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1 Anonymous Referee #1

Gorkowski et al. developed a very useful model BAT that can treat the non-ideal mixing of organics and water and can
predict the liquid-liquid phase separation, which is very important in SOA partitioning. The BAT model uses the measurable
organic aerosol properties (oxidation state, molar mass and vapor pressure) as inputs and the simulated results agree with a
comprehensive thermodynamic model AIOMFAC. The BAT model is successfully coupled with the VBS model predicting
the gas-particle partitioning. The topic of this study is timely and highly relevant in improvement of thermodynamic aerosol
treatment in chemical transport models. I recommend this manuscript for publication after the following comments can be
addressed.

Authors Response: We thank the reviewer for her/his appreciation of this work and support of the manuscript. We have
added clarifying text about the functional group translation approach and possible extensions to it. Below are our responses
to specific comments, with reviewer comments in purple, our responses in black text, and changes to the manuscript showing
removed text in red with strikethroughs and added text in blue with underlines. The page numbers listed after “Manuscript

Revisions on Page” refer to the revised manuscript.

1.1 Major comments

My major concern goes to the method of Functional Group Translation: P12, Line 10-11: Can the “functional group translation”
also treat the nitrogen or sulfur-bearing functional groups?

Authors Response: This version of the BAT model does not include a parameter set to account explicitly for sulfur or
nitrogen moieties. We have expanded on the functional group translation discussion in the main text to point out possible
extensions to it. We also changed the phrase to ‘molecule functionality translation’ since there could be confusion with a
traditional group-contribution approach (like in UNIFAC / AIOMFAC) accounting for individual functional group effects
rather than a whole molecule’s effect based on a predominant functionality classification. Our method is not an individual
functional group translation, though it may be possible to develop one, right now a whole molecule is assigned a fixed set of
translation coefficients to translate the BAT parameterization when the predominant functionalities of a molecule (or class of
molecules when averaging) is known in a system and when it is different from hydroxyl-dominated molecules.

Manuscript Revisions on Page 14-15: We reiterate that the BAT model is describing the whole molecule, and so these

translations are not for the individual functional groupsen-amultifunetionat-moteente-, This method is different from the group
contribution approach taken by UNIFAC and AIOMFAC, as here the whole molecule is assigned one effective functionality.
For multifunctional molecules, a distinct multifunctional translation must-may be derived, like we did for the SOA oxidation
products (see Fig. 4b). f that-is-not possibleThis can be done by using AIOMEAC to generate training data for multifunctional
molecules that are representative of VOC oxidation products. The molecular translation coefficients are then fitted using the
generated training database. If this fitting of the translation coefficients is not practical, then the most-dominant-and-nost
representative-oxygen functionality predominant or most representative oxygen-bearing functionality on the molecule should be
chosen —for an approximate molecule functionality translation. Extensions to include organic nitrate and sulfate functionalities
will be a 1opic of future development. In principle, additional molecular functionality translations for each combination of
molecular functionalities could be developed, which would be practical if the number of permutations is small. If the number.
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of combinatorial permutations of molecular functionalities is large, then that development direction would lead to increased
complexity, which is not the goal of the BAT model. We will explore different weighting and scaling methods of the translations

coefficients based on N : C and S : C_elemental ratios to retain the reduced-complexity approach. If accurate activity coefficient

redictions of a known set of multifunctional molecules are desired and the molecular structures are known, then the use o

AIOMFAC or a system specific model instead of BAT is recommended.

P14, Line 8-10: I suggest adding a more detailed description to explain how to do “a distinct multifunctional translation”.
How the functional group translation is calculated for C9700H in Fig.4(b)? The translated O:C ratio and molar mass can be
added in Tables S5 and S6 in the supplement.

Authors Response: See the response to the comment above and related changes to the manuscript. As suggested, we have

also added translated values to the SI tables.

P14, Line 22-25: Is Fig.4a based on the carboxy-based, ketone-based, etc parameterizations? The shaded grey area and the
pink line in Fig. 4a are not explained in the main text. Please help me understand Fig.4a.

Authors Response: Yes, Fig. 4a shows the effect of BAT parameterizations with regard to the limit-of-miscibility lines when
based on the indicated functional groups rather than hydroxyl. The dotted pink line is the result of applying the multifunctional
hydroperoxide translation, which is used in Fig. 4b. This is stated in the figure caption and we now mention it in the text too.
The grey area is the error in the O : C prediction, this is explained in the figure caption, and we also added a clarifying note in
the main text for this.

Manuscript Revisions on Page 15: We use this-transtation-such translations to plot the timit-of miseibitity-limit-of-miscibility

lines for all of the fitted functional group types considered (Fig. 4a). The dotted pink line is from the multifunctional hydroperoxide
translation and the gold line is from the PEG translation, both have example translations shown in Fig. 4b and 4c respectively.

The uncertainty range in the O : C prediction of a limit of miscibili
miscibility limit lines represent the same process (phase separation limit), but for different functional groups, so it is informative

is also shown in Fig. 4a as a shaded gray region. These

to compare their relative positions —in Fig. 4a.

Minor comments:
(1) P5, Line 21: It is not proper to describe Eq. (6) as the effective volatility of “all species”. It is still the effective volatility of
the compound j but includes water and inorganics in the absorbing phase.

Authors Response: We meant to state that it applies to all species; phrasing amended.

Manuscript Revisions on Page 5: The effective volatitity-of-etl-saturation concentration of each species, including water

and other inorganic constituents in liquid phase T, is defined by Eq. (6).

(2) P9, Line 9: Could the authors explain more how you get the scaling factor in the form of [s1(1+0:C)s2]? From Section
3.2 it seems sl and s2 are fitted by the training dataset generated by the AIOMFAC model, instead of experimental data as you
wrote here on Line 9.

Authors Response: You are correct, it is fitted with the AIOMFAC training dataset.
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Manuscript Revisions on Page 9: In Eq. (16), porq and p,, are the liquid-state densities of the organic component and
water, respectively, while s1 and so are two scaling parameters determined from-a-nodelfit-to-experinmentad-during the model
tting to training data.

(3) P10, Line 31: The authors wrote “the light green domain starts at ~ 20% of the O:C ratio reached at the miscibility limit
and covers up to the blue domain”, but from Table S1, it seems the light green domains starts from O:C of 0.05 and covers
up to the O:C of 10% of the miscibility line? In the excel file, the mid O:C region is “0.05 < O : C' < 0.1+ miscibility line”,
which is different from Table S1 (0: 05 < O : C' < 0.1 miscibility line).

Authors Response: The excel file O : C bounds are correct, the ST has been revised to match this.

Table S1 range is the data used in the fitting of the coefficients but that range does not directly map to the coefficients used in
a BAT model calculation. A weighted averaged of the coefficients (SI section 2.3) are used in the BAT calculation; an example
graph has been added to the SI. The text has been clarified accordingly.

Manuscript Revisions on Page 11: The blue domain includes components that have no miscibility limit with water. The
light green domain starts at ~—26%-r~ 30% of the O : C ratio reached at the miscibility limit and covers up to the blue domain.

model-parameters-These domains represent the three regions where each set of o tlmlzea' arameters dominates. Parameter
optimization for each sets of coefficients was carried out on a wider and overlapping O : C range than shown in Fig. 2a.

An example of the sigmoidal transition function is shown in the SI, Fig. S1.

(4) P11, Line 8-10: Could the authors explain in a more detailed way how the equation (S14) is derived to calculate the limit

of miscibility line? How you determined the O:C range of 0.05 to 0.45?

Authors Response: We added text to the SI (page 3, Sect. 2.2) to explain our approach for this.

SI Revisions on Page 3: The limit of miscibility line is determined from an initial BAT model fitting{it involving the O : C
region close to where the miscibility gap vs. complete miscibility transition occurs. We started by fitting the BAT coefficients
using a wide O : C range (0.0 10 0.8) and then progressively narrowed it to the transition region (O : C 0.05 10 0.43). We then

scanned O : C and M., to map out where the miscibility transition occurred (within BAT). The resulting O : C values defining
were used to fit the limit of miscibility line, V1, as a function of organic molar mass, weas-determined-cs-

(5) P11, Line 29: The sentence is correct but the (aw > xw) confuses me as from Fig.3, for the higher O:C region, the
predicted aw is smaller than xw.

Authors Response: Thanks for spotting this, you are correct. The sentence has been revised.
Manuscript Revisions on Page 12: Moving up towards higher O : C, there is a transition to rather hydrophilic behavior and

the water uptake at given equilibrium RH is predicted to become higher than that of an ideal mixture (€750 < Lay ).

(6) P12, Line 6-7: I couldn’t see this result from Fig.3 and I don’t quite understand the grey areas in Fig.3. Could the authors
help explain it?
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Authors Response: The increase with M., can also be seen in Fig. 4a (hydroxyl curve) and from the additional isopleth
plots we added to the SI with this revised version of the manuscript.

The gray areas mark LLPS regions due to either activity (organic or water) being greater than 1, e.g. a pure organic phase
would have a4 = 1, which would therefore favor phase separation whenever the (forced) mixing leads to activities of one or
several components exceeding 1. LLPS also occurs where an identical activity (either a., or a,4) is predicted for two different
mole fractions of water. In this figure, the gray shading indicates that an initial binary mixture within the gray area would be
unstable and undergo LLPS, leading to two phases of distinct compositions.

Manuscript Revisions on Page 13: In a binary mixture, LLPS is also clearly indicated anywhere a component activity
is (predicted) to be greater than 1.0 when assuming a single liquid phase in the calculation —(gray areas in Fig. 3). These
gray areas mark initial compositions that would be unstable and quickly lead to separation into two phases of distinct water.

mole fractions; in the case of Fig. 3 with the final phase compositions given by the two intersection points of a line of constant

O : C (of compound in question) and the water activity contour at the edge of the phase separation area. Additional isopleths

at different organic molar masses (75 to 2000 g mol~') are shown in the SI Sect. 6. Based on BAT predictions, in comparison

to the case shown in Fig. 3, this phase separation region moves to higher O : C as the molar mass of the organics increases

and to lower O : C as molar mass decreases.

(7) P14, Line 11: It is better to describe the Fig.4 from Fig.4(a) to (c).

Authors Response: We went with Fig.4b & c first as they are direct examples, which follow clearly from the introduction
of the translation methodology in the main text. We don’t think it is necessary for the figure description to be chronological
with the main text. We have considered changing the order of the Fig 4. (b & c graphs on the left then a), but we think it is

more aesthetically pleasing the way it is.
(8) Figure 6: Should &j be &jguess in the output of the VBS neural network? I also suggest add aw,sep in the program outline.
Authors Response: We added a., sep and we changed & to £jguess.

1.2 Technical corrections

(1) P2, Line 31: “remains” should be “remain”. Authors Response: Changed.

(2) P10, Linel5: should be organic <+ organic interactions. The latter “organic” is missing.

Authors Response: Added.

(3) P31, Linel: There are two “the” at the beginning of the sentence.

Authors Response: fixed.
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2 Anonymous Referee #2

Gorkowski et al. present a modeling approach to predict the water content, CCN activity, liquid-liquid phase separation, and
gas-particle partitioning of single component and mixed organic aerosol. The focus of the work is to produce reduced com-
plexity models that have fast runtime while preserving the fidelity of the predictions. This is achieved by training the reduced
complexity model using more computationally expensive modeling framework. This manuscript is an ambitious attempt to
contribute to the efficiency of modeling a wide range of organic aerosol processes. Constructing such comprehensive and fast
models is technically demanding and the authors should be complimented for their often clever approaches. For example, con-
ceiving and finding a suitable set of fitting coefficients that represent OA through Eq. (18) and (19) is impressive. A selected
set of validations is presented, and these validations appear to demonstrate that the reduced complexity models are adequate.
However, I do have concerns about the stability and validation of the model. A detailed formal evaluation of the BAT and NN
model that is independent of training data is needed. Furthermore, more systematic validation of the model predictions against
experimental data is needed, especially against single component CCN data. I anticipate that the paper will be acceptable for
publication if formal, systematic, and independent validation is included.

Authors Response: We thank the reviewer for her/his positive comments and the concerns about model validation. Our
description did indeed not include finer details about the splits of the database into training/validation/testing data in the context
of fitting the neural networks and of BAT. Although, such procedures were followed during development; we have improved
the description in the manuscript in this regard. In the revised manuscript version, we have added independent validation data
for fitting the BAT coefficients and explored the stability of the BAT model through additional plots added to the SI. Additional
text was added to describe the training of the neural networks using BAT-generated random data which was then separated
into training (70 %), validation (15 %), and testing (15 %) data sets. Below are our responses to specific comments, with
reviewer comments in purple, our responses in black text, and changes to the manuscript showing removed text in red with
strikethroughs and added text in blue with underlines. The page numbers listed after “Manuscript Revisions on Page XX:”

refer to the revised manuscript.

2.1 Major comments

Both the BAT model and the NN model are trained. Figure 2a shows the training points for the BAT model. The standard
approach in machine learning is to have a training set for which the model is optimized, and a validation set for compounds
that the model has not been tuned to. This does not appear to have been done and one might seriously question the fidelity of
the model outside the training set. Showing activity for citric acid is insufficient. I recommend that the authors test the model
against 100 (or so) compounds that were not used in the optimization and show a scatter plot of AIOMFAC vs. BAT for activity
coefficient at various RH, mole-fraction of the predicted miscibility gap, water activity of the miscibility gap, and predicted
kappa CCN. Only through independent tests and systematic characterization of the error can one be confident that the BAT
coefficients truly represent AIOMFAC. A similar case is to be made for the NN training. Systematic validation against with
non-training data needs to be presented.
Authors Response:

The reliability and validation of both BAT and NN models were assessed as outlined more specifically below. We note here
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that there is a distinction between the training of an unknown multivariate function, as in the case of a NN, requiring a machine
learning approach to determine the functional form (i.e. number of neurons and layers) and fit associated activation function
parameters — and that of the BAT model, for which a thermodynamic model was prescribed with fixed coefficient functions

(after initial tests), which then becomes a classical parameter optimization problem.

— Neural Networks: We have added a more detailed description of the training of the neural networks, as we did use the
standard practice of training, validation, and test data sets. Also note that in the case of the NN, these are random data
sets generated by the function the NN is trying to invert and not measurements or AIODMFAC-generated data. Hence, a

large number of data points (~ 10 million) were generated for the NN training and validation.

Manuscript Revisions on Page 20: 7o fit the neuron activation functions, we generate a random data set of O : Cj,

Morg, js Torg, j» and a, using the BAT model. The data corresponding to systems with a miscibility gap are parsed into

two separate categories to train a separate NN. We generated a database of 9.8 x 10° data points for miscible organics
and 4.6 x 10° data points for phase separated systems. Each database was then split into training data (70 %), validation
data (15 %), and test data (15 %), which was used to train the BAT-NN. Our NN inputs are O : Cj, Mg j, and a,, with

Torg,; aS the target output.

And: We tested different NN input combinations and settled on using C? 0! Cj, Morg, j, BAT-derived water mass
fraction (wy, ;) and a,, associated with organic component j. Using the VBS + BAT equilibrium solver, we generated

a random database of 13,000 data points split into training data (70 %), validation data (15 %), and test data (15 %).
This generated database was then used for the training of the NN. The NN output target is the vector of partitioning

coefficients, which is subsequently used as the initial guess for solving the coupled VBS + BAT system of non-linear

equations.

— BAT model: Given that the BAT model is a multivariate function, a validation data set for it is also a good suggestion.

We have added the following clarifications.

Manuscript Revisions on Page 10-11: We generated a database of 37 known organic chemical structures and 123 artificial,

yet possible chemical structures. There were an additional 16 organic chemicals used for a validation database (SI Table S6)
and therefore not included in the fitting of the model.

For each structure there are an additional 40 data points at varying mole fractions, which means the training database has

6400 points and the validation database has 640 points.
...Pagell ...

