-
tions as a function of equilibrium relative humidity for a bulk solu-
tion (= aw) at 298.15 K. Simulations for isoprene SOA are shown in
blue and those for α-pinene SOA in green. The benchmark AIOM-
FAC equilibrium predictions are shown for the salt-free cases (cir-
cles); for comparison, an additional case (diamonds) shows SOA
mixed with approximately 50% ammonium sulfate (dry mass frac-
tion). In the AIOMFAC equilibrium calculation, ammonium sulfate
crystallization was suppressed for RH > 35%. Note that the am-
monium sulfate mass concentration in the PM is not shown, only
its indirect effect on organic mass concentration. The thick curves
show the VBS + BAT predictions with multiple organic surrogate
components of individual molecular properties, while the thin curve
shows a simulation assuming a hypothetical average molecule cal-
culated from the dry mass, i.e., a mass-weighted mean of O : Cj ,
H : Cj , and Mj , but keeping the set of individual molecule effec-
tive Csat

j,dry values to mimic a distribution of volatilities. The thin
dashed line shows the standard VBS simulation ignoring water up-
take (dry). (b) The percentage difference of the three VBS simu-
lations compared to the organics-only benchmark case. Figure S8
of the Supplement shows an equivalent graph but with expanded
limits.

The VBS + BAT model provides simultaneous predictions
of water and organic partitioning, which means that hygro-
scopic growth parameters can be calculated for comparison
with other models and simpler hygroscopicity parameteriza-
tions. In this case, we predict the widely used hygroscopic-
ity parameter, κHGF, related to the hygroscopic growth fac-
tor of the organic mixture as a function of composition (and
indirectly RH). The definition of κHGF used in this study is
slightly different from the κ parameter introduced by Petters
and Kreidenweis (2007), since our definition accounts for
the effect of organic co-condensation. Our generalized def-
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Figure 8. (a) Comparison of PM water mass as a function of
bulk equilibrium relative humidity. The isoprene SOA simulation is
shown in blue and the α-pinene SOA simulation in green. (b) The
calculated κHGF parameter of the organic mixture, which changes
as a function of RH both due to nonideal mixing and organic co-
condensation.

inition of κHGF was introduced by Rastak et al. (2017) (see
derivation and justification in their Supplement). It is given
by Eq. (22), where V indicates volume contributions, with
Vorg the cumulative contribution of organic component vol-
umes at any RH level after gas–particle equilibration, while
Vorg, dry quantifies the total (organic) volume under dry con-
ditions (RH≈ 0%):

1
aw
= 1+ κHGF

Vorg, dry

Vw+Vorg−Vorg, dry
. (22)

Figure 8b shows a comparison of the predicted κHGF val-
ues. Most VBS + BAT simulations are in good agreement
with the benchmark model, except for the VBS + BAT (avg.
prop.) run for isoprene SOA. In the average prop. iso-
prene SOA case, the underpredicted water content is prop-
agated forward causing the κHGF value to underpredict the
AIOMFAC-based benchmark value. For any given initial par-
ticle size, the Kelvin effect could be included and a κCCN
predicted at an adequate level of supersaturation. Although,
if the interest is in cloud droplet activation, the Köhler curve
can be directly calculated from the VBS + BAT output.

5.3 BAT-derived CCN properties

Our last model application focuses on κ at the CCN activa-
tion point, denoted as κCCN of the organic aerosol. The BAT

