Articles | Volume 19, issue 21
https://doi.org/10.5194/acp-19-13383-2019
https://doi.org/10.5194/acp-19-13383-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model

Kyle Gorkowski, Thomas C. Preston, and Andreas Zuend

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kyle Gorkowski on behalf of the Authors (16 Sep 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (30 Sep 2019) by Alexander Laskin
RR by Anonymous Referee #2 (30 Sep 2019)
ED: Publish as is (30 Sep 2019) by Alexander Laskin
AR by Kyle Gorkowski on behalf of the Authors (02 Oct 2019)
Download
Short summary
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive reduced-complexity organic aerosol thermodynamics model. It can use bulk properties like O : C, molar mass, and RH to predict organic activity coefficients and water uptake behavior. We show applications in RH-dependent organic co-condensation, liquid–liquid phase separation, and Kohler curve predictions, and we validate the BAT model against laboratory measurements.
Altmetrics
Final-revised paper
Preprint