Generally, the BAT model showed good agreement to the training database with a root mean squared error (RMSE) in a,, o
0.058 (5.8 % ¢) 0f 0.090. The validation database showed a similar agreement with a RMSE
in a,, of 0.066 and in a,., of 0.096 (details in SI Sect. 5). The BAT model is valid for organic molecules within the followin

domain: 0 < O:C <2and 75 < M,,, <500gmol”" with realistic behavior up to 750 mol~'. Additional error analysis

or the BAT model is shown in SI Sect 5. In panels (b) and (c) of Fig. 2, we show two examples of the BAT predictions, after
domain-specific optimization, compared to the AIOMFAC-generated data.

RH) and in organic activi

SI Revisions: SI Sect. 5, titled "BAT Model Validation and Error Analysis", Pages 8 — 12: copied section begins
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3 BAT Model Validation and Error Analysis.

Given that the BAT model is a multivariate function, a validation data set is used to assess the possibility of overfitting of
the model depending on the training data set. The species used in the training and validation (Table S6) data sets are listed
in the attached MS Excel file, the summary of the error analyses are shown in Table 5. Figure S3 compares the calculated
water and organic activities at the same organic mole fraction, which is clearer than directly comparing activity coefficients
from each model. For O : C values lower than 0.2, the deviation from the 1:1 line is more substantial than the deviation for
higher O : C compounds. This is expected as such compounds show a miscibility gap over a wide range of composition space
and associated high activities when computed for the initial, well-mixed single-phase case. For a quantitative assessment we
calculated the root mean squared error (RMSE) of the activities predicted by the two models (AIOMFAC being the benchmark).
If there was substantial overfitting, there would be a large difference in the RMSE between the training data and the validation
data._For the RMSE calculation, we excluded the points where the activity was greater than one, as those represent unstable
physical states and large deviations there can overwhelm the RMSE. Model-model deviations for those unstable cases are
largely irrelevant in practise, because what matters is the comparison of the predictive skill for the composition of the stable
phases (in LLPS or single-phase case). Table S35 lists the compiled error assessments for the training data and the validation
data. The similar RMSE values between the hydroxyl training and validation data suggest the model is not overfitting and has
general applicability within the training domain of the parameter space (O : C and molar mass ranges). This agreement suggest
that model behavior is realistic and our excess Gibbs function is smooth with no discontinuities. The smooth excess Gibbs
function then leads to smooth activity curves and activity coefficients. Discontinuities like liquid_liquid phase separation are
only derived from analysis of the excess Gibbs function (via post-processing) and are not directly built into the coefficients of
the BAT model.

We did not generate additional validation data sets for the translation coefficients for each molecular functionality type for
two reasons. First, our translation has only four coefficients and will be well constrained by 100+ data points used in the
fit. Second, our translation function constitutes a smooth map; thus, no artifacts due to potential overfitting are expected. In
addition to the thermodynamic activities. we can also compare how well we detect and predict the @, sep point. For the organic
compounds in the binary aquous systems that underwent phase separation, the RMSE of BAT vs. AIOMFAC a,, s¢p predictions
are listed in Table S5. Overall the BAT a,,, rediction was < +0.01, the a,, prediction was < £+0.09 (9 % RH), and the a

rediction was < £0.15 compared to AIOMFAC.






Table 1. :SI Table S5 BAT model data point numbers for model fit and validation as well as root mean squared errors (RMSE) for the trainin
and validation databases, which were generated by the AIOFMAC model.

Hydroxyl| Hydroxyl| Carboxyl| Hydro-perbiyidio-perBkide | Ketone | Ether | Ester
(training) | (validation) SOA
Points ___ for | 5511 607 451 573 910 120 421 551 488
activity
comparison
[(59))
RMSE of a,, | 0.0580 | 0.0667 | 0.0408 | 0.0690 | 0.0711 | 0.0335 | 0.0845 | 0.0730 | 0.0820
RMSE of aorg | 0.0901 | 0.0964 | 0.0771 | 0.0950 | 0.0982 | 0.0520 | 0.1320 | 0.0970 | 0.1450
Points 52 4 5 9 3 none | 10 9 21
for ___LLPS
comparison
RMSE ____of | 0.0066_ | 0.0127 | 0.0031 | 0.0039 | 0.0061 | none | 0.0075 | 0.0032 | 0.0024
Qu.sep

5.1 CCN Hygroscopicity Parameter Validation
We compare, in Fig. 54, measurement-derived rcoy data against the BAT and AIOMFAC model predictions of roon.
The validation dataset contained 16 supersaturated growth measurements on known chemical species, listed in Table S6
Petters et al., 2009; Broekhuizen et al., 2004 Brooks et al., 2004; Frosch et al., 2010; Huff Hartz et al., 2006; Petters et al., 2016, 2006; F
5 . The average error in the measurements is shown as the shaded gray region and is the average of the #coy range observed.
The validation data shows similar agreement between the two models with a measurement vs. BAT RMSE of 0.061 and
measurement vs. AIOMFAC RMSE of 0.059. The AIOMFAC r¢oy predictions are better in the miscibility transition region
than those from the BAT model, but overall both models show similar predictions.
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Authors Response: As described near the bottom of page 9: "The scaled volume fraction acknowledges that neither mole
fraction nor volume fraction (nor mass fraction) perfectly accounts for the composition-dependence of activity coefficients
when describing various binary systems." The switching to volume fraction is not required per se, but some form of scaling
of the mole fraction composition scale is advantageous when the same binary Gibbs excess function is used for more than a
single system and in particular when targeting a wide range in molecular masses of the organic component and therefore large
shape and size differences compared to water molecules. Using volume fraction scaling is a better natural choice as it includes
accounting for differences in molecular sizes, while the scaling further helps to achieve optimal model performance, which
was also confirmed by preliminary tests we run before settling for the present functional form of the BAT model. We add the
following text to explain this step.

Manuscript Revisions on Page 9-10: The introduced change of composition scale improves the flexibility of this model

when optimized for a wide range of binary systems characterized by the same set of model parameters (s1,S2;0n.1,0n,2,0n,3,

etc., withn = 1,2...). The mole fraction scale works well for binary systems involving two components of similar molecular
size and shape. However, this is rarely the case in aqueous organic mixtures with organic compounds of substantially higher.
molar mass than water. The volume fraction scale implicitly accounts 19 some extent for the size difference between organic
and water_molecules, which means that the coefficient functions cy_do_not need to correct for the molecular size- and
composition-dependence as much as when mole fraction were used. It is for a similar reason that local composition models like

UNIFAC describe organic molecules as a combination of similar-sized segments (subgroups) occupying a regular lattice, which

contributes to the so-called combinatorial activity in those models. The scaled volume fraction acknowledges that neither mole
fraction nor volume fraction (nor mass fraction) perfectly accounts for the composition-dependence of activity coefficients when
describing various binary systems. Alternatively, a scaled mole fraction composition scale could have been used, but we chose.
19_scale volume fractions as the scaling coefficient values constitute a smaller adjustment when used with this composition
scale, meaning that a simpler scaling function was sufficient. Importantly, Eq. (19) remains consistent with all thermodynamic

relations, including that G¥ becomes zero at both limits: Gorg = 0 (When xorg =0), Gorg =1 (When xopg = 1).

(2) I don’t understand why using Redlich-Kister was selected. The RK expansion can fit to arbitrary precision. While it is
true that the model is thermodynamically consistent in the limit of x = 1 and x = 0, the polynomial can lead to maxima and
minima in the excess [Gibbs] function that may or may not be realistic. This is particularly concerning since the polynomial
coefficients are themselves computed through a multivariate model. (It is impressive that the system converged). I am concerned
that the BAT model coefficients are overfitted and not be representative of other compositions, especially with respect to a phase
separation which represents a discontinuity and is highly sensitive to very small fluctuations in the excess [Gibbs] function.
This issue re-emphasizes the need to independently verify the fidelity of the BAT model. When addressing this concern,
the authors should discuss why RK was selected instead of the Margules or van Laar model, which would be less sensitive
to error from the use of polynomials by limiting the shape of the excess [Gibbs] function. There are a few comparisons to
actual data. While it is clear that the model cannot be compared to every data point in the literature, the real-world validation
appears not to be systematic. For example, it’s not clear why single component data from Marsh et al. (2019) was selected
for hygroscopic growth and various a-pinene SOA for CCN. The composition dependence of subsaturated water content on
O:C for SOA (e.g. Pajunoja et al., 2015, doi:10.1002/2015GL063142) is far more revealing than the supersaturated data. Many

data sets for single subsaturated water uptake of single component organic aerosol are available. Ideally a proper validation set

11



would systematically probe O:C and functional group coverage, and would considers experimental error. A plot like Figure 11
should be made for available single component CCN data, including for cases where LLPS is known to control CCN activity. A
validated dataset with comparison against UNIFAC/LLPS is available in Petters et al. (2016, GMD, 10.5194/gmd-9-111-2016).

Authors Response:

BAT function: We chose the Redlich—Kister functional form specifically because it could be fitted to arbitrary precision
and account for extrema in activity coefficients, if necessary; however, more than two coefficient terms (c1, co) seemed to
add little value to the fits (see description in Section 3.2). Use of two coefficient terms (in BAT as parameterized functions)
also means that the shape of the Gibbs excess function is constrained towards realistic behavior, similar to a two-parameter
Margules model. We also wanted the excess Gibbs function and activity coefficients to be capable of expressing maxima and
minima as that behavior is important for models that allow for liquid—liquid phase separation, thus we did not use the van Laar
model. Since we went with two polynomial terms and had 1000+ data points covering the range from very low to very high
concentrations of aqueous organic systems to fit the model, the behaviour of BAT is well constrained in the O : C and molar
mass space considered. Additional isopleth of Figure 3 for lower and higher molar masses were added to explore functional

irregularities in the BAT Model Validation and Error Analysis section of the SI.

Manuscript Revisions on Page 8: In addition G¥ must be capable of expressing maxima and minima within the mixed

composition space (0 < x,., < 1) to correctly capture possible phase separation behavior.
Validations: The concerns about validation/overfitting to AIODMFAC have been addressed in the response to the first com-

ment; validation to measurements are discussed below.

We used the comparison to measurements by Marsh et al. (2019) mainly since the chemical species in those experiments
are known. This is also why we did not use any measured OA data sets for subsaturated conditions, for which chemical
composition is not well known. More comparisons and analyses of ambient and laboratory data sets (e.g. Pajunoja et al., 2015,
doi:10.1002/2015GL063142) have been split off to future work as additional analysis is required (estimations/assumptions
of volatility, molecular weight, and O : C distributions), which would distract from the the main point of introducing the
VBS + BAT model. We have added a comparison plot showing modelled vs. measured xcc v data as suggested for single-
component (aqueous) organic aerosol.

Manuscript Revisions on Page 30-32:  After mainly comparing to data for subsaturated conditions in Fig. 11, we
now focus on predictions for the regime supersaturated with respect to water vapor. In Fig. 12, the measurement derived
Koo is compared with the corresponding BAT model prediction. The data set contains 30 supersaturated droplet activation
measurements of known chemical species (e.g., oleic acid, glucose, and levoglucosan). The average error in the measurements.
is shown as the gray shaded area in Fig. 12, which covers the average of the k range observed for each component. A
subset of 18 chemicals reported a Kooy range, from which the average error was calculated o be & 42 %. The data set we used
was compiled by Petters et al. (2016) and Petters and Kreidenweis (2007), which includes measurements derived from multiple
sources (Broekhuizen et al., 2004; Brooks et al., 2004, Frosch et al., 2010; Huff Hartz et al., 20006, Petters et al., 20006, Petters and Kreide

. Our comparison excludes the nitrogen-containing compounds. The BAT predictions assumed no organic co-condensation and
had an evolving surface tension as described in Sect. 5.3. The BAT predictions vs. measurements had an RMSE of 0.055 and

overall agreed within the reported measurement error. Substantial differences are found for the 0.35 < O : C < 0.55 range, in

is hi redicted

which the resulting x hly sensitive to a correct prediction of miscibility. For example, the miscibility is over-
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Other comments
The tone of the hygroscopic growth and CCN section should be revised. For examples
“Over the past decade, the research community then progressed by characterizing (organic) aerosol hygroscopic growth mea-
surements by a single s value, with sometimes inconsistent distinction between a « value at subsaturated and supersaturated
humidity conditions.”

“Our clear distinction between x CCN and the more general kHGF helps the community understand clearly the subsaturated
and supersaturated behavior of organic aerosol”

While it is true that there has been a debate on KCCN and kHGF the authors should acknowledge that 100s of experimental
and modeling papers were devoted to this subject, with many important individual contributions explaining the origin of the
discrepancy and the composition dependence of kHGF. While the BAT model may capture some of these now very well un-
derstood effects, it does not really reveal anything new. Please rephrase the text and/or provide a more nuanced perspective on
the topic.

Authors Response: Right, the BAT model does not reveal any new processes. Nevertheless, it may provide a different way
to visualize the sub- vs. supersaturated hygroscopicity signatures. Everything we showed could also be done — and most has
been done — with models like UNIFAC or AIOMFAC. We have added that point and revised this section’s statements to address
this reviewer’s concerns. An advantage of the BAT model, with its intrinsic and continuous dependence on M,,4 and O : C, is
its ability to compute the isolines shown in Figure 10, which would have to be discretized by a set of molecular formulas in a
similar figure when using UNIFAC/AIOMFAC.

Manuscript Revisions on Page 25-27:

copied section begins

Our last model application focuses on « at the CCN activation point, denoted as kccon of the organic aerosol. The BAT
model is used to understand composition effects on the hygroscopic growth parameter of organic species at CCN activation

conditions and the related ongoing discussion within the atmospheric science community. The BAT model can predict an

entire Kohler curve directly and does not rely on a rediction for applications in the context of cloud droplet formation

thermodynamics. Thus, the exercise of predicting is here mainly carried out to inform on the relationship with existin
approaches. The x-Kohler framework reduces hygroscopic growth to a single parameter (x) that can be used to compare the

properties of different potential CCN particles (Petters and Kreidenweis, 2007). Over the past decade, the research community

then—progressed by characterizing (organic) aerosol hygroscopic growth measurements by a single s value ;-with-semetimes

on d on-betw a—+value-at-subsaturated-and-supersaturated-humidity-conditionsfor ease of comparison and

use for parameterizations of CCN activation in large-scale models (e.g. Petters and Kreidenweis, 2007; Rastak et al., 2017).
The overarching goal was to link measured aerosol physicochemical properties to CCN activation behavior (critical supersatu-

ration, critical dry diameter, etc.). A common approach was to fit a linear dependence of « to organic O : C (Jimenez et al., 2009;
Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Duplissy et al., 2011; Frosch et al., 2011; Lambe et al., 2011; Wong
etal., 2011; Rickards et al., 2013; Thalman et al., 2017). A resulting linear fit was not always consistent with observations, due
to the nonlinear behavior of x vs. O : C, so Kuwata et al. (2013) introduced a set of water-solubility bins to account for nonlin-
ear step changes. More recently, Wang et al. (2019) focused on relating « to molar mass and assumed ideal mixing of organics

with water. There are at least two main

Hactors
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that many of the previous approaches do not fully account for. The first was-the-common-assumption-of-is assigning a single
+ value and assuming it to be representative at all RH levels, which i i has been shown to be inaccurate in

multiple cases as this treatment does not account for non-ideal behavior changing with RH (or a,,), especially in the RH range
of 90 — 100 % (see Fig. 8b). The second being the fixation-with-using-use of a linear function to describe nonlinear-behavior—
We-may-eat-a-bettertnsieht-on-the Hink-between-orsante-acrosel-properties+o N-activity-properties-by-using-the non-linear
behavior caused by liquid_liquid phase separation. More advanced thermodynamic models, like UNIFAC and AIOMFAC,
have been used to gain insight into the complex CCN activation process accounting for phase separation and non-ideal mixing
Petters et al., 2016; Ovadnevaite et al., 2017; Renbaum-Wolff et al., 2016; Rastak et al., 2017; Hodas et al.,
can simulate the same processes as those more detailed thermodynamic models, but with less (or incomplete) information about
the molecular structure and/or composition of the organic aerosol fraction. We acknowledge that there remain a number of
challenges accompanying predictions of CCN activation potential, including accounting for composition-dependent bulk—surface
partitioning of different organic and inorganic components in multicomponent acrosol and associated evolving surface tension
.. Ruehl et al., 2016; Malila and Prisle, 2018; Davies et al., 2019). At present, those aspects may be best understood and

represented by detailed process models, though future BAT extensions may enable improvements also on a reduced-complexit
level.