model is used to understand composition effects on the hy-
groscopic growth parameter of organic species at CCN acti-
vation conditions and the related ongoing discussion within
the atmospheric science community. The BAT model can
predict an entire Köhler curve directly and does not rely on
a κCCN prediction for applications in the context of cloud
droplet formation thermodynamics. Thus, the exercise of pre-
dicting κCCN is here mainly carried out to inform on the rela-
tionship with existing approaches. The κ-Köhler framework
reduces hygroscopic growth to a single parameter (κ) that
can be used to compare the properties of different potential
CCN particles (Petters and Kreidenweis, 2007). Over the past
decade, the research community progressed by characteriz-
ing (organic) aerosol hygroscopic growth measurements by a
single κ value for ease of comparison and use for parameteri-
zations of CCN activation in large-scale models (e.g., Petters
and Kreidenweis, 2007; Rastak et al., 2017). The overarching
goal was to link measured aerosol physicochemical proper-
ties to CCN activation behavior (critical supersaturation, crit-
ical dry diameter, etc.). A common approach was to fit a lin-
ear dependence of κ to organic O : C (Jimenez et al., 2009;
Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011;
Duplissy et al., 2011; Frosch et al., 2011; Lambe et al., 2011;
Wong et al., 2011; Rickards et al., 2013; Thalman et al.,
2017). A resulting linear fit was not always consistent with
observations, due to the nonlinear behavior of κ vs. O : C,
so Kuwata et al. (2013) introduced a set of water-solubility
bins to account for nonlinear step changes. More recently,
Wang et al. (2019) focused on relating κ to molar mass and
assumed ideal mixing of organics with water. There are at
least two main factors that many of the previous approaches
do not fully account for. The first is assigning a single κ value
and assuming it to be representative at all RH levels, which
has been shown to be inaccurate in multiple cases as this
treatment does not account for nonideal behavior changing
with RH (or aw), especially in the RH range of 90 %–100 %
(see Fig. 8b). The second being the use of a linear function
to describe the nonlinear behavior caused by liquid–liquid
phase separation. More advanced thermodynamic models,
like UNIFAC and AIOMFAC, have been used to gain in-
sight into the complex CCN activation process accounting for
phase separation and nonideal mixing (Petters et al., 2016;
Ovadnevaite et al., 2017; Renbaum-Wolff et al., 2016; Ras-
tak et al., 2017; Hodas et al., 2016). The BAT model can
simulate the same processes as those more detailed thermo-
dynamic models, but with less (or incomplete) information
about the molecular structure and/or composition of the or-
ganic aerosol fraction. We acknowledge that there remain
a number of challenges accompanying predictions of CCN
activation potential, including accounting for composition-
dependent bulk–surface partitioning of different organic and
inorganic components in multicomponent aerosol and associ-
ated evolving surface tension (e.g., Ruehl et al., 2016; Malila
and Prisle, 2018; Davies et al., 2019). At present, those as-
pects may be best understood and represented by detailed
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Figure 9. Three different organics with O : C of 0.5 (blue), 0.25 (green), and 0.0 (orange) with constantMorg of 200 gmol−1 at T = 298.15 K.
(a) CCN growth curves for the three water–organic mixtures. (b) κHGF versus water activity curves for the water–organic mixtures. The
circles represent the extracted κCCN values, based on the maximum in saturation ratio vs. particle diameter. The β-phase curve is shown
in a darker shade for the organics with a miscibility gap (green and orange). The miscibility gap is denoted by a dotted line and is an
undefined region in a thermodynamic equilibrium context (crossing it is a transient, nonequilibrium feature). The simulations assume a
100 nm diameter-equivalent volume of organic matter at all points, while water uptake changes the overall particle diameter. The surface
tension is approximated as a volume-weighted mean surface tension with pure water σ of 72 mNm−1 and pure organics of 30 mNm−1.

process models, though future BAT extensions may enable
improvements also on a reduced-complexity level.

The reduced-complexity inputs of the BAT model and its
continuous behavior as a function of O : C and Morg allow
for establishing a direct link between those organic aerosol
properties (O : C and Morg) and the predicted CCN activa-
tion potential. For these BAT model predictions, we revert to
the original definition of κCCN by assuming no organic co-
condensation in Eq. 22 (i.e., Vorg, dry = Vorg). Accounting for
the Kelvin effect with an assumption about the air–droplet
surface tension, one can calculate the equilibrium saturation
ratio S of the aerosol or CCN,

S = aw exp
(

4σMw

RT ρwD

)
. (23)

Here, we assume a fixed volume of organics equal to a
spherical droplet of 100 nm (dry) diameter over the full RH
range (Vorg = Vorg, dry). This fixed organic volume means
that we are neglecting co-condensation, so these κCCN val-
ues are independent of the organic’s volatility. Including
co-condensation would tend to increase the apparent value
of κCCN when the organic volatility is sensitive to co-
condensation, e.g., in the case of semivolatile organic com-
pounds, but not for extremely low volatility organic com-
pounds (ELVOC). The surface tension (σ ) used here is a
volume-weighted average of water (∼ 72mNm−1) and a
typical organic (∼ 30mNm−1). Examples of the Köhler
curves and the associated κHGF values are shown in Fig. 9.
The κCCN value is the κHGF value that corresponds to the
maximum point on a Köhler curve. If the organic is com-