The reduced-complexity inputs of the BAT model to-prediet-the-and its continuous behavior as a function of O : C and

Moy : - allow for establishing a direct link between those organic aerosol properties (O : C
and M,,.,) and the predicted CCN activation potential. For these BAT model predictions, we revert to the original definition

of kcon by assuming no organic co-condensation in Eq. 22 (i.e., Vg, dry = Vorg). Accounting for the Kelvin effect with an
assumption about the air—droplet surface tension, one can calculate the equilibrium saturation ratio .S of the aerosol / CCN,

copied section ends

Manuscript Revisions on Page 34: The the-interplay between O : C, molar mass, and water uptake for CCN activation
reveated-clearly show the complex behavior of organic Kccn values. Our etear-distinction between kccn and the more general
KUuGF helps the-community-understand-clearty-the-to differentiate between the subsaturated and supersaturated behavior of

organic aerosol. The use of the BAT model in kcon prediction correctly captures the nonlinear dependence of kygr (and

KCCN) on organic properties and is preferable to previous linear fitsusitig-.

15
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Abstract. Water plays an essential role in aerosol chemistry, gas—particle partitioning, and particle viscosity, but it is typically
omitted in thermodynamic models describing the mixing within organic aerosol phases and the partitioning of semivolatile or-
ganics. In this study, we introduce the Binary Activity Thermodynamics (BAT) model, a water-sensitive, reduced-complexity
model treating the non-ideal mixing of water and organics. The BAT model can process different levels of physicochemical
mixture information enabling its application in the thermodynamic aerosol treatment within chemical transport models, the
evaluation of humidity effects in environmental chamber studies, and the analysis of field observations. It is capable of using
organic structure information including O : C, H : C, molar mass, and vapor pressure, which can be derived from identified
compounds or estimated from bulk aerosol properties. A key feature of the BAT model is predicting the extent of liquid—liquid
phase separation occurring within aqueous mixtures containing hydrophobic organics. This is crucial to simulating the abrupt
change in water uptake behavior of moderately hygroscopic organics at high relative humidity, which is essential for capturing
the correct behavior of organic aerosols serving as cloud condensation nuclei. For gas—particle partitioning predictions, we
complement a Volatility Basis Set (VBS) approach with the BAT model to account for non-ideality and liquid-liquid equi-
librium effects. To improve the computational efficiency of this approach, we trained two neural networks; the first for the
prediction of aerosol water content at given relative humidity, and the second for the partitioning of semivolatile components.
The integrated VBS + BAT model is benchmarked against high-fidelity molecular-level gas—particle equilibrium calculations
based on the AIOMFAC model. Organic aerosol systems derived from a-pinene or isoprene oxidation are used for comparison.
Predicted organic mass concentrations agree within less than a 5 % error in the isoprene case, which is a significant improve-
ment over a traditional VBS implementation. In the case of the a-pinene system, the error is less than 2 % up to a relative
humidity of 94 %, with larger errors past that point. The goal of the BAT model is to represent the bulk O : C and molar mass
dependencies of a wide range of water—organic mixtures to a reasonable degree of accuracy. In this context, we discuss that
the reduced-complexity effort may be poor at representing a specific binary water—organic mixture perfectly. However, the
averaging effects of our reduced-complexity model become more representative when the mixture diversity increases in terms

of organic functionality and number of components.



10

15

20

25

30

1 Introduction

In observational and modeling studies, non-ideal molecular interactions in liquid phases play an essential role in organic
aerosol partitioning, cloud droplet activation, and atmospheric chemistry (Petters and Kreidenweis, 2007; Zuend et al., 2010;
Pankow et al., 2015; Rastak et al., 2017; Ovadnevaite et al., 2017). Common thermodynamic mixing models and related
equilibrium frameworks are highly valuable for the computation of non-ideal mixing effects within liquid (aqueous) inorganic,
organic, or mixed organic—inorganic phases through activity coefficient predictions. Models frequently used by the atmospheric
aerosol community include the Aerosol Inorganic-Organic Mixtures Functional group Activity Coefficient (AIOMFAC) model
(Zuend et al., 2008, 2011, 2010), the Universal Quasichemical Functional-group Activity Coefficients (UNIFAC) model (Fre-
denslund et al., 1975; Yan et al., 1999; Compernolle et al., 2009), the Model for Simulating Aerosol Interactions and Chemistry
(MOSAIC) (Zaveri et al., 2008), the improved thermodynamic equilibrium aerosol model (ISORROPIA 1I, “equilibrium” in
Greek) (Nenes et al., 1998; Fountoukis and Nenes, 2007), and the Extended Aerosol Inorganics Model (E-AIM) (Clegg et al.,
1992, 2001; Wexler, 2002; Clegg and Seinfeld, 2004, 2006). Each model comes with its specific advantages and limitations in
chemical species and temperature range covered, as well as the trade-off in computational efficiency vs. accuracy. Such mod-
els, in combination with vapor pressure models, can predict the gas—aerosol partitioning of volatile and semivolatile inorganic
and/or organic species and thereby the expected aerosol composition and mass concentration for given environmental condi-
tions and appropriate structural information about the chemical species involved. This makes detailed thermodynamic models
very useful for model-measurement comparisons in the context of well-characterized laboratory experiments and modeling
case studies of particulate matter (PM).

For inorganic salts, acids, and bases, it is possible to directly implement equilibrium thermodynamics models in “online”
large-scale Chemical Transport Models (CTMs). A typical implementation in CTMs is ISORROPIA II, which uses the avail-
ability of molecular-level information about the abundance of inorganic aerosol constituents or their gaseous precursors (e.g.,
ammonia and nitric acid) as model inputs (Nenes et al., 1998; Zhang et al., 2000; Fountoukis and Nenes, 2007; Zhang et al.,
2012). More recently, MOSAIC has been used to account for the dynamic partitioning of semivolatile inorganic gases (Zaveri
et al., 2008). In the case of organic aerosol and its volatile precursors, molecular-level chemical constituent information is gen-
erally lacking. Implementations of organic aerosol non-ideality, in current and past CTMs, approach the problem by choosing
representative surrogate molecules for broad classes of organic compounds or by merely assigning a hygroscopicity parameter
to characterize at least the water-affinity of the organic aerosol fraction (Pankow and Barsanti, 2009; Pankow et al., 2015; Pye
et al., 2017; Zhang et al., 2012; Jathar et al., 2016; Kim et al., 2019). Aside from mechanistic and implementation challenges,
the direct modeling of organic molecular structures would further have very few validation points as ambient measurements are
currently limited and constrained to a select set of identified organics (Tsigaridis et al., 2014; Lopez-Hilfiker et al., 2016; Sand
et al., 2017). On top of that, atmospheric organic chemistry and aerosol formation remainsremain an active area of ongoing
research (Ostrom et al., 2017; Brege et al., 2018; Schum et al., 2018; McFiggans et al., 2019). However, research shows that
including non-ideal water <+ organic interactions (here*“+” indicates an interaction) can have a substantial impact on organic

aerosol particulate mass concentrations, water content, biphasic morphology, and cloud condensation nuclei (CCN) properties
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Buajarern et al., 2007;

Rastak et al. (2017) showed the importance of aerosol water content in modeling and understanding both experimental
findings as well as climate impacts via aerosol-radiation and aerosol-cloud-radiation interactions. In that study, non-ideal
molecular interactions and liquid-liquid equilibrium were considered for reconciling aerosol simulations with laboratory mea-
surements of organic aerosol hygroscopicity parameters below and above 100 % relative humidity. To explore the impact on
climate, Rastak et al. (2017) assigned a fixed hygroscopicity parameter () to the organic aerosol fraction, either 0.05 or 0.15,
resulting in significant changes in the average top-of-the-atmosphere radiative fluxes in both the NorESM (-1.0 W m~2) and
ECHAM6-HAM? (-0.25 W m~2) climate model simulations. Therefore, the aerosol effects on climate are sensitive to aerosol
water content and, by extension, the aerosol hygroscopicity representation in such large-scale models.

A practical model for non-ideal thermodynamics needs to handle varying levels of chemical input information while pro-
ducing realistic predictions. The typical models for non-ideal aqueous organic thermodynamics applicable to a broad class of
compounds, like AIOMFAC and UNIFAC, require relatively detailed molecular structure information as input. AIOMFAC is
a chemical structure-based activity coefficient model that explicitly incorporates solution non-ideality among organics, wa-
ter, and inorganic ions (https://aiomfac.lab.mcgill.ca; Zuend et al., 2008, 2011; Zuend and Seinfeld, 2012). In that model, as
in UNIFAC, the computations involving organic compounds follow a group-contribution approach, which characterizes each
organic molecule as a combination of present functional groups and their abundances within that molecule. In contrast, a ther-
modynamic model able to accept either detailed molecular structure information or far less detailed bulk chemical properties,
e.g., molar masses and oxygen-to-carbon ratios (O : C) of organics, would offer more flexibility in environmental chemistry
applications where molecular-level chemical structure information is often imperfect or lacking entirely. Only through a tight
coupling of adequate models and measurements can we decipher observational evidence pointing at thermodynamic mixing
effects, kinetic mass transfer limitations, or new chemical reaction pathways.

In this study, we introduce a newly developed, flexible thermodynamic mixing model and demonstrate its fidelity for activity
coefficient calculations and coupled gas—particle partitioning predictions of aqueous organic aerosols. This non-ideal mixing
model, called the Binary Activity Thermodynamics (BAT) model, accounts for water <+ organic interactions and thereby offers
a method for determining the impact of water and the water content of organic phases at a given temperature and equilibrium
relative humidity. The model was parameterized using a training database generated with the AIOMFAC model. The training
database reliably constrains the BAT model coefficients across the full composition space of interest, as further discussed in
Sect. 3. Such a systematic constraint would likely be unattainable if we were to use experimental data only. However, via
the use of AIOMFAC, the BAT model is indirectly constrained by experimental data, since the adjustable parameters of the
AIOMFAC model were optimized using experimental data (Zuend et al., 2011).

On its own, the BAT model can predict the non-ideal mixing in aqueous organic systems, including a computationally ef-
ficient and implicit treatment of the effects of liquid—liquid phase separation, which is important for scarcely water-soluble

organic compounds. Moreover, the atmospheric chemistry and physics community will be particularly interested in our inte-

Zuend and Seinfeld, 2012; Song et al., 2013; You and Bertram, 2015; Gorkowski et al., 2016; Freedman, 2017; G
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gration of the BAT model within an equilibrium gas—particle partitioning model. The partitioning model we use is a form of

the non-ideal Volatility Basis Set (VBS) approach, which is introduced in Sect. 2.

2 Theory: Volatility Basis Set with Consideration of Non-ideality and Liquid-Liquid Equilibria

Our VBS describes the gas-liquid equilibria of organics and water using mass concentrations in the derivation, which allows
for an easier interpretation of aerosol measurements. The partitioning components can also be lumped into logarithmically-
spaced volatility bins forming a basis set, which is typically done in CTMs for computational efficiency. In this VBS derivation,
with non-ideality and liquid-liquid equilibria considered, we bring together published information and outline more clearly
important considerations and adaptations for a general multiphase case. The vapor-liquid equilibrium for a single liquid phase
is derived from the modified Raoult’s law (e.g. Pankow, 1994; Zuend et al., 2010). Subsequently, the general non-ideal VBS
framework introduced here, accounts for the potential presence of multiple liquid phases in equilibrium. This VBS framework
is independent of the activity coefficient model used — as long as compatible activity coefficient reference states are applied
(conversions are possible among different choices). Thus, the fundamental equations do not change as activity coefficient
models improve.

Derivation of a non-ideal VBS starts from Raoult’s law with the inclusion of activity coefficients (Eq. 1). Non-ideal refers
here to the mixing behavior in the liquid phase, while the gas phase is assumed to be an ideal gas mixture, which is a good
approximation for air under atmospheric pressure (the use of fugacity coefficients would extend it to non-ideal gas mixtures).

The j* component in liquid phase 7 has a pure-component liquid-state saturation vapor pressure pj-at (a function of temper-
ature only), a mole fraction z7, and a composition- and temperature-dependent activity coefficient ij)’”. The () superscript
denotes it as a mole-fraction-based activity coefficient, and the 7 superscript stands for liquid phase 7. The component’s

equilibrium partial pressure (vapor pressure) over a bulk solution, p;, is

pj =iy (1)

On the general notation adhered to hereafter: the subscripts j or k index chemical species, while a subscript >, (or 3J;) is
a short-hand notation referring to the summed total covering all species. The superscripts indicate the corresponding phase:
g for gas, X for all liquid phases, and g 4 X for the combined total of the gas phase plus all liquid phases. Multiple liquid
phases are indexed by 7 and labeled by the superscripts «, /3, and so on until the 2 phase. Where applicable, a superscript in
parentheses indicates the reference state (e.g., () for a mole-fraction-based quantity).

The mass-concentration-based VBS framework is related to Eq. (1) by using the ideal gas law to convert vapor pressures
and pure-component saturation vapor pressures into gas phase concentrations (i.e., ng and C’]Sf“t). This step yields Eq. (2), with

the liquid phase composition expressed via component mole fractions as

CF = C3aTA\ T, 2)
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The mole fractions (m;-r) in that phase can be calculated from liquid phase concentrations C;’ if the molar masses (M) of all
components are known (or reasonably estimable), resulting in

O
2T =t 3)

M. k.
J Zk Mk
The equilibrium gas-phase concentration of species j, expressed by mass concentrations, is obtained by combining Egs. (2)
and (3) into
or
Cl] — Csat J ,7(55),”. (4)
J J cr i
M; 3 3t
In Eq. (4), we have essentially converted Raoult’s law into a mass-concentration-based framework while accounting for non-

ideality on a mole fraction basis.
2.1 Consideration of Multiple Liquid Phases

We have thus far considered the classical case referring to a single liquid phase, for which Egs. (4) is sufficient to express
the gas-phase concentration. If there are multiple liquid phases, like a and 3, they too must be in thermodynamic equilibrium
with each other as well as the common gas phase. Meaning the total liquid concentration (Cjz" =y CT) further separates
into distinct liquid phases.

We define the fraction of species j in each liquid phase (relative to total of j in liquids) by g7 (e.g., C§* = ¢§' x C]»E”). By this
definition, the summation of ¢7 for a single species over all phases is equal to one and the cumulative liquid-phase amounts of

J can be determined using any phase of choice, since

B Q
os GG G ©)
TG g g

With C’jg and multiple liquid phases defined, we can establish a relationship with the effective saturation concentration (C7),
also called the gas—particle partitioning coefficient or effective volatility. The initial definition of C’; by Donahue et al. (2006)
targeted mixtures of organic compounds only, but Zuend et al. (2010) pointed out its interpretation in a more general form.
The effective volatitity-of-alt-saturation concentration of each species, including water and other inorganic constituents in
liquid phase 7, is defined by Eq. (6). The distribution of a species 7 among multiple phases 7 is accounted for in the effective
saturation concentration by using Eq. (5). The summation over k covers all species and is equal to the total mass concentration
from all liquid phases, C’g;’ (=2, CD); this has also been denoted as Cpy or Coa for organic aerosol systems in other

studies. In this derivation, C’gz is used as we include all liquid-phase species while excluding potential solid phases. Therefore,

. CICET
Oy == (©)
J

The classical single-phase limit is obtained from Eq. (6) by setting ¢j =1 and simplifying Cg;' to Cx, or Cpy, which is

valid in that case. Continuing the derivation, we then substitute Eq. (4) into Eq. (6) to arrive at a general expression of C;-”’T as
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follows:

(x)vﬂ- T
*, T __ ~vsat g 7 qj
Crm = CEr

— . (N
J
M; 3 3t

The superscript 7 in Cj* "™ denotes that the 7" liquid phase properties (CF, ’y](-x)’ﬂ, and ¢7 ) are used in this computation.

The fraction of j partitioned to the condensed phase (i.e. the total of liquid phases), §;, follows this general definition,

i\
G-(1vg) ®

Lastly, the total species concentration Cf 2 (j.e., the summed concentrations of j in gas phase plus liquid phases) multi-

plied by &; yields the total concentration present in the liquid phase or phases (without specifying amounts in individual liquid

phases),
Cor =0t ng;. ©)

The theoretical core for the equilibrium between multiple liquid phases and a single gas phase is built into Egs. (7) and
(8) — however, without information about how the phase fractions at equilibrium are determined in practice. Moreover, if the
system is at thermodynamic equilibrium, then C'Y would be independent of which set of liquid phase properties are used in the
calculation, i.e.,

CF = OF% — 0P — _..:C]’."Q. (10)

J J J

In the following applications, we have only considered up to two liquid phases « and 3, even though the theory derived in
this section applies to any number of liquid phases. Our convention is to use phase « as the water-rich phase and phase [ as the
water-poor (therefore organic-rich) phase. Since we use two phases, only ¢;* needs to be known as 1 — ¢;* is equal to qf in the
context here. Lastly, we emphasize again that any mole-fraction-based activity coefficient model can be used in applications of

the vapor-liquid equilibrium theory derived in this section.

3 Binary Activity Thermodynamics (BAT)

The goal of the BAT model is to produce realistic results of non-ideal water—organic mixing behavior using minimal chemical
information. Our target application is organic aerosol thermodynamics, but the BAT model may find applications in a variety of
other fields. In any research problem constrained by limited chemical structure information about organic molecules interacting
with water in solution, the BAT model can aid in elucidating those non-ideal interactions.

For organic aerosol, the missing thermodynamic effects which have a significant impact on simulations within CTMs or
in the context of controlled laboratory studies, are the pseudo-binary interactions among water <+ organic, ion <> organic,

and organic <> organic pairs of solution species. In complex solution systems, such pair-interactions occur among and in the
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3.1 BAT Activity Coefficient Model

With the scope of the BAT model outlined, we describe the theoretical thermodynamic framework for the binary activity
coefficient calculations in the following. In a binary system, the only requirement for a thermodynamically sound activity
coefficient model is satisfying the Duhem—Margules relation (Eq. 11), which implies conformance with the more familiar

Gibbs—Duhem relation (Margules, 1895; McGlashan, 1963; Gokcen, 1996);

din(y”) | din(iry)

org

(1 —20pg) =0, (for T, p constant). (11)

dmorg dxorg

Here, x4 is the mole fraction of the organic component, 1" is the temperature, p the total pressure, and R the ideal gas
constant. Note that the binary case implies x,, = 1 — 2,4 for the mole fraction of water. Consistent with the Duhem—-Margules

relation, the molar excess Gibbs energy of mixing (G¥) is here defined as
GE/RT =(1—24pg) ln(%(f)) + Zorg ln('ygff;). (12)

This function describes the excess portion of the molar Gibbs energy of mixing, i.e., the contribution from non-ideal mixing
behavior leading to deviations from the ideal molar Gibbs energy of mixing. The two mole-fraction-based activity coefficients

are then related to GF via

E
(1)) = (GF/RT) — ,,, LT, (13)
dxorg
d(GF/RT
In(155)) = (G2 /RT) + (1~ 2y) WL (14
org

Equations (12 — 14) are generally valid for a wide range of functional forms of the composition dependence of G¥. The

only thermodynamic constraint is that a G¥ function must also satisfy Eq. (11), which means G¥ must be zero for both

ZTorg = 0 and x4, = 1. In_addition GP must be capable of expressing maxima and minima within the mixed composition
space (0 < zorg < 1) to correctly capture possible phase separation behavior. To accomplish this dependence, Redlich and

Kister (1948) and McGlashan (1963) used a power series expansion in z,,4 of the following form:
GP/RT = 207g(1 — Torg) [¢] + h(1 = 220rg) + ...+ ¢l (1= 220rg)" ] . (15)

Using Eq. (15) with Egs. (13, 14), this power series with adjustable coefficients, ¢/, (n =1,2,...), can be used to fit mea-
sured activity coefficient data for any binary system. By increasing the number of adjustable coefficients, any desired level of
precision can be achieved — a powerful feature of such a model. In practice, fitting of four or fewer coefficients (not necessarily
in sequence) usually leads to model-measurement agreement within experimental uncertainty (e.g. Clegg and Seinfeld, 2006;
Zuend et al., 2011). Determining the coefficients for a binary mixture (e.g., malonic acid + water) using Eq. (15) will result
in a set of coefficients only meaningful for that system (but unlikely applicable to similar other systems, say succinic acid +

water). Therefore, in an attempt to design a more general organic activity coefficient model, we made two important changes.
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First, we change the independent composition variable used in Eq. (15). Instead of mole fraction x,,4, we introduce a scaled

volume fraction (¢,,4) in the series expansion of GF /RT, which can be expressed as a function of z,,4 as follows:

porg Mw
Pw Morg

-1
Porg = Torg <x"r9 + (L= Zorg) [s1(1+0O: CW) : (16)

The activity coefficients in Eqgs. (13) and (14) remain on a mole-fraction-based scale, because the scaled volume fraction is

accounted for in the derivative of the molar Gibbs excess energy with respect to z,,.4, by using

d(GP/RT) _ d(GP/RT) ddorg (17)
dlEoT’g d¢org dl‘org .

The exact equations and derivatives are listed in Sect. 2 of the Supplementary Information (SI).

In Eq. (16), porg and p,, are the liquid-state densities of the organic component and water, respectively, while s; and s
are two scaling parameters determined from-a-medetfitto-experimental-during the model fitting to training data. Note that
without the scaling factor in brackets |...], this equation would simply relate volume fractions to mole fractions. The densities
of organic components are calculated using the relatively simple model by Girolami (1994) outlined in SI Sect. 4. This is
advantageous for the reduced-complexity application of this work, because the Girolami (1994) model allows for an estimation
of density based on molar mass, O : C, H: C, and N : C only — compatible with limited input information about the chemical
structures of organics.

Second, we introduce a parameterization of the scalar ¢}, coefficients by means of multivariate functions, which are depen-
dent on common characteristics of organic molecules. The notation change from ¢/, to ¢,, denotes the use of the scaled volume
fraction composition scale and the use of a parameterization for ¢,,. Here we use the elemental oxygen-to-carbon ratio (O : C)
and molar mass (M,,4) to characterize the organic compounds. We also explored the use of the elemental H : C ratio as an
additional molecular property, but found that this descriptor did not noticeably improve the model at the attempted reduced-
complexity level. The functional form for the parameterized coefficients based on organic properties is shown by Eq. (18),
where a1 to a, 4 are the scalar fit parameters for the nt? coefficient and exp(...) is the natural exponential function;

M,
Cn = an,1 exp(an2 X O:C)+ay3 exp (an74 A/”) ) (18)
org

With these changes, we can state a different series expansion of the G function using our scaled volume fraction formula-

tion, including the parameterized coefficients c,, (via Eq. 18),
GF/RT = ¢org(1 — dorg) [e1 4 c2(1 = 2¢0rg) + .. €n(1 = 2¢0rg)" '] (19)

The introduced change of composition scale improves the flexibility of this model when optimized for a wide range of binary

systems characterized by the same set of model parameters (s1,52;0n,1,0n,2,0n,3, €tc., with n =1,2...). The mole fraction

scale works well for binary systems involving two components of similar molecular size and shape. However, this is rarel
the case in aqueous organic mixtures with organic compounds of substantially higher molar mass than water. The volume
fraction scale implicitly accounts to some extent for the size difference between organic and water molecules, which means
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that the coefficient functions ¢,, do not need to correct for the molecular size- and composition-dependence as much as when
mole fraction were used. It is for a similar reason that local composition models like UNIFAC describe organic molecules as a

combination of similar-sized seements (subgroups) occupying a regular lattice, which contributes to the so-called combinatorial

activity in those models. The scaled volume fraction acknowledges that neither mole fraction nor volume fraction (nor mass

fraction) perfectly accounts for the composition-dependence of activity coefficients when describing various binary systems.

Alternatively, a scaled mole fraction composition scale could have been used, but we chose to scale volume fractions as the

scaling coefficient values constitute a smaller adjustment when used with this composition scale, meaning that a simpler scalin
function was sufficient. Importantly, Eq. (19) remains consistent with all thermodynamic relations, including that G becomes

zero at both limits: ¢,y = 0 (When g = 0), ¢porg = 1 (When z4rg = 1).

Equations (16 — 19) establish a thermodynamically sound activity coefficient model capable of describing various binary
organic—water systems with a common set of model parameters, as shown subsequently. Note, due to the normalization by
RT, when optimizing our G¥ /RT model, we are implicitly accounting for a part of the temperature dependence of activity
coefficients, notwithstanding the temperature-independent form of the ¢,, function. Activity coefficients are weakly dependent
on temperature so the error caused by a temperature deviation from 298 K will be relatively small for tropospheric condi-
tions. With the equations for the BAT model derived, the fitted coefficients can subsequently be determined based on suitable

experimental or model-generated data sets.
3.2 BAT Model: Training Data and Parameter Optimization

The adjustable parameters of our BAT model were determined by numerical optimization using a database generated by the
AIOMFAC model to cover a wide range of organic O : C ratios, molar masses, and mixture compositions at room temperature
(298.15 K). The use of the AIOMFAC model as a benchmark allows for generating zrg, 'y((,f;, and %(Ux) data from highly
dilute to highly concentrated binary aqueous organic mixtures for each system considered, covering the full parameter space of
interest. Since the AIOMFAC model includes a UNIFAC group contribution model for short-range molecular mixing, the data
we generate in this work reflects the AIOMFAC flavor of a modified UNIFAC model (Zuend et al., 2011) as we do not cover
interactions of organics with inorganic ions at this stage. In future, we plan to include ion < organic and organic < organic
interactions, in which case AIOMFAC may serve again as a benchmark model to generate training data.

We generated a database of 37 known organic chemical structures and 123 artificial, yet possible chemical structures. There
of the model. The artificial chemical structures start with a carbon chain backbone of variable length, to which a number of
OH functional groups are attached. The chain lengths and the number of OH groups were varied such that a comprehensive
population of the 2-dimensional O : C versus molar mass parameter space is achieved. The 37 known chemical structures

(mainly dicarboxylic acids) provide some diversity in the covered types of oxygen-bearing functional groups. For each structure

there are an additional 40 data points at varying mole fractions, which means the training database has 6400 points and the
validation database has 640 points.

10
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Figure 2a shows the data used in the model parameter optimization. This training database was used to simultaneously fit
the scalar a and s coefficients of the BAT model (Egs. €16 — 19) using a constrained global optimization method (known as
GLOBAL) by Csendes (1988), which offers a Fortran implementation of the Boender-Rinnooy-Kan-Stougie-Timmer algorithm
(Boender et al., 1982). Through trial-and-error optimization tests, we arrived at the functional forms of the eight power series
coefficients (a,,1—4; 7 =1,2) in Eq. (18) and the two volume fraction scaling coefficients (s, s2) in Eq. (16). Only the first
two terms (involving ¢; and c3) in the power series expansion (Eq. 19) were found to be justified given the diversity of organic
structures to be represented by a common parameterization. Moreover, we split the model parameterization into three different
domains based on the limit of complete miscibility of organics with water and further separated by O : C, shown in Fig. 2a as
blue, light green, and dark green regions. The blue domain includes components that have no miscibility limit with water. The
light green domain starts at ~—26%-~ 30 % of the O : C ratio reached at the miscibility limit and covers up to the blue domain.
The dark green region covers the remaining lower O : C space, which is populated by non-polar, poorly water-soluble organic
compounds. In contrast, the blue domain represents relatively hydrophilic organic compounds, whereas the light green domain

contains moderately hydrophobic molecules. P

resulting-in-three-distinetsets-of BAT-medelparameters-These domains represent the three regions where each set of optimized

arameters dominates. Parameter optimization for each sets of coefficients was carried out on a wider and overlapping O : C
range than shown in Fig. 2a. A sigmoidal function was introduced to provide a smooth transition when traversing from one

of the domains to the next in the 2-D parameter space (e.g., when O : C is increased gradually at a constant molar mass
coordinate) — otherwise, spurious discontinuities would occur. The sigmoidal function provides a weighted mapping between
the parameters from one domain to the next (over a short range in the boundary region). The optimal BAT model parameter
sets and transition functions are tabulated in SI Sect. 2. An example of the sigmoidal transition function is shown in the SI, Fig.
S1.

The limit of miscibility line in Fig. 2a marks the onset of a potential liquid—liquid phase separation in O : C vs. molar mass
space. In the domain below that line (at lower organic O : C), a miscibility gap is expected over a certain composition range
(and corresponding water activity), while above that line there is none predicted. The miscibility limit was determined through

an initial BAT fit using only the data in the O : C range from 0.05 to 0.45, prior to the division of the 2-D space into the three

domains —(details in SI Sect. 2.2).

Generally, the BAT model showed good agreement to the training database with a root mean squared error (RMSE) in

a,, of 0.058 (5.8 % RH) and in organic activity (a,,,) of 0.090. The validation database showed a similar agreement with a

of 0.096 (details in SI Sect. 5). The BAT model is valid for organic molecules within the

following domain: 0 < O:C < 2and 75 < M., < 500 gmol ! with realistic behavior up to 750 gmol~'. Additional
error analysis for the BAT model is shown in SI Sect 5. In panels (b) and (c) of Fig. 2, we show two examples of the BAT
predictions, after domain-specific optimization, compared to the AIOMFAC-generated data. The BAT model tends to perform

very well for the organics of the blue domain, as shown by the citric acid + water example. Citric acid is marked by a blue star in
the coordinate space of Fig. 2a. The deviations of the BAT model prediction compared to AIOMFAC increases for hydrophobic

compounds; an example is shown for 1-hexanol + water. Even though the model-model deviation increases, those discrepancies

11
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A narrow O : C zone bridges the hydrophilic and hydrophobic domains, there the binary mixture would behave like an ideal
mixture. In the parameter space displayed, the behavior of any specific binary water—organic system is non-ideal over nearly the
whole z,, range. As the mole fraction of water increases beyond 0.9, a binary mixture approaches ideal behavior for high-O : C
organic compounds (O : C 2 0.8).

The composition and O : C-dependence of liquid-liquid phase separation (LLPS) within binary water—organic systems is
also evident from Fig. 3. In general, LLPS is expected to occur when the Gibbs energy of the whole system is minimized
(globally) by splitting the system into two (or more) liquid phases of distinct compositions (Zuend et al., 2010, e.g.). In the case
of binary aqueous systems, LLPS is indicated when an identical activity (either a,, or a,g) is predicted for two different mole
fractions of water, with the composition range in between defining the miscibility gap (Ganbavale et al., 2015). An example
of this is occurring along the a,, = 0.99 contour line, denoted by a dashed line in Fig. 3. A clearer example of identifying this
phase separation is also shown in Fig. S2 of the SI. In a binary mixture, LLPS is also clearly indicated anywhere a component
activity is (predicted) to be greater than 1.0 when assuming a single liquid phase in the calculation —(gray areas in Fig. 3).

These gray areas mark initial compositions that would be unstable and quickly lead to separation into two phases of distinct
water mole fractions; in the case of Fig. 3 with the final phase compositions given by the two intersection points of a line of
constant O : C (of compound in guestion) and the water activity contour at the edge of the phase separation area. Additional
isopleths at different organic molar masses (75 to 2000 gmol ™) are shown in the SI Sect. 6. Based on BAT predictions, in

comparison to the case shown in Fig. 3, this phase separation region moves to higher O : C as the molar mass of the organics

increases and to lower O : C as molar mass decreases.