pletely miscible with water, there is just a single κCCN value.
When there is a miscibility gap, we can calculate a κCCN for
both the α and β phases. Here, the β-phase κCCN marks the
global maximum on the Köhler curve, so we use it as an
approximation for these organics. A nonequilibrium model
would be needed to accurately resolve the full Köhler curve
during dynamic particle growth; the Köhler curve may ex-
tend to higher supersaturations in the miscibility gap region
since both size and surface tension evolve (which would
affect the effective κCCN). When the organic particle ap-
proaches an O : C of zero, the particle does not activate into
a cloud droplet as it remains nonhygroscopic (though it may
adsorb a water film at high supersaturations). In those cases,
we assign κCCN to be the κHGF value as the water activity
asymptotically approaches one.

Using the extracted κCCN from individual Köhler curves
we can show isopleths ofMorg in Fig. 10a or O : C (Fig. 10b).
Note, these are two-component systems of water and a sin-
gle organic, which is not necessarily the same as a mix-
ture with an equivalent mean Morg and O : C values. The
relationship between the mean properties and the resulting
κCCN of an organic mixture would depend on the spread of
the individual compounds that make up the mixture, which
may span nonlinear regions in the water uptake behavior. In
Fig. 10a, the κCCN values exhibit an O : C dependence, but
the magnitude of that dependence varies with molar mass.
The O : C dependence of κCCN increases towards lower mo-
lar mass of the organic. Focusing on the Morg dependence
of κCCN at a fixed O : C in Fig. 10b, we notice a nonlin-
ear dependence on molar mass. This is anticipated as the
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κCCN “ideal” formula also suggests a nonlinear relationship,
κCCN = i ρorgMw/(ρwMorg), with i as the van ’t Hoff factor,
i.e., the effective degree of solute dissociation. By synthe-
sizing the two molecular dependencies shown in Fig. 10, we
can anticipate how κCCN varies within distinct aerosol popu-
lations. As SOA particle mass loading increases, the aerosol
fraction of relatively lower molar mass organics (of higher
abundance in the gas phase) tends to increase too, which in
turn leads to an increase in κCCN. A lower total aerosol mass
concentration would typically mean that the average molar
mass is larger and thus decreases κCCN and indirectly the
O : C dependence. This mass loading effect may explain the
remaining variability in reported κCCN values but will need
further study.

The measured κCCN data of α-pinene SOA shown in
Fig. 10a indicate a water-rich α-phase-like behavior. It is in-
teresting that the measured data points start roughly at the
limit of miscibility predicted by the BAT model when using
the hydroxyl functionalization. That might mean that only a
small fraction of species needs to be miscible to drive the wa-
ter uptake and/or that hydroxyl and carboxyl groups are the
dominant functionalities of the molecules (both sharing the
same BAT functional group translation parameters).

It is also worth comparing the α-phase κCCN predictions
forMorg = 300gmol−1 when applying either the hydroxyl or
hydroperoxide molecular functionality parameters with the
BAT model. The two α-phase curves in Fig. 10a are nearly
identical, suggesting that the type of oxygen-bearing func-
tional group is marginal in dilute systems (at the same O : C
ratio). This observation explains why an ideal mixing rule
can work well over a broad range of O : C (Wang et al.,
2019). A limitation when applying an ideal mixing rule by
default is clearly identified for a system of intermediate to
low average O : C, in which a β-to-α phase transition occurs
under hydration conditions.

6 Discussion

We developed the BAT model from the desire to capture
the thermodynamics of nonideal water ↔ organic interac-
tions with only bulk species information, like O : C. In that
reduced-complexity effort, we focus on determining repre-
sentative average relationships and do not expect to model
a single component’s hygroscopicity and gas–particle par-
titioning perfectly. The latter case is better approached by
group-contribution models like UNIFAC and AIOMFAC –
or by system-specific parameterizations for high accuracy
(e.g., using a Duhem–Margules model). The goal of the
BAT model is to represent the bulk O : C and molar mass
dependencies of a wide range of water–organic mixtures
to a reasonable degree of accuracy. From this premise, the
VBS + BAT model might fail when any one organic com-
pound from a mixture dominates the water uptake. For exam-
ple, we expect an equimolar mixture of squalane (O : C= 0,

H : C= 2, Morg = 422gmol−1) and malonic acid (O : C=
1.33, H : C= 1.33, Morg = 104gmol−1) to have significant
errors (> 10%) in predicted organic PM mass and water
content, since the bulk properties of those compounds are
very different. However, a mixture of squalane and 1-hexanol
(O : C= 0.16, H : C= 2.33, Morg = 102gmol−1), both hav-
ing a low O : C ratio, is expected to be represented more ac-
curately in a VBS + BAT simulation. That understanding is
a prerequisite when using the VBS + BAT model for the in-
terpretation of laboratory studies but perhaps less critical for
the modeling of tropospheric aerosol. An ambient (organic)
aerosol is made up of a distribution of organic species, which
is in line with the assumptions inherent in the design of the
VBS + BAT model. The more species present in a mixture,
the less influential any single species becomes. This effect in
more complex mixtures may further support the assumption
of quasi-ideal mixing among organic compounds (exception
may exist). Thus, we expect the VBS + BAT model accuracy
to be often better for complex organic aerosol systems than
for seemingly simpler ternary systems.

We can examine how this mixture diversity concept plays
out by comparing BAT model predictions to recent experi-
mental findings by Marsh et al. (2019), none of which were
used in determining the BAT parameter sets. Their experi-
mental work used a comparative kinetic electrodynamic bal-
ance method to measure the organic mass fraction (worg) of
a mixed water–organic droplet (Rovelli et al., 2016). Marsh
et al. (2019) measured worg over a wide range of water ac-
tivities, making this a good comparison for the BAT model,
shown in Fig. 11. In their experiments, they had used a few
nitrogen-containing organics. In our application of the BAT
model for those compounds, the nitrogen atoms were only
accounted for in the organic density and molar mass input
of the model. We use the organic mixture composition and
measured RH from Marsh et al. (2019) for each data point
to run an iterative BAT calculation to retrieve the water up-
take, which then allow retrieving a worg value. In Fig. 11, the
measured and modeled worg values of a variety of aqueous
mixtures cluster along the 1 : 1 line, indicating good agree-
ment. The majority of data points are within ± 10 % model–
measurement uncertainty. Mixtures of pimelic acid isomers
(orange squares) will all have identical properties in the BAT
model representation due to identical O : C and Morg values
of these compounds. Therefore, the pimelic acid isomer mix-
ture has no diversity from the BAT model perspective, char-
acterizing a system for which BAT is expected to perform
less accurately. The mixture consisting of amino acids only
is also a case where the BAT model clearly deviates from
the measurements. Since the BAT model was not trained
to predict nitrogen-containing organics, this behavior is not
unexpected. However, when the mixture diversity increases
by adding dicarboxylic acids to the amino acid mixture, the
model error in organic mass fraction, and concurrently wa-
ter content, reduces to less than 10 %. The error in predicting
the water uptake of mixtures of dicarboxylic acids is also on
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Figure 10. Comparison of κCCN derived from α-pinene SOA measurements with those from BAT model simulations of CCN activation.
The simulations assume a 100 nm diameter equivalent volume of organic matter at the CCN activation point. The droplet surface tension is
calculated as a volume-weighted mean; see Sect. 5.3. Shown are the predictions for two-component systems comprising water and a single
organic. (a) BAT simulations and experimental data for κCCN as a function of O : C. The data for α-pinene SOA is listed in the Supplement
(Massoli et al., 2010; Poulain et al., 2010; Frosch et al., 2011; Kuwata et al., 2013; Rickards et al., 2013; Cain and Pandis, 2017; Wang et al.,
2019). (b) The molar mass dependence of κCCN for two cases at constant O : C of 0.35 or 0.9, showing ideal mixing as well as miscibility
gap considerations with BAT in the O : C= 0.35 case. (a, b) BAT simulations based on the hydroxyl group parameter set are shown as solid
curves, while the dashed curves show a BAT calculation using the hydroperoxide functional group parameters. The thick curves represent
single-organic + water systems with the κCCN of the β phase transitioning to the one based on the α phase at O : C ratios of 0.3–0.4. The
hexagons show κCCN for an organic component assuming ideal mixing with water (in panel a for Morg = 300gmol−1) and a van ’t Hoff
factor of 1.

the order of ± 10 %. In conclusion, the accuracy of the BAT
model tends to improve when the organic mixture becomes
more diverse.