3.3 Funetional-Greup-Molecular Functionality Translation

The BAT model described so far is tailored towards molecules dominated by hydroxyl functional groups in terms of oxygen-
bearing groups. To increase the model’s versatility, we will discuss our approach for incorporating other important oxygen-
bearing functional groups into the BAT model framework. One option would involve generating another AIOMFAC training
database focused on other functional groups with the subsequent fitting of new BAT model coefficients. This is possible, but
for large functional groups the coverage in the O : C vs. M,,., space would be sparse, leading to poorly constrained parameters.
Due to that limitation, we went with a funetional-greup-molecule functionality translation approach. This approach assumes that
the O : C ratio is proportional to a molecule’s polarizability, which is then dependent on the type of oxygen-bearing functional
group. If that assumption holds to good approximation, the effects of different-oxygen-bearing groups on activity coefficients
can all be translated using a common polarizability scale based on the molecule’s O : C ratio. Similarly, if molar mass mainly
provides information about the molecules effective volume, then a translation to a new volume scale (affecting the organic
volume fraction) is needed as well. The density used in the BAT model is also modified since it is calculated from the O : C
and M, inputs.

Based on these assumptions, we use the hydroxyl functional-group-functionality as a reference oxygen-bearing group and
translate the specific properties of all other functionalized molecules to a hypothetical hydroxyl-equivalent molecule of mod-

ified O : C and M,,,. We introduce a two-coefficient sigmoidal function to perform this translation (see details in Sect. 2.4
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ucts (see Fig. 4b). H-thatis-notpessibleThis can be done by using AIOMFAC to generate training data for multifunctional
molecules that are representative of VOC oxidation products. The molecular translation coefficients are then fitted using
the _generated training database. If this fitting of the translation coefficients is not practical, then the most-dominant-and
most-representative-oxygen-functionality-predominant or most representative oxygen-bearing functionality on the molecule
should be chosen -for an approximate molecule functionality translation. Extensions to include organic nitrate and sulfate
functionalities will be a topic of future development. In principle, additional molecular functionality translations for each
combination of molecular functionalities could be developed, which would be practical if the number of permutations is small.
If the number of combinatorial permutations of molecular functionalities is large, then that development direction would lead
to increased complexity, which is not the goal of the BAT model. We will explore different weighting and scaling methods of
the translations coefficients based on N': C and S : C elemental ratios to retain the reduced-complexity approach. If accurate
activity coefficient predictions of a known set of multifunctional molecules are desired and the molecular structures are known,
then the use of AIOMFAC or a system specific model instead of BAT is recommended.

Figure 4b shows an example for the translation of a multifunctional hydroperoxide molecule (i.e., containing hydroxyl,
ketone and hydroperoxide functionalities). Such multifunctional hydroperoxide molecules are among the most difficult to
represent well when using the functional group translation approach. We show two BAT model activity predictions, BAT (OH)
directly used the molecules O : C and M,,,4, whereas the BAT (translated) predictions use the translated molecule properties.
In general, the translation gives the correct characteristics in terms of predicted water and organic activities but can have
large errors. For the multifunctional hydroperoxide example, the BAT (translated) prediction is more hydrophobic than the
untranslated BAT (OH) prediction. The more hydrophobic behavior is consistent with the AIOMFAC predictions. The PEG-
414 translation example (Fig. 4c) shows how close PEG is to a hydroxyl molecule, as the BAT (OH) activity curves agree with
AIOMFAC. However, the BAT (translated) prediction does show improvement at x,, > 0.85. If there is ever a concern about
the prediction accuracy for a given molecule, the BAT model output should be compared to experimental data (where available)
and/or the AIOMFAC-web model (https://aiomfac.lab.mcgill.ca).

Fhe-translation-approach-works-This translation approach can work in both directions, so we can also move the whole BAT
model to a different functional group basis, e.g., resulting in carboxyl-based, ketone-based, ether-based, etc. parameterizations
of the BAT model (here for the purpose of illustration). We use this-transtation-such translations to plot the limit-of-miseibility
limit-of-miscibility lines for all of the fitted functional group types considered (Fig. 4a). The dotted pink line is from the

multifunctional hydroperoxide translation and the gold line is from the PEG translation, both have example translations shown

in Fig. 4b and 4c respectively. The uncertainty range in the O : C prediction of a limit of miscibility is also shown in Fig. 4a
as a shaded gray region. These miscibility limit lines represent the same process (phase separation limit), but for different

functional groups, so it is informative to compare their relative positions —in Fig. 4a. The higher in O : C the curve is, the more
hydrophobic that functional group ismakes a molecule compared to hydroxyl groups, as it requires a higher O : C to become
completely miscible in water (at all proportions of mixing). The relatively large variability among the miscibility limits in terms
of O : C ratio emphasizes the importance of distinguishing among different types of oxygen-bearing functional groups. In the

case of ambient and laboratory-generated aerosol mixtures containing inorganic salts, the transition from LLPS to completely
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miscible (at any composition) spans a O : C ratio range from 0.4 to 0.8 based on experimental data (Song et al., 2012; You
et al., 2014; You and Bertram, 2015). That O : C range is comparable to the difference between a hydroperoxide molecule with
a molar mass of 100 g mol~! vs. 400 g mol~!. The wide O : C range can also be achieved by fixing molar mass at 400 g mol ~*
and either having a hydroxyl or a hydroperoxide functionalization. This similarity suggests that the types and abundances of
oxygen-bearing functional groups are as important as the salting-out effect by dissolved inorganic ions — at least concerning the
miscibility with water. A future investigation on the limit of miscibility line for mixtures with and without dissolved inorganic
ions may help elucidate that characteristic.

By the nature of this translation approach, each functional group case will have a similar curvature in the miscibility limit
line, as it was propagated from the hydroxyl-based curve. After accounting for the RMSE of the different molecular translations
the overall BAT model error in the water activity separation point was < £0.01, the a,, prediction error was < £0.09, and the
Qorg prediction error was < +0.15 (see SI Sect. 5). Also, note that organic molecules with only ester functional groups are

predicted to be the only ones having a miscibility gap up to O : C of 1.0 according to the BAT model — and by extension
AIOMFAC. Esters are among the poorly-constrained functional groups in AIOMFAC, whereas the hydroxyl functional group
is among the well-constrained groups (Zuend et al., 2011). This is the case because the hydroxyl functional group benefits from
a large amount of experimental data covering aqueous mixtures of alcohols, polyols, and sugars, enabling tight constraints for
its interactions with water and other organic groups. This justifies the use of the hydroxyl group as a reference oxygen-bearing

group during our initial fit of the BAT model’s coefficients.

4 Coupled VBS + BAT Model

The non-ideal BAT model and the VBS approach can now be integrated into a coupled VBS + BAT model to simulate the
gas—particle partitioning of organic aerosol systems. This integrated model will be benchmarked against high-fidelity AIOM-
FAC gas-liquid equilibrium simulations with consideration of liquid-liquid phase separation. Conceptually, the VBS + BAT
approach assumes that each organic is contributing its own water content to the total water content. We use the water mass
fractions per organic compound predicted by the BAT model for a given water activity (equivalent to a given equilibrium RH
for a bulk solution case) to sum up all the water contributions. This approach is closely related to the ZSR mixing rule for
aqueous solutions. Aside from the organic mass concentrations (traditional VBS), the variable C’g/" includes the cumulative
water mass concentration from all particle phases, which in turn affects the C'f values of all the orgénic species.

A conceptual flow chart of our VBS + BAT computational approach is shown in Fig. 6. The current version of the program

is written in MathWorks ® MATLAB (R2018b) and is available for download (see code availability section).
4.1 Consideration of Liquid-Liquid Phase Partitioning

The first nontrivial change in the integrated VBS + BAT model is the consideration and treatment of a potential miscibility
gap. In the case of a liquid-liquid equilibrium, the relative phase preferences are described by ¢, the fractional liquid-liquid

partitioning of a component to phase « (¢5* < 1.0 in the two-liquid-phases case). Liquid-liquid phase separation in a binary
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water—organic system at RH < 100 % is reduced to a point and manifests itself by a jump discontinuity (Fig. 5a). The liquid
phase is either a water-poor () or water-rich («) phase, with a sharp transition between these two possible states at a certain
water activity (¢j' =1 or 0). However, in the more general case of multicomponent aqueous organic mixtures, there is no
discontinuity; rather, a smooth transition occurs in terms of individual component fractions partitioned to each phase depending
on phase preference (related to polarity). Hence, the component fractions in phase alpha follow a smooth transition function
for ¢j* with changing RH. In AIOMFAC-based equilibrium calculations, the smooth transition results from the numerical
minimization of a system’s Gibbs energy, which depends on water content and therefore water activity. For our VBS + BAT
model, regardless of binary or multicomponent cases, we represent the transition from a water-poor phase to a water-rich phase
as a smooth transition occurring over a finite range in water activity. Instead of using a computationally expensive explicit
numerical solution for the individual component’s liquid-liquid partitioning, we approximate this transition behavior in a
simplified, computationally efficient manner by prescribing a sigmoidal functional form for ¢j of the organic components in
the a,, transition range. This functional form is not arbitrary; rather, it is a result of liquid-liquid equilibrium theory relating ¢;"
to activity coefficient ratios in coexisting phases (Zuend and Seinfeld, 2013). Contrary to the organic species, the ¢, value for
water is a derived quantity and not prescribed, since the mass fraction of water contributions are accounted for on a per organic
basis in each phase, resulting in a ¢{ value that depends on the liquid-liquid partitioning of all organics.

To approximate the location and a,,-width over which the liquid-liquid phase separation is prescribed to occur, we first
determine a designated reference point, the so-called water activity separation point (@ sep). When an organic is in a binary
mixture with water, this point denotes the a,, value at which the organic jumps from the water-poor to the water-rich phase (a-
phase) according to the BAT model prediction (refer to Fig. 5a). The a., sep is determined using the BAT model activities and
associated Gibbs energy of mixing; see Sect. 3 of the SI for the specifics. Note, the BAT model does not directly output @, sep,.
but a,, scp is derived from the BAT model predicted activities. When there are multiple organic components, each has it’s own
defined a, sep derived from its mixing behavior with water in the binary case. Alternatively, in our model implementation,
there is a program option to use a single a., sep for a multi-organic mixture, with the a,, «ep value based on average molecular
properties of all organics. These average molecular properties are the mass-weighted-means of O : C and M,,, calculated
from the liquid-phase species in a 3-phase-only VBS + BAT equilibrium calculation (where ¢g,., = 0). This step allows us to
estimate a single representative a,, sop value for the multicomponent organic-rich phase, even though in reality each organic
species may deviate from this average behavior. We then use the a,, scp value as a reference point when approximating the
liquid-liquid phase separation of multicomponent organic mixtures. Since both the behavior of average organic mixtures as
well as individual organic compounds can be approximated by single a,, cp values, the following broadening treatment for the
liquid-liquid transition can be applied in both situations.

In our approximation, we set gg,., = 0.99 (: q&scp) at the a, sep point. Then, for the curve broadening (of the step-like
discontinuity), we use a sigmoidal function to approximate the g5, , values representative of a multicomponent aqueous organic
mixture (Fig. 5b). With the functional form and one point on the sigmoidal curve determined, we further need to constrain the
width of the curve (or alternatively the slope at midpoint). We use the a,, gap from a,, scp to complete aqueous dilution,

where a,, — 1, to set a case-dependent transition function width (Aay sep = 1 — Gap,sep). Choosing Aa,, sep as the sigmoid
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4.2 Deep Learning Neural Networks

Moving on from the phase separation treatment, we describe in the following a number of key computational features of
our implementation. In designing the VBS + BAT model and its implementation, we aimed both for flexibility and minimal
computational overhead. The main computational burden is associated with the non-ideal VBS solver when compared to a VBS
solver assuming ideal mixing in the liquid phase, since the number of independent variables increases. The increase is because
the C* values cannot be approximated as constants, because they are dependent on the mole fractions of the organics and water
as well as the activity coefficients. This means achieving convergence iteratively by varying only C’gj” is not possible; instead
iteration over the partitioning coefficients ; is necessary, i.e., solving a system of coupled algebraic equations numerically to
a desired level of precision. A simple way to speed up convergence towards the equilibrium state is by improving the initial
guess for the £; vector. Here we introduce a powerful application of deep learning Neural Networks (NN) for that purpose.

We employ a so-called deep belief network, which consists of multiple layers of artificial neurons (Liu et al., 2017). The
neurons are arranged in a matrix and use a sigmoidal activation function which takes inputs from the neurons in the preceding
layer, leading to a degree of activation of each neuron, which is then providing input to the next neuron layer. Artificial neural
networks require large data sets of desired inputs and outputs to fit the activation function coefficients for each neuron. This
allows the NN to “learn” the unspecified functional relationship between known inputs and outputs. In our case, large data sets
can easily be generated with random VBS + BAT simulations, allowing for the training of the NN. We found useful applications
for NN for both an inversion of the BAT model and the coupled VBS + BAT model calculations, as noted in Fig. 6.

We use NNs with the BAT model to find the correct x4, ; input, since in most applications a., is known but not x,,.¢, ;.
For example, in CTM applications RH is a known quantity and, for bulk equilibrium simulations, the RH in the gas phase is
equal to the a,, in the liquid phase (when the Kelvin effect is negligible). The BAT model calculates a,, for a given 4.4, ;, SO
a computationally more expensive approach would be to iterate over x,,g4, ; until the given RH in the gas phase and a,, in the
liquid phase match (using a solver for non-linear equations). The NN approach attempts to shortcut this costly iterative method
by directly guessing x4, ; for a given a,,. To fit the neuron activation functions, we generate a random data set of O : C;,

Morg, j» Torg,;» and a,, using the BAT model. The data corresponding to systems with a miscibility gap are parsed into two

separate categories to train a separate NN. We generated a database of 9.8 x 10° data points for miscible organics and 4.6 x 10°
data points for phase separated systems. Each database was then split into training data (70 %), validation data (15 %), and test

data (15 %), which was used to train the BAT-NN. Our NN inputs are O : C;, My, j, and a,, with .4 ; as the target output.
The NN is then generated and its parameters fitted using MATLAB’s Neural Network Toolbox. The resulting BAT-NN inverts

the BAT model quite well over the full a,, space up to water activities of ~ 0.95, above which an iterative refinement is required
for good agreement with the targeted a,,. For the a,, < 0.95 cases, the evaluation time for the BAT model is insignificant, only
the iterative refinement of x4 to match the given a,, (for a,, > 0.95) causes the 0.58 ms computation time indicated in Fig. 6.
The reported computation times were all determined by using a single core on an Intel Core 17-6500 U processor clocked at
2.50 GHz.
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Next, we attempted to reduce the computational cost of the VBS + BAT equilibrium solver. For this purpose, we employ a
distinct artificial neural network to estimate the equilibrium gas-liquid partitioning coefficient (§;) of each species. To facilitate
using an NN, we first group the species into 11 decadal C*3* bins from 1076 ugm=3 to 10* uygm=3. We tested different NN
input combinations and settled on using ng+2“, 0O :C;, Myyg, j, BAT-derived water mass fraction (w,,, ;) and a,, associated
with organic component j. Using the VBS + BAT equilibrium solver, we generated a random database of 13,000 data points
split into training data (70 %), validation data (15 %), and test data (15 %). This generated database was then used for the
training of the NN, The NN output target is the vector of partitioning coefficients, which is subsequently used as the initial
guess for solving the coupled VBS + BAT system of non-linear equations. This two-step process (first NN, then numerical
equilibrium solver) takes on average 12.8 ms for a system with 11 species (the time required for the VBS + BAT equilibrium
solver step scales approximately linearly with number of species).

The VBS-NN shows a smaller error for lower-O : C (< 0.5) systems, but in all cases, it still needs some refinement by
an iterative equation solver to achieve a target precision of less than 107° in &; error. With that said, the VBS-NN initial
guess is successful in approximating the non-trivial equilibrium solution, which facilitates using an efficient, though less
robust, gradient descent method. Our VBS + BAT equilibrium implementation in MATLAB uses the finincon solver with the
sequential quadratic programming algorithm for an average evaluation time of ~ 10 ms. Without the VBS-NN initial guess,
a more robust interior-point algorithm must be used to find the non-trivial solution, resulting in an average evaluation time of
~ 40 ms.