After mainly comparing to data for subsaturated con-
ditions in Fig. 11, we now focus on predictions for the
regime supersaturated with respect to water vapor. In Fig. 12,
the measurement-derived κCCN is compared with the corre-
sponding BAT model prediction. The data set contains 30
supersaturated droplet activation measurements of known
chemical species (e.g., oleic acid, glucose, and levoglu-
cosan). The average error in the measurements is shown as
the gray shaded area in Fig. 12, which covers the average of
the κCCN range observed for each component. A subset of
18 chemicals reported a κCCN range, from which the aver-
age error was calculated to be ± 42 %. The data set we used
was compiled by Petters et al. (2016) and Petters and Krei-
denweis (2007), which includes measurements derived from
multiple sources (Broekhuizen et al., 2004; Brooks et al.,
2004; Frosch et al., 2010; Huff Hartz et al., 2006; Petters
et al., 2006, 2009, 2016; Petters and Kreidenweis, 2007;
Pradeep Kumar et al., 2003; Raymond, 2003; Suda et al.,
2014; Svenningsson et al., 2006). Our comparison excludes
the nitrogen-containing compounds. The BAT predictions as-
sumed no organic co-condensation and had an evolving sur-
face tension as described in Sect. 5.3. The BAT predictions
vs. measurements had an RMSE of 0.055 and overall agreed

within the reported measurement error. Substantial differ-
ences are found for the 0.35< O : C< 0.55 range, in which
the resulting κCCN is highly sensitive to a correct prediction
of miscibility. For example, the miscibility is overpredicted
for phthalic acid (O : C= 0.5), while it is underpredicted for
pinic acid (O : C= 0.44), shown in Fig. 12. In the full data
set of 30 molecules, another subset of 16 molecules were not
in the training database of the BAT model, so a correspond-
ing plot with only this validation data is shown in Sect. 5.1
of the Supplement, including predictions by both BAT and
AIOMFAC. The validation data show similar agreement to
Fig. 12, with a measurement vs. BAT RMSE of 0.061 and
measurement vs. AIOMFAC RMSE of 0.059. The AIOM-
FAC κCCN predictions are better in the miscibility transition
region than the BAT model, but overall the models show sim-
ilar predictive skill for this metric. We chose to focus on well-
defined chemical systems for all of the direct BAT model–
measurement comparisons, allowing for minimal uncertainty
in the input data. Additional comparisons of BAT to complex
ambient and laboratory OA systems will be carried out in the
future, since additional analyses are necessary for the esti-
mation of volatility, molecular mass, and O : C distributions.
Such analyses will enable a fair evaluation of VBS + BAT
model predictions against measurements for systems that are
unresolved on the molecular composition level.
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Figure 11. Comparison of BAT model predictions of worg with
measurements from a comparative kinetic electrodynamic balance
by Marsh et al. (2019). The amino acids are glycine, lysine, and
arginine; the dicarboxylic acids are oxalic, malonic, glutaric, and
methylsuccinic acid; the isomers are pimelic acid, 2,2-dimethyl glu-
taric acid, and 3,3-dimethyl glutaric acid. Gray shading:± 10 % un-
certainty in worg; blue shading: ± 10 % uncertainty in wwater (=
1−worg). The compositions of each mixture are listed in the Sup-
plement.

Future work will explore ways to improve the BAT model
by adding extensions to include other intermolecular inter-
actions thus far ignored. These additions will focus on or-
ganic↔ organic and ion↔ organic interactions, likely using
a similar methodology. The liquid–liquid phase separation
treatment via qα may benefit from improvements, so the pre-
dictions of biphasic multicomponent systems become more
accurate, especially for cases where the spread in O : C and
Morg of organic components is large. We will look at this
using two methodologies, the first using AIOMFAC-derived
data to fit the O : C dependence of qα . The second method in-
volves building a model similar to BAT but for three species,
i.e., water↔ organic↔ organic (Redlich and Kister, 1948).
That approach will allow calculating the qα for each organic
directly but this would add additional computational costs
within the VBS equilibrium solver. Throughout such im-
provements, added complexity needs to be balanced by con-
siderations of computational costs and whether a significant
improvement over the current methods is achieved.