The total evaluation time for a system comprised of 11 organic species plus water at a given a,, is between 13 and 19 ms,
depending on whether the iterative refinement loop within the BAT evaluation is active or skipped. This evaluation time is
similar to that for a standard (ideal mixing) VBS, which on the same CPU results in an evaluation time of 7.2 — 15 ms (either
using the sequential quadratic programming or interior-point algorithm, respectively). Moreover, we expect an optimized For-
tran implementation to further improve computational efficiency; thus, the penalty for a higher fidelity organic aerosol model
may be even lower. With these implementation issues addressed, the integrated VBS + BAT model can be used to asses the
impact of non-ideal mixing thermodynamics on predicted gas—aerosol partitioning and water content, both at low and high RH

and for different levels of molecular-level input information.

5 Results: Comparison of VBS + BAT and AIOMFAC Predictions

The model comparison focuses on the predictions of bulk liquid aerosol mass concentration and how that metric changes
when input data of lower chemical fidelity is used. AIOMFAC-based equilibrium gas—particle partitioning predictions are used
as a benchmark. These calculations account for liquid-liquid phase separation and consider relatively high-fidelity input, as the
AIOMFAC model uses functional group information for chemical structures and accounts for non-ideal interactions among all
species. In contrast, the VBS + BAT approach only includes non-ideal water <+ organic interactions (implicitly assuming ideal

organic <+ organic mixing) and rather limited molecular structure information (O : C; and My,g. ;).
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as an input in the VBS + BAT simulations. This process allows for a fair comparison between AIOMFAC and VBS + BAT
equilibrium simulations, since we are starting with the same dry mass concentrations, the only difference being the treatment

of non-ideality and phase equilibria as a function of RH.
5.1 Co-condensation of Organic Matter

Organic matter co-condensation is the first improvement the VBS + BAT model offers over the standard VBS (dry) model.
Here, co-condensation refers to the RH-dependent gas—particle partitioning of different organic compounds alongside changes
of aerosol water content (Topping et al., 2013). In Fig. 7a, the VBS + BAT model, using the individual organic molecule
properties (O : C;, H: C;, M; and effective C5% ), is compared to a standard VBS (dry) prediction (inputs: M; and effective
Cj‘étry) and a VBS + BAT prediction using average molecular properties for representing the organic aerosol fraction. The
average inputs (O : Cayvg, H: Cavg and My,e) used in the VBS + BAT (avg. prop.) simulation case are mass-weighted means
obtained from the dry AIOMFAC equilibrium calculation output. That calculation case uses a recalculated effective C;“fé dry"

The recalculated C’;\‘}é dry 18 needed to force all the simulations to be equal in total organic aerosol mass concentration at 0 %

RH. The VBS + BAT (avg. prop.) case mimics a situation where measurements of the volatility distribution (ij;) and of bulk
organic properties (O : Cayvg, H: Cave and M,,e) are available, e.g. from laboratory or field experiments. This also reflects a
situation comparable to using the minimal input properties needed for a implementation of VBS + BAT in a CTM.

The percentage difference in PM organic mass of both the high fidelity and averaged VBS + BAT simulations compared to
the benchmark calculation is less than 5 % over the majority of the RH range (Fig. 7b). A notable deviation occurs only at high
(> 96 %) RH, where a relatively sharp transition to a water-rich phase occurs in the a-pinene SOA system (affected by the
approximation via the prescribed ¢* function in VBS + BAT). At an RH of 99.95 % the error in VBS + BAT, VBS + BAT (avg.
prop.), and VBS (dry) are respectively 43 %, —12 %, and —21 % for a-pinene SOA. The agreement is closer for the isoprene
SOA case, for which the error in VBS + BAT, VBS + BAT (avg. prop.), and VBS (dry) are respectively 0.01 %, —0.2 %, and
—44 % at an RH of 99.95 %. The VBS + BAT model performs remarkably well and represents a clear improvement over the
standard VBS (dry) model, which ignores relevant water uptake of the isoprene SOA system over a large range in RH and the
high-RH change to a water-rich phase in the a-pinene SOA case. The latter is particularly relevant for capturing more realistic
CCN activation behavior, further discussed in Sect. 5.3.

A second AIOMFAC equilibrium calculation probes the effect of inorganic salts by adding a 50 % dry mass fraction of
ammonium sulfate. The salting-out effect does not drastically affect the resulting organic particulate matter mass concentration.
However, there is room for improvement of the BAT model by accounting for ion <> organic interactions. The inorganic salts
will affect which phase or phases the organics partition into, yet the present VBS + BAT model is not accounting for this.
This result suggests a CTM implementation could use a ZSR approximation to combine the water content contributed by
inorganic salts and organics (treated as completely phase-separated). To validate that approach and its limitations, we will need

to evaluate a much broader set of organic species and salt concentrations in future work.
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5.2 Hygroscopic Growth

Equilibrium water uptake as a function of RH and its indirect effect on the partitioning of organics is a crucial process.
The VBS + BAT simulations account for this process, while traditional VBS implementations do not. Referring to the SOA
systems shown in Fig. 7, the hygroscopic growth predictions by VBS + BAT and the AIOMFAC-equilibrium model are com-
pared in Fig. 8. Panel (a) shows the absolute PM water mass concentrations as a function of RH, while panel (b) represents
hygroscopicity in terms of predicted Kygr parameters. According to the AIOMFAC-based equilibrium prediction, the water
uptake by a-pinene SOA is low for RH < 98 %, as expected from previous studies (Rastak et al., 2017; Zuend and Sein-
feld, 2012), which the VBS + BAT model captures well. For isoprene-derived SOA, the VBS + BAT (avg. prop.) simulation
underpredicts the water content by a substantial amount, while the case with individual surrogate components performs well.
We traced this discrepancy back to the treatment of the IEPOX isoprene oxidation products in the VBS + BAT (avg. prop.)
run. In the molecule-specific VBS + BAT simulation, the IEPOX products are treated using hydroxyl functional groups, and
all other components are multifunctional hydroperoxides. Whereas the VBS + BAT (avg. prop.) run forces all species to be
multifunctional hydroperoxides which causes the IEPOX products to be represented as less hygroscopic than they actually are.
To alleviate this side effect, one could split average organic properties into two groups: one assuming hydroxyl functionality
and one assuming multifunctional hydroperoxides (e.g., 50 % by mass being from the hydroxyl class and 50 % from the hy-
droperoxide class). Lastly, it is interesting that at 90 % RH the large relative deviation in water mass (55 %) for isoprene SOA
only translated to a 4 % error in predicted PM organic mass (Fig. 7a). This characteristic is mainly due to one of the surrogate
species, a 2-methyl tetrol dimer (Lin et al., 2012), which is always partitioned to the PM (low vapor pressure) but the change
in the applied molecular functionality (in avg. prop. case) changes its effective hygroscopicity and thereby the water content of
the simulated aerosol at high RH. See Tables $5-and-56-S7 and S8 in the SI for details about the surrogate species of the SOA
systems.

The VBS + BAT model provides simultaneous predictions of water and organic partitioning, which means that hygroscopic
growth parameters can be calculated for comparison with other models and simpler hygroscopicity parameterizations. In this
case, we predict the widely-used hygroscopicity parameter, Kugr, related to the hygroscopic growth factor of the organic
mixture as a function of composition (and indirectly RH). The definition of kpgr used in this study is slightly different from
the x parameter introduced by Petters and Kreidenweis (2007), since our definition accounts for the effect of organic co-
condensation. Our generalized definition of kygr was introduced by Rastak et al. (2017) (see derivation and justification in
their SI). It is given by Eq. (22), where V' indicates volume contributions, with V,,., the cumulative contribution of organic
component volumes at any RH level after gas—particle equilibration, while V,,.4 4ry quantifies the total (organic) volume under
dry conditions (RH ~ 0%):

1 Vorg,dry
— =1+ kHaF .
Gy Vw + Vorg - Vorg,dry

Figure 8b shows a comparison of the predicted kygr values. Most VBS + BAT simulations are in good agreement with the

(22)

benchmark model, except for the VBS + BAT (avg. prop.) run for isoprene SOA. In the average prop. isoprene SOA case, the

underpredicted water content is propagated forward causing the kygp value to underpredict the AIOMFAC-based benchmark
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properties of different potential CCN particles (Petters and Kreidenweis, 2007). Over the past decade, the research community
then—progressed by characterizing (organic) aerosol hygroscopic growth measurements by a single « value —with-semetimes
inconsistent-distinetion-between-a—r+-value-at-subsaturated-and-supersaturated-humidity-conditionsfor ease of comparison and
use for parameterizations of CCN activation in large-scale models (e.g. Petters and Kreidenweis, 2007; Rastak et al., 2017).
The overarching goal was to link measured aerosol physicochemical properties to CCN activation behavior (critical supersatu-
ration, critical dry diameter, etc.). A common approach was to fit a linear dependence of « to organic O : C (Jimenez et al., 2009;
Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Duplissy et al., 2011; Frosch et al., 2011; Lambe et al., 2011; Wong
etal., 2011; Rickards et al., 2013; Thalman et al., 2017). A resulting linear fit was not always consistent with observations, due
to the nonlinear behavior of x vs. O : C, so Kuwata et al. (2013) introduced a set of water-solubility bins to account for nonlin-
ear step changes. More recently, Wang et al. (2019) focused on relating  to molar mass and assumed ideal mixing of organics

with water. There are at least two main

Hactors

that many of the previous approaches do not fully account for. The first was-the-common-assumption-of-is assigning a single
+ value and assuming it to be representative at all RH levels, which is i has been shown to be inaccurate in

multiple cases as this treatment does not account for non-ideal behavior changing with RH (or a,,), especially in the RH range
of 90 — 100 % (see Fig. 8b). The second being the fixation-with-using-use of a linear function to describe nenlinear-behavior—

We-may-gain-a-better-insight-on-the link-between-organic-aerosol-properties-to-CCN-activity-properties-by-using-the non-linear

behavior caused by liquid-liquid phase separation. More advanced thermodynamic models, like UNIFAC and AIOMFAC
have been used to gain insight into the complex CCN activation process accounting for phase separation and non-ideal mixin

can simulate the same processes as those more detailed thermodynamic models, but with less (or incomplete) information about
challenges accompanying predictions of CCN activation potential, including accounting for composition-dependent bulk—surface
partitioning of different organic and inorganic components in multicomponent aerosol and associated evolving surface tension
(e.g. Ruehl et al., 2016; Malila and Prisle, 2018; Davies et al., 2019). At present, those aspects may be best understood and
represented by detailed process models, though future BAT extensions may enable improvements also on a reduced-complexity.

The reduced-complexity inputs of the BAT model to-prediet-the-and its continuous behavior as a function of O : C and

M, 4 dependenee-of woon—tn-this-eontextallow for establishing a direct link between those organic aerosol properties (O : C
and M,,.,) and the predicted CCN activation potential. For these BAT model predictions, we revert to the original definition

of Kcen by assuming no organic co-condensation in Eq. 22 (i.e., Vorg, dry = Vorg). Accounting for the Kelvin effect with an
assumption about the air—droplet surface tension, one can calculate the equilibrium saturation ratio S of the aerosol / CCN,

4o M, >

RTp,D (23)

S—awexp<

Here, we assume a fixed volume of organics equal to a spherical droplet of 100 nm (dry) diameter over the full RH range

(Vorg = Vorg, dry)- This fixed organic volume means that we are neglecting co-condensation, so that these kcon values are
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equivalent mean M,,4 and O : C values. The relationship between the mean properties and the resulting Kcon of an organic
mixture would depend on the spread of the individual compounds that make up the mixture, which may span non-linear regions
in the water uptake behavior. In Fig. 10a, the kccn values exhibit an O : C-dependence, but the magnitude of that dependence
varies with molar mass. The O : C-dependence of kcon increases towards lower molar mass of the organic. Focusing on the
M,,4-dependence of kcon at a fixed O : C in Fig. 10b, we notice a nonlinear dependence on molar mass. This is anticipated
as the kcon “ideal” formula also suggests a nonlinear relationship, Kcon = ¢ porg Muw /(PwMorg), With 4 as the Van’t Hoff
factor, i.e., the effective degree of solute dissociation. By synthesizing the two molecular dependencies shown in Fig. 10, we can
anticipate how kccn varies within distinct aerosol populations. As SOA particle mass loading increases, the aerosol fraction
of relatively lower molar mass organics (of higher abundance in the gas phase) tends to increase too, which in turn leads to an
increase in kKccon- A lower total aerosol mass concentration would typically mean that the average molar mass is larger and
thus decreases xccn and indirectly the O : C-dependence. This mass loading effect may explain the remaining variability in
reported kcon values, but will need further study.

The measured kKccn data of a-pinene SOA shown in Fig. 10a indicate a water-rich a-phase-like behavior. It is interesting
that the measured data points start roughly at the limit of miscibility predicted by the BAT model when using the hydroxyl
functionalization. That might mean only a small fraction of species need to be miscible to drive the water uptake — and/or that
hydroxyl and carboxyl groups are the dominant functionalities of the molecules (both sharing the same BAT functional group
translation parameters).

It is also worth comparing the a-phase xcon predictions for M., = 300 gmol~! when applying either the hydroxyl
or hydroperoxide molecular functionality parameters with the BAT model. The two a-phase curves in Fig. 10a are nearly
identical, suggesting that the type of oxygen-bearing functional group is marginal in dilute systems (at the same O : C ratio).
This observation explains why an ideal mixing rule can work well over a broad range of O : C (Wang et al., 2019). A limitation
when applying an ideal mixing rule by default is clearly identified for system of intermediate to low average O : C, in which a

B-to-a phase transition occurs under hydration conditions.

6 Discussion

We developed the BAT model from the desire to capture the thermodynamics of non-ideal water <+ organic interactions
with only bulk species information, like O : C. In that reduced-complexity effort, we focus on determining representative
average relationships and do not expect to model a single component’s hygroscopicity and gas—particle partitioning perfectly.
The latter case is better approached by group-contribution models like UNIFAC and AIOMFAC - or for high accuracy by
system-specific parameterizations (e.g., using a Duhem-Margules model). The goal of the BAT model is to represent the
bulk O : C and molar mass dependencies of a wide range of water—organic mixtures to a reasonable degree of accuracy.
From this premise, the VBS + BAT model might fail when any one organic compound from a mixture dominates the water
uptake. For example, we expect an equimolar mixture of squalane (O : C =0, H: C =2, M,,, = 422 gmol ') and malonic

acid (0:C=1.33, H: C=1.33, M., = 104 gmol~!) to have significant errors (> 10 %) in predicted organic PM mass
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We can examine how this mixture diversity concept plays out by comparing BAT model predictions to recent experimental
findings by Marsh et al. (2019), none of which were used in determining the BAT parameter sets. Their experimental work used
a comparative kinetic electrodynamic balance method to measure the organic mass fraction (w.,4) of a mixed water—organic
droplet (Rovelli et al., 2016). Marsh et al. (2019) measured w,,4 over a wide range of water activities, making this a good
comparison for the BAT model; shown in Fig. 11. In their experiments, they had used a few nitrogen—containing organics. In
our application of the BAT model for those compounds, the nitrogen atoms were only accounted for in the organic density
and molar mass input of the model. We use the organic mixture composition and measured RH from Marsh et al. (2019) for
each data point to run an iterative BAT calculation to retrieve the water uptake, which then allow retrieving a w,,4 value. In
Fig. 11, the measured and modeled w,,, values of a variety of aqueous mixtures cluster along the 1:1 line, indicating good
agreement. The majority of data points are within + 10 % model-measurement uncertainty. Mixtures of pimelic acid isomers
(orange squares) will all have identical properties in the BAT model representation due to identical O : C and M,,, values of
these compounds. Therefore, the pimelic acid isomer mixture has no diversity from the BAT model perspective, characterizing
a system for which BAT is expected to perform less accurately. The mixture consisting of amino acids only is also a case where
the BAT model clearly deviates from the measurements. Since the BAT model was not trained to predict nitrogen—containing
organics, this behavior is not unexpected. However, when the mixture diversity increases by adding dicarboxylic acids to the
amino acid mixture, the model error in organic mass fraction, and concurrently water content, reduces to less than 10 %. The
error in predicting the water uptake of mixtures of dicarboxylic acids is also on the order of £ 10 %. In conclusion, the accuracy

of the BAT model tends to improve when the organic mixture becomes more diverse.