Figure 12. Single-component organic aerosol measurements of
κCCN are compared against those predicted by corresponding BAT
model simulations of CCN activation. The gray shading repre-
sents ± 42 % average uncertainty in the measured κCCN. The
dashed line is a linear fit with a zero intercept, κCCN,BAT =
κCCN,measured× 0.799 [± 0.059] with a Pearson’s R2 of 0.66. The
model–measurement RMSE was 0.055. The BAT simulations as-
sume a 100 nm diameter equivalent volume of organic matter at the
CCN activation point. The droplet surface tension is calculated as
a volume-weighted mean. A list of the 30 measurement points is
given in Table S6 of the Supplement, with the data obtained from the
following studies: Broekhuizen et al. (2004); Brooks et al. (2004);
Petters et al. (2006, 2009, 2016); Petters and Kreidenweis (2007);
Frosch et al. (2010); Huff Hartz et al. (2006); Pradeep Kumar et al.
(2003); Raymond (2003); Suda et al. (2014), and Svenningsson
et al. (2006).

7 Conclusions

In this study, we introduced the BAT model, which was de-
signed to access varying levels of chemical fidelity. This
flexibility means that the integrated VBS + BAT model is
well suited for both comparison to experimental observations
and for implementations in global and regional atmospheric
chemical transport models. In both application cases, the typ-
ical lack of chemical structure information precludes the di-
rect use of more detailed models, such as AIOMFAC-based
gas–particle equilibrium calculations. The VBS + BAT inte-
gration solves this problem by allowing for nonideal thermo-
dynamic simulations in organic–water systems, even when
molecular structure information is limited to bulk elemental
composition. This flexibility also promises its utility in CTM
implementations, in which the tracking of the exact chemi-
cal structures for all species is impractical, yet information
about the evolution of the bulk aerosol (and gas-phase) prop-
erties is often available. The computational overhead for the
VBS + BAT model is comparable to the standard VBS, due
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to the integration of deep learning neural networks, reduc-
ing the need for costly numerical iteration. In conclusion, the
implementation of a more realistic organic aerosol model in
CTMs is likely feasible.

Our comparisons of AIOMFAC-based equilibrium and
VBS + BAT simulations demonstrate agreement within about
5 % error over the majority of the RH range. Due to the
limited information available from the BAT model, the tran-
sition through a miscibility gap had to be prescribed via a
semiempirical transition function instead of an explicit pre-
diction. This prescribed transition in the VBS + BAT model
did introduce additional error in the equilibrium partitioning
at high humidities for organic mixtures with a miscibility gap
– but is beneficial in terms of computational efficiency. The
VBS + BAT model can be used reliably across a wide range
of the composition space, but our test cases show that caution
should be used in the composition range near the onset of a
liquid–liquid miscibility gap.

The interplay between O : C, molar mass, and water up-
take for CCN activation clearly show the complex behav-
ior of organic κCCN values. Our distinction between κCCN
and the more general κHGF helps to differentiate between the
subsaturated and supersaturated behavior of organic aerosols.
The use of the BAT model in κCCN prediction correctly cap-
tures the nonlinear dependence of κHGF (and κCCN) on or-
ganic properties and is preferable to previous linear fits.

Finally, we present a comparison between the BAT model
and comparative kinetic electrodynamic balance measure-
ments of organic mass fractions as a means of independent
verification of BAT. The comparison highlights how the BAT
model may perform relatively poorly in the cases of certain
individual organic species; but when modeling a mixture di-
verse in number of components and functional groups, the
accuracy tends to improve and is typically within± 10 % un-
certainty. A diverse mixture is typically a good description of
ambient organic aerosol. Therefore, the BAT model is well
suited for reduced-complexity predictions involving ambient
organic aerosol thermodynamics. Future work in the context
of simplified aerosol thermodynamics will be necessary for
the development of computationally efficient models, similar
to VBS + BAT, which further account for organic ↔ inor-
ganic interactions in the presence of dissolved electrolytes.

Code and data availability. The data presented here, the MATLAB
source code, and a stand-alone executable of the VBS + BAT
model are freely available at https://github.com/Gorkowski/Binary_
Activity_Thermodynamics_Model (Gorkowski et al., 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-19-13383-2019-supplement.
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