After mainly comparing to data for subsaturated conditions in Fig. 11, we now focus on predictions for the regime supersaturated
with respect to water vapor. In Fig. 12, the measurement derived rccn is compared with the corresponding BAT model
prediction. The data set contains 30 supersaturated droplet activation measurements of known chemical species (e.g., oleic
acid, glucose, and levoglucosan). The average error in the measurements is shown as the gray shaded area in Fig. 12, which
covers the average of the rocy range observed for each component. A subset of 18 chemicals reported a rocn range.,
from which the average error was calculated to be + 42 %. The data set we used was compiled by Petters et al. (2016) and

Petters and Kreidenweis (2007), which includes measurements derived from multiple sources (Broekhuizen et al.,

. Our comparison excludes the nitrogen-containing compounds. The BAT predictions assumed no organic co-condensation and
had an evolving surface tension as described in Sect. 5.3. The BAT predictions vs. measurements had an RMSE of 0.055 and
overall agreed within the reported measurement error. Substantial differences are found for the 0.35 < O : C < 0.55 range, in

which the resulting s is highly sensitive to a correct prediction of miscibility. For example, the miscibility is over-predicted
ig. 12. In the full data set of

30 molecules, another subset of 16 molecules were not in the training database of the BAT model, 50 a corresponding plot with
only this validation data is shown in the section 5.1 of the SI, including predictions by both BAT and AIOMFAC. The validation
data shows similar agreement to Fig. 12, with a measurement vs. BAT RMSE of 0.061 and measurement vs. AIOMFAC RMSE
0f 0.059. The AIOMFAC ricen predictions are better in the miscibility transition region than the BAT model, but overall the
models show similar predictive skill for this metric. We chose to focus on well-defined chemical systems for all of the direct
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neural networks, reducing the need for costly numerical iteration. In conclusion, the implementation of a more realistic organic
aerosol model in CTMs is likely feasible.

Our comparisons of AIOMFAC-based equilibrium and VBS + BAT simulations demonstrate agreement within about 5 %
error over the majority of the RH range. Due to the limited information available from the BAT model, the transition through a
miscibility gap had to be prescribed via a semi-empirical transition function instead of an explicit prediction. This prescribed
transition in the VBS + BAT model did introduce additional error in the equilibrium partitioning at high humidities for organic
mixtures with a miscibility gap — but is beneficial in terms of computational efficiency. The VBS + BAT model can be used
reliably across a wide range of the composition space, but our test cases show that caution should be used in the composition
range near the onset of a liquid-liquid miscibility gap.

The the-interplay between O : C, molar mass, and water uptake for CCN activation revealed-clearly show the complex
behavior of organic kcon values. Our elear-distinction between kccon and the more general xkygr helps the-community
understand-clearty-theto differentiate between the subsaturated and supersaturated behavior of organic aerosol. The use of the
BAT model in kccn prediction correctly captures the nonlinear dependence of kpgr (and Kccon) on organic properties and is
preferable to previous linear fitsusing-.

Finally, we present a comparison between the BAT model and comparative kinetic electrodynamic balance measurements
of organic mass fractions as a means of independent verification of BAT. The comparison highlights how the BAT model may
perform relatively poorly in the cases of certain individual organic species, but when modeling a mixture diverse in number
of components and functional groups, the accuracy tends to improve and is typically within + 10 % uncertainty. A diverse
mixture is typically a good description of ambient organic aerosol. Therefore, the BAT model is well suited for reduced-
complexity predictions involving ambient organic aerosol thermodynamics. Future work in the context of simplified aerosol
thermodynamics will be necessary for the development of computationally efficient models, similar to VBS + BAT, which

further account for organic <> inorganic interactions in the presence of dissolved electrolytes.
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1 Overview

The supplemental information covers the BAT model equations and the approaches for the parameterizations of different
functional group classes and phase separation treatments. These approaches include the O : C blending method developed for
the transition regions between the three BAT model parameterization regions, the functional group translations approach to
convert input parameters to OH-group equivalents, finding the a,, scp point for the liquid-liquid transition from a organic-rich
to a water-rich phase, and the density estimation method for organic compounds. The attached supplemental Microsoft® Excel
workbook file contains all the coefficient values, the SOA model system’s input properties, validation systems, and all the data

shown in the figures of the main text.
2  BAT model

2.1 BAT Equations

The explicit equations for our BAT model are listed below in Egs. (S1) to (S11). To improve the clarity, we define O : C = 1,
where O : C refers to the O : C of an organic component ("org") or the average O : C of a mixture of organics. The determined

coefficients are listed in Tables S1 & S2.
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Here, the activity coefficients of organic and water, .4 and -,,, respectively, as well as the corresponding activities (aorg,

a,) are defined on mole fraction basis (i.e. Yorg = 7((,‘:2]), each with the pure component as reference and standard states (where

activity coefficients become unity). The output from the BAT calculation can also be used to calculate the Gibbs energy of

15 mixing (AnixG), since the non-ideal interactions are parameterized (i.e., the excess Gibbs energy of mixing: G¥). Note, for

simplicity, we do not include standard state chemical potentials of water and the organic, which would add an additional linear

component to the curve. This is deemed justified given the approximate nature of the miscibility gap treatment. We present this

calculation below with A,;xG being normalized by R, T, and the total sum of moles n; = n, + Norg in the binary system.
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Table S1. Scaled volume coefficients of the fitted BAT model.

Region O : C bounds Training data points S2 ‘ S1 ‘
low O:C 0:C<0.15 1000 -5.988895 | 6.940689
mid. O: C 0:056<0+C<039m-0.05 < O : C < Imy, +£0.1 2680 -1.219164 | 4.742729
high O : C v <0O:C 3600 -0.078682 | 3.650860
misciblity line 0.06<0:C<0.45 2360 -1.237227 | 4.069905

Table S2. The eight power series coefficients (ar,1—4; 7 = 1,2) used in the hydroxyl-group-parameterized BAT model.

Region ‘ a1 ‘ a1 a2 a2 ai,3 ‘ az,3 ‘ a1, az4

low O:C 7.089476 | -0.622678 | -7.711860 -100.0 -38.859410 | 3.08E-09 -100.0 61.888120
mid. O : C 5.872214 | -0.974049 | -4.535007 -100.0 -5.129327 | 2.109751 | -28.092320 | -23.676830
high O : C 5.921550 -100.0 -2.528295 -100.0 -3.883017 | 1.353916 | -7.898128 | -11.601450
misciblity line | 5.885109 | -0.984901 | -4.731250 | -6.227207 | -5.201652 | 2.320286 | -30.822970 | -25.840370

2.2 Limit of Miscibility Line

The limit of miscibility line is determined from an initial BAT model fitting-fit involving the O : C region close to where the
miscibility gap vs. complete miscibility transition occurs. We started by fitting the BAT coefficients using a wide O : C range
(0.0t 0.8) and then progressively narrowed it to the transition region (O : C 0.05 to 0.45). We then scanned O : C and Mo, to
map out where the miscibility transition occurred (within BAT). The resulting O : C values defining-were used to fit the limit
of miscibility line, Y1, as a function of organic molar mass, was-determined-as-

0.205
P, = o +0.23, (S14)

1+ exp (26.6 (MM— - 0.12))

2.3 O : C Transition Region Blending

We used three different sets of fitted coefficients for the base BAT model representing hydroxyl functionality molecules. The
split was based on the limit of complete miscibility of organics with water and further separated by O : C. A sigmoidal function
was introduced to provide a smooth transition when traversing from one of the domains to the next in the 2-D parameter space
(e.g., when O : Cis increased gradually at a constant molar mass coordinate) — otherwise, spurious discontinuities would occur.
The sigmoidal function provides a weighted map between the parameters from one domain to the next (over a short range in
the boundary region). In effect, we are blending the different regions in the hydroxyl BAT model. Low to medium O : C region

blending is listed first (Eqs. S15 to S22), where )1y, is the 9 value at the limit of miscibility line and b1, bs, and by, are the



blending coefficients (Table S3). These are followed by and example of the blending weights as a function of O : C, Fig. S1.
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Table S3. Coefficients used in the blending of the different BAT coefficient regions for a molecule with hydroxyl functionality.

‘mid

Region Transition b1 b2 bmr
low to mid. O : C 79.2606902 | 6.04293E-02 | 0.1899745
mid. to high O : C | 75.0159268 | 9.47111E-04 -

2.4 BAT Funetional-Group-Translation

(S15)
(S16)
(S17)
(S18)
(S19)
(S20)

(S21)

(S22)

(S23)

(S24)
(S25)

(S26)

(S27)
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Table S4. Functional group translation coefficients to convert a whole molecule to a hydroxyl-equivalent molecule for BAT model inputs.

’ tn ‘ Hydroxyl ‘ Carboxyl ‘ Hydroperoxide | Hydroperoxide SOA PEG Ketone Ether Ester
t none none 8.1716E-06 1.4902E-04 5.4477E-03 | 4.5343E-03 | 2.4434E-05 | -1.293246
12 none none 4.5318E-07 4.7363E-03 3.864336 6.4845E-04 | 1.5832E-04 | 1.0813E-03
t3 none none 0.966090 0.869058 -0.267168 0.138144 0.284974 1.240514
4 none none 0.459433 0.564783 0.255487 0.352454 0.229339 0.405354

3 Water Activity Separation Point

In the case of a liquid-liquid equilibrium, the relative phase preferences are described by ¢, the fractional liquid-liquid
partitioning of a component to phase « (¢° < 1.0 in the two-liquid-phases case). Liquid-liquid phase separation (LLPS) in a
binary water—organic system at RH < 100 % is reduced to a point and manifests itself by a jump discontinuity. The liquid phase
is either a water-poor () or water-rich (a) phase, with a sharp transition between these two possible states at a specific water
activity (¢j* =1 or 0). To approximate the location and a,,-width over which the liquid-liquid phase separation is prescribed
to occur, we first determine a designated reference point, the so-called water activity separation point (@, scp). Liquid-liquid
phase separation connects two points on the Gibbs energy of mixing curve that have identical slopes and a tie-line that does not
cross the Gibbs energy curve (Fig. S2a). This tie-line represents the connection between the two stable phase compositions at
equilibrium. Prior to phase separation occurring, a mixture can enter the composition space past these two points, which will
result in a metastable state and eventually an unstable state, which will lead to spontaneous, spinodal decomposition (if phase
separation did not occur within the metastable region). The binary mixture can enter and remain in the metastable region, but
the energy barrier for liquid—liquid phase separation is typically low at room temperature, such that phase separation is expected
to occur when the water content is increased. In most cases we will be interested in a case of increasing or decreasing water
mole fraction at approximately constant temperature, SO Our ., scp point in Fig. S2a will be p,, which has a corresponding
point ps near/within the metastable composition range. If we solved for the tie-lines at high precision and included the standard
state chemical potentials of water and the organic, then points p; and p, would have identical activities. That however is not
the case, but we still want to ensure identical water activities at a,, sep. We achieve this by finding po’s corresponding point
(ps) which has the same water activity as the a., ¢p point, this ensures a realistic water-poor (3) to water-rich () transition.

Here, we explain how to identify (to good approximation) the two stable composition points in liquid—liquid equilibrium
by only using the BAT-predicted activity curves (Fig. S2b). In a binary system, both component activities must be less than
one and have monotonic behavior. Any regions that show non-monotonic behavior result in a phase separation range and
are denoted by the dashed lines in Fig. S2b. By connecting the mole fraction extent of the organic and water activity-based
(minimum) phase separation regions identified, we can construct the tie-line that connects the two stable phases over the
full extent of phase separation. This tie-line is then used in our above description to find the a,, scp point. We note that due
to omitting a computationally costly Gibbs energy minimization (with further including standard chemical potentials), the

identified miscibility gap is a (typically good) approximation of the true extent of phase separation.
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4 Organic Density Estimation

Organic density model from ?, Eqs. (S34 to S36). If H : C is not known then weuse H: C =2 — 9.

Me =12.010 gmol ¢ (S30)
My = 14.006 g mol ! (S31)
Mo =16.0 gmol ! (S32)
My =1.008 gmol ! (S33)
Morg
c= S34
"= Mo+ MpH:C+ Mo9+ MpN:C (534
Morg

* = S35

P 52 +H:C+2012N:C) (53%)
Pest. = p (1 +min(0.1n.9+0.1n.N: C, 0.3)) (S36)

5 BAT Model Validation and Error Analysis

Given that the BAT model is a multivariate function, a validation data set is used to assess the possibility of overfitting of
the model depending on the training data set. The species used in the training and validation (Table S6) data sets are listed
in the attached MS Excel file, the summary of the error analyses are shown in Table S5. Figure S3 compares the calculated
water and organic activities at the same organic mole fraction, which is clearer than directly comparing activity coefficients
from each model. For O : C values lower than 0.2, the deviation from the 1:1 line is more substantial than the deviation for
higher O : C compounds. This is expected as such compounds show a miscibility gap over a wide range of composition space
and associated high activities when computed for the initial, well-mixed single-phase case. For a quantitative assessment we
calculated the root mean squared error (RMSE) of the activities predicted by the two models (AIOMFAC being the benchmark).
If there was substantial overfitting, there would be a large difference in the RMSE between the training data and the validation
data. For the RMSE calculation, we excluded the points where the activity was greater than one, as those represent unstable
physical states and large deviations there can overwhelm the RMSE. Model-model deviations for those unstable cases are
largely irrelevant in practise, because what matters is the comparison of the predictive skill for the composition of the stable
phases (in LLPS or single-phase case). Table S35 lists the compiled error assessments for the training data and the validation
data. The similar RMSE values between the hydroxyl training and validation data suggest the model is not overfitting and has
general applicability within the training domain of the parameter space (O : C and molar mass ranges). This agreement suggest
that model behavior is realistic and our excess Gibbs function is smooth with no discontinuities. The smooth excess Gibbs
function then leads to smooth activity curves and activity coefficients. Discontinuities like liquid_liquid phase separation are
only derived from analysis of the excess Gibbs function (via post-processing) and are not directly built into the coefficients of






Table S5. BAT model data point numbers for model fit and validation as well as root mean squared errors (RMSE) for the training and
validation databases, which were generated by the AIOFMAC model.

Hydroxyl | Hydroxyl | Carboxyl | Hydro-perokidéro-peroREI8 | Ketone | Ether | Ester

(training) | (validation] SOA.
Points ____ for | 5311 007 SL 73 210 120 421 337 488
activity
comparison
a<l)
RMSE of gu. 00580 | 00667 | 00408 | 00690 | 00711 | 00335 | 00845 | 00730 | 0.0820
RMSE of dorg, | 00901 | 00964 | 00771 | 0.0950 | 00982 | 00520 | 01320 | 00970 | 0.1450

Points for LLPS | 52
comparison,

IS
i
2o
i

none | 10

NO

21

RMSE of dugeo | 00066 | 00127 | 00031 | 00039 | 00061 | none | 0.0075 | 0.0032 | 0.0024

of 0.061 and measurement vs. AIOMFAC RMSE of 0.059. The AIOMFAC redictions are better in the miscibilit
transition region than those from the BAT model, but overall both models show similar predictions.
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Continuation of Table S6

Data functionality (gmol™?) | Keox. EOCN. EOeN. Reference

Stearicacid | no_ | carboxyl | 011 | 200 | 28448 | 3.97E-06. LOOE-05_ | Petters (2009)

acid_

Myristic | yes | carboxyl | 014 | 200 | 22837 | S37E:06 | 0053 | LOOE-0S | Petters (2009)

acid_

Peroxide-ether no hydroper-gxid@9 | 2.00 | 260.00 4.10E-06_ 9.20E-04 | Suda (2014)

with

Cis-Pinonic | yes carboxyl | 0.30 | 1.60 | 184.24 0.054 0.106 0.005_ Petters (2016)

acid_

Pinonicacid | yes | carboxyl | 030 | 160 | 18424 [0054 | 006 | 0106 | Raymond
2003) and
Petters (2007)

Peroxide-ether no hydroper-gxidé6 | 2.00 | 276.40 0.000 0.020 Suda (2014)

Azelaicacid | yes | caboxyl | 044 | 178 | 18822 [0109 | 0031 | 0023 | Petters 2009)

Homophthalic yes | carboxyl | 044 | 0.89 [ 18016 [ 0436 | 0050 | 0094 | Huff ___ Hartz
Petters (2007)

Pinicacid | no_ | carboxyl | 044 | 156 | 18721 | 0114 0248 | Raymond
(2003)_____and
Petters (2007)

Nopinic | no_ | carboxyl | 050 | 150 [ 17218 [0J29 | 0179 | 0182 | Raymond

acid_ (2003) ____and
Petters (2007)

12




Continuation of Table S6

Data functionality (gmol™?) | Keox. EOCN. EOeN. Reference
Phthalic | yes | carboxyl | 050 | 075 | 16614 | 0155 | 0051 | 0051 | Huff ___ Hartz
Petters (2007)
Pimelic acid | yes carboxyl | 0.57 | 1.71 | 160.17 0.137 0.133 0.150 Frosch (2010)
Adipicacid | no_ | carboxyl | 0.67 | 167 | 14614 | 0.156 0.096 | Broekhuizen
2004) and
acid and Petters
(2009)
Glutaric no carboxyl | 0.80 | 1.80 | 147.13 0.157 0.133 0.106 Petters (2009)
acid
Levoglucosan| yes hydroxyl | 0.83 | 1.67 | 162.14 0.147 0.140 0.208 Svenningsson
(2006) _____and.
Petters (2007)
Maliowriose | yes | hydroxyl | 089 | 178 | 50444 | 0050  [0028 | 0055 | Petters 2009)
Sucrose | yes | hydroxyl | 092 | 183 | 34230 [ 0071 0061 | 0095 | Petters 2009).
alpha-Ketoglutayies carboxyl | 1.00 | 1.20 | 146.11 0.181 0.179 0310 Petters (2016)
acid
Erythritol | yes | hydroxyl | 100 | 250 | 12212 [ 081  [0180 | 0140 | Petters (2009)
Glucose yes hydroxyl | 1.00 | 2.00 | 180.16 0.131 0.128 0.170 Petters (2009)
Maleic acid | yes carboxyl | 1.00 | 1.00 | 116.10 0.235 0.234 0.330 Petters (2016)
Succinic | yes | caboxyl | 100 | 150 | 11809 | 0214 | 0212|0235 | Petters (2009)
acid

13




Continuation of Table S6

Chemical | Validation BAT 0:C | H:C | My BAT AIOMFAC | Measured | Measurement
Data functionality (gmol™?) | Keox. EOCN. EOeN. Reference
Malonic no carboxyl | 1.33 | 1.33 | 10406 | 0261 0.234. 0.227. Pradeep Kumar
acid_ 2003) and
Petters (2007)

End of Table
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6 Additional Water Activity Isopleths

The non-ideal behavior of water—organic mixtures is here explored at different molecular masses of the organic, analogous
to Fig. 2 of the main text. This is used to probe for any functional irregularities and was used to place bounds on realistic
BAT model behavior. In Fig. S5 the isopleths for 75, 100, 150, and 200 g mol~! of organic molar mass are shown. The black

region in Figs. S5 — S7 represent regions of phase separation due to water activity (a,, > 1) and light gray those due to organic

activities (agrg > 1) In the 75 gmol ™" case (Fig. S5a), one can start to see irregular behavior in the black phase separation
region as it has a bump at O : C=0.25. The lower limit for reasonable behavior is then approximately 75 gmol ™" due to that
irregularity — at least for O : © < 0.3, while physically reasonable behavior is shown for higher O : C ratios. LLPS is clearly
larger than the dark gray shaded areas as the 0.9 a,, contour has identical activities for two different mole fractions of water,
which i indicative LLPS. Figure S6 shows the a,-isopleths as molecular mass increases: for 300, 500, 800, and 1000 g mol ™.
Above 500 gmol ™" the model is unconstrained by training data and it is at these higher molecular masses that the contours
indicate artifacts due to transition effects among the distinct O : C ranges of the three BAT model domains. The dips in the
a-contours atan O : C of about 0.1 and 0.4 in Fig.S6c¢ & d are non-physical. Such non-physical domain transition effects are
further enhanced for high molar mass compounds when the x-axis shows the mole fraction of water. To get a clearer picture
of this behavior at high molecular masses, we generated isopleths graphs for 500, 800, 1000, and 2000 g mol~* (Fig. S7). We
changed the x-axis to a mass fraction scale to better visualize the water uptake by these large molecules. In Fig.S7b, we can
start to see irregular phase separation behavior indicated by an apparent region of miscibility at 0.1 < O : C < 0.15, with phase
separation at slightly higher and lower O : C. It is likely a non-physical artifact with a miscible region sandwiched between
the black regions; it should very likely be one contiguous phase separation region. This irregular behavior then continues to
expand as the molecular weight increases in Fig.S7c & d. However, we emphasize here that the gray areas only show the
minimum extent of an LLPS region, while a liquid—liquid equilibrium computation (as done with VBS + BAT) needs to be
done to determine the thermodynamically favoured parameter space exhibiting LLPS. If one is interested in phase separation
predictions and BAT calculations for organics of O : C < 0.45, then the BAT model is limited to the molar mass range below.
750 gmol~". If one is only interested in the O : C region above 0.5, then the BAT model should be applicable, with reasonable
behavior exhibited up to at least 2000 g mol ™",
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Figure SS5. Predicted water activity contours generated by the BAT model for binary aqueous mixtures of generic organic compounds of

constant molar mass yet variable O : C at T' = 298.15 K, The contours link water mole fraction and the organic O : C to the resulting water

r—organic mixture. The combined shaded regions in dark (a,, > 1) and light gray (a,,, > 1) represent the minimum

activity in a binary wate
extent of liquid_liquid phase separation for a certain O : C._ The bumps in the contours at O : C of 0.1 and 0.3 stem from the transitions
between the BAT model’s low:, medium:, and high-O : C parameterization domains. The Moy used is as follows: (a) 75 gmol ™, (b)
100 gmol ", (¢) 150 gmol ", and (d) 200 g mol ",
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Figure S6. Predicted water activity contours generated by the BAT model for binary aqueous mixtures of generic organic compounds of
constant molar mass yet variable O : C at T' = 298.15 K., The contours link water mole fraction and the organic O : C to the resulting water

activity in a binary water—organic mixture. The combined shaded regions in dark (a,, > 1) and light gray (a,,q > 1) represent the minimum

extent of liquid-liquid phase separation for a certain O : C. The bumps in the contours at O : C of 0.1 and 0.45 stem from the transitions
between the BAT model’s low-, medium-, and high-O : C parameterization domains. The M, , used is as follows: (a) 300 g mol ™1, (b)
500 gmol ™", () 800 gmol ™", and (d) 1000 g mol ™"
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Figure S7. Predicted water activity contours generated by the BAT model for binary aqueous mixtures of generic organic compounds of

constant molar mass yet variable O : C at T' = 298.15 K. Note the change to a mass fraction scale. The contours link water mass fraction
and the organic O : C to the resulting water activity in a binary water—organic mixture. The combined shaded regions in dark (a,, > 1) and
light gray (a,,4 > 1) represent the minimum extent of liquid-liquid phase separation for a certain O : C. The bumps in the contours at O : C

of 0.1 and 0.45 stem from the transitions between the BAT model’s low-, medium-, and high-O : C parameterization domains. The M,
used is as follows: (a) 500 g mol ™!, (b) 800 g mol ™, (¢) 1000 g mol~*, and (d) 2000 g mol ~*
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10

7 SOA Mixtures

The model comparison focuses on the predictions of bulk liquid aerosol mass concentration, and we used the AIOMFAC-
based equilibrium gas—particle partitioning predictions as a benchmark. The AIOMFAC-equil. calculations include considera-
tion of liquid-liquid phase separation and consider relatively high-fidelity input, as the AIOMFAC model uses functional group
information and accounts for non-ideal interactions among all species. In contrast, the VBS + BAT approach only includes non-
ideal water < organic interactions (implicitly assuming ideal organic <+ organic mixing) and rather limited molecular structure
information (O : C and M,,4). The full extent of the percentage difference in organic aerosol mass between the VBS + BAT
approach and AIOMFAC-equil. is shown in Fig. S8.

For our simulated aerosol systems, we use surrogate systems representing a-pinene SOA (Table S7) and isoprene SOA
(Table S8) products based on predictions from the Master Chemical Mechanism, as was detailed in ? and ?, respectively.
The a-pinene SOA system used here contains 10 organic species as surrogates of the SOA, and the isoprene SOA system

is comprised of 21 organic surrogate species. The input O : C and Mo, used for BAT are listed in Tables S7 & S8 and the

molecular functionality translations to OH-equivalents (done internally in the model) are listed in square brackets.
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Continuation of Table S7

MCM Name | SMILES BAT func- | O:C[OHegqv.] | H:C | My C9t+=x eff. er(;t
tionality (gmol™) | (ugm™3) (ugm™3)
[OH eqv.]

C10800H O=CCC(CC(=0)C( | hydroper- 0.50[0.27] 1.60 | 216.13 1.1344E+00 | 1.6671E+02
=0)C)C(C)(C)OO0 | oxideSOA [216.13]

PINIC OC(=0)CC1CC( carboxyl 0.44 [0.44] 1.56 | 186.17 6.2815E-01 | 1.4953E+01
C(=0)O)CL(C)C [186.17]

C92100H OCC(=0)C1(00) | hydroper- 0.56 [0.30] 1.78 | 204.18 9.1858E-01 | 2.1280E+00
CC(CO)C1(C)C oxideSOA [168.09]

C81200H OCC1CC(00)( hydroper- 0.86 [0.46] 1.75 | 195.17 7.6636E-01 | 7.1911E-01
C(=0)0)C1(C)C oxideSOA [159.44]

C8110H OCcCl1CC(C hydroper- 0.38 [0.20] 1.75 | 158.17 3.9949E-01 | 1.1569E+03
(=0)0)C1(C)C oxideSOA [124.84]

C81300H OCC(CC(=0)C(=0) | hydroper- 0.75 [0.40] 1.75 | 206.14 3.1319E-01 | 3.0180E-02
0)C(C)(C)OO oxideSOA [169.98]

ALDOL- CC(=0)C(=0)CC(C | hydroper- 0.37[0.20] 1.47 | 368.30 4.0696E+00 | 2.7866E-06

dimer (C=0)=CCC1CC(C | oxideSOA [335.21]
(0)=0)C1(C)C)C(C)
(©)00

ESTER- CC1(C)C(CCIC(0)F ester 0.37[0.12] 1.56 | 368.31 1.0174E+00 | 3.6370E-06

dimer 0)CC(=0)OCC(=0) [289.50]
C2CC(CC(0)=0)
C2(C)C

End of Table

Table S8: Properties of the isoprene SOA organic mixture used. The brackets denote the BAT model’s internal molecular

functionality translation.

Start of Table S8
MCM Name | SMILES BAT func- | O:C [OHeqv] | H:C | M, O+ off.  Cyot
tionality (gmol~t) | (ugm~3) (ugm™3)
[OH eqv.]
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Continuation of Table S8

MCM Name | SMILES BAT func- | O:C[OHegqv.] | H:C | My C9t+=x eff. er(;t
tionality (gmol™) | (ugm™3) (ugm™3)
[OH eqv.]

IEB1IOOH OCC(0)C(C) hydroper- 1.00 [0.54] 2.00 | 150.11 3.2124E+00 | 5.0688E+01
(00)C=0 oxideSOA [117.51]

IEB20OOH 00C(C=0)C(C) hydroper- 1.00 [0.54] 240 | 150.11 2.4919E-01 | 2.3180E+02
(0)CO oxideSOA [117.51]

C5900H OCC(=0)C(C) hydroper- 1.00 [0.54] 2.00 | 150.09 4.2176E+00 | 2.2954E+01
(CO)00 oxideSOA [117.50]

IEC100H OCC(=0)C(C) hydroper- 1.00 [0.54] 2.00 | 150.09 1.4709E+00 | 2.2954E+01
(CO)0OO oxideSOA [117.50]

C5800H 0=CC(O)C(C) hydroper- 1.00 [0.54] 2.00 | 150.11 3.3475E-01 | 5.0688E+01
(CO)O0 oxideSOA [117.51]

IEPOXA CC(0)(CO) hydroxyl 0.60 2.00 | 118.13 8.6354E-11 | 3.5120E+13
C1CO1

C5700H OCC(0)C(C) hydroper- 1.00 [0.54] 2.00 | 150.11 2.7170E-01 | 5.0688E+01
(00)C=0 oxideSOA [117.51]

IEPOXC CCl(conc hydroxyl 0.60 [0.60] 2.00 | 118.13 2.7879E-09 | 5.2036E+04
(0)CO [118.13]

HIEB1IOOH | OCC(O)C(CO) hydroper- 1.20 [.64] 2.00 | 166.11 2.8903E-01 | 1.0370E-01
(00)C=0 oxideSOA [132.13]

INDOOH OCC(ON(=0)= hydroper- 1.40[0.75] 220 | 197.14 2.5037E-01 | 4.5117E-01
0)C(C)(CO)O0 oxideSOA [161.32]

IEACO3H CC(O)(C1COLl) hydroper- 1.00 [0.54] 1.60 | 148.10 5.3463E-08 | 5.6321E+04
C(=0)00 oxideSOA [115.69]

C52500H OCC(=0)C(CO) hydroper- 1.20 [0.64] 2.00 | 166.09 2.1592E-01 | 3.9838E-02
(C0)00 oxideSOA [132.12]

HIEB20OOH | OOC(C=0)C(0O) hydroper- 1.20 [0.64] 2.00 | 166.11 1.4203E-01 | 7.0484E-01
(CO)CO oxideSOA [132.13]

IEC200H OCC(=0)C(C) hydroper- 1.00 [0.54] 1.60 | 148.06 2.0876E-06 | 4.2944E+03
(00)C=0 oxideSOA [115.66]

INAOOH OCC(C)(O0) hydroper- 1.40 [0.75] 220 | 197.14 1.3898E-01 | 1.7351E+00
C(O)CON(=0)=0 | oxideSOA [161.32]
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Continuation of Table S8

MCM Name | SMILES BAT func- | O:C[OHegqv.] | H:C | My C9t+=x eff. er(;t
tionality (gmol™) | (ugm™3) (ugm™3)
[OH eqv.]

C51000H 0=CC(0O)C(C)(00) | hydroper- 1.40[0.75] 1.8 | 195.10 4.1752E-03 | 2.6990E+02
CON(=0)=0 oxideSOA [159.38]

INB1OOH OCC(00)C(C) hydroper- 1.40[0.75] 220 | 197.14 7.1561E-02 | 4.2126E-01
(CO)ON(=0)=0 oxideSOA [161.32]

IECCO3H CCI(CO1)C(0) hydroper- 1.00 [0.54] 1.60 | 148.11 7.5983E-07 | 1.8033E+04
C(=0)00 oxideSOA [115.71]

INCOOH OCC(O0O)C(C)(O) | hydroper- 1.40 [0.75] 220 | 197.14 3.0754E-02 | 7.3141E+00
CON(=0)=0 oxideSOA [161.32]

INB20OOH OOCC(0)C(C) hydroper- 1.40[0.75] 220 | 197.14 3.4893E-02 | 1.4651E+00
(CO)ON(=0)=0 oxideSOA [161.32]

2- CC(0)(CO)C(O) hydroxyl 0.70[0.70] 230 | 254.28 7.2215E+00 | 2.5788E-06

Methyltetrol- | COC(C)(CO)C [254.28]

dimer (0O)CO

End of Table
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