
1 Anonymous Referee #1

Gorkowski et al. developed a very useful model BAT that can treat the non-ideal mixing of organics and water and can

predict the liquid-liquid phase separation, which is very important in SOA partitioning. The BAT model uses the measurable

organic aerosol properties (oxidation state, molar mass and vapor pressure) as inputs and the simulated results agree with a

comprehensive thermodynamic model AIOMFAC. The BAT model is successfully coupled with the VBS model predicting5

the gas-particle partitioning. The topic of this study is timely and highly relevant in improvement of thermodynamic aerosol

treatment in chemical transport models. I recommend this manuscript for publication after the following comments can be

addressed.

Authors Response: We thank the reviewer for her/his appreciation of this work and support of the manuscript. We have

added clarifying text about the functional group translation approach and possible extensions to it. Below are our responses10

to specific comments, with reviewer comments in purple, our responses in black text, and changes to the manuscript showing

removed text in red with strikethroughs and added text in blue with underlines. The page numbers listed after “Manuscript

Revisions on Page” refer to the revised manuscript.

1.1 Major comments

My major concern goes to the method of Functional Group Translation: P12, Line 10-11: Can the “functional group translation”15

also treat the nitrogen or sulfur-bearing functional groups?

Authors Response: This version of the BAT model does not include a parameter set to account explicitly for sulfur or

nitrogen moieties. We have expanded on the functional group translation discussion in the main text to point out possible

extensions to it. We also changed the phrase to ‘molecule functionality translation’ since there could be confusion with a

traditional group-contribution approach (like in UNIFAC / AIOMFAC) accounting for individual functional group effects20

rather than a whole molecule’s effect based on a predominant functionality classification. Our method is not an individual

functional group translation, though it may be possible to develop one, right now a whole molecule is assigned a fixed set of

translation coefficients to translate the BAT parameterization when the predominant functionalities of a molecule (or class of

molecules when averaging) is known in a system and when it is different from hydroxyl-dominated molecules.

Manuscript Revisions on Page 14–15: We reiterate that the BAT model is describing the whole molecule, and so these25

translations are not for the individual functional groupson a multifunctional molecule .
::::
This

:::::::
method

:
is
:::::::
different

:::::
from

:::
the

:::::
group

::::::::::
contribution

::::::::
approach

:::::
taken

::
by

::::::::
UNIFAC

::::
and

:::::::::
AIOMFAC,

:::
as

::::
here

:::
the

:::::
whole

::::::::
molecule

::
is

::::::::
assigned

:::
one

:::::::
effective

:::::::::::
functionality.

For multifunctional molecules, a distinct multifunctional translation must
:::
may

:
be derived, like we did for the SOA oxidation

products (see Fig. 4b). If that is not possible
::::
This

:::
can

::
be

:::::
done

::
by

:::::
using

:::::::::
AIOMFAC

::
to

:::::::
generate

:::::::
training

::::
data

:::
for

:::::::::::::
multifunctional

::::::::
molecules

::::
that

:::
are

::::::::::::
representative

::
of

:::::
VOC

::::::::
oxidation

::::::::
products.

:::
The

:::::::::
molecular

:::::::::
translation

::::::::::
coefficients

:::
are

::::
then

:::::
fitted

:::::
using

:::
the30

::::::::
generated

:::::::
training

::::::::
database.

::
If
::::

this
:::::
fitting

:::
of

:::
the

:::::::::
translation

::::::::::
coefficients

::
is

:::
not

::::::::
practical, then the most dominant and most

representative oxygen functionality
::::::::::
predominant

:::
or

::::
most

:::::::::::
representative

:::::::::::::
oxygen-bearing

:::::::::::
functionality

::
on

:::
the

::::::::
molecule should be

chosen .
::
for

:::
an

::::::::::
approximate

::::::::
molecule

::::::::::
functionality

::::::::::
translation.

:::::::::
Extensions

::
to

::::::
include

:::::::
organic

::::::
nitrate

:::
and

::::::
sulfate

::::::::::::
functionalities

:::
will

:::
be

:
a
:::::
topic

::
of

::::::
future

:::::::::::
development.

::
In

:::::::::
principle,

:::::::::
additional

::::::::
molecular

:::::::::::
functionality

::::::::::
translations

:::
for

:::::
each

::::::::::
combination

:::
of

::::::::
molecular

::::::::::::
functionalities

:::::
could

:::
be

:::::::::
developed,

:::::
which

:::::
would

:::
be

::::::::
practical

:
if
:::
the

:::::::
number

::
of

:::::::::::
permutations

::
is

:::::
small.

::
If
:::
the

:::::::
number35
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::
of

:::::::::::
combinatorial

::::::::::::
permutations

::
of

::::::::
molecular

:::::::::::::
functionalities

:
is
::::::

large,
::::
then

:::
that

:::::::::::
development

::::::::
direction

:::::
would

::::
lead

::
to
:::::::::

increased

:::::::::
complexity,

:::::
which

::
is

:::
not

:::
the

::::
goal

::
of

:::
the

::::
BAT

::::::
model.

:::
We

:::
will

::::::
explore

::::::::
different

::::::::
weighting

:::
and

:::::::
scaling

:::::::
methods

::
of

:::
the

::::::::::
translations

:::::::::
coefficients

:::::
based

::
on

:
N : C

:::
and S : C

:::::::::
elemental

:::::
ratios

:
to
::::::
retain

::
the

::::::::::::::::
reduced-complexity

:::::::::
approach.

::
If

:::::::
accurate

::::::
activity

:::::::::
coefficient

:::::::::
predictions

::
of

::
a

::::::
known

::
set

:::
of

::::::::::::
multifunctional

:::::::::
molecules

:::
are

:::::::
desired

:::
and

:::
the

:::::::::
molecular

:::::::::
structures

:::
are

::::::
known,

::::
then

:::
the

::::
use

::
of

::::::::
AIOMFAC

:::
or

:
a
::::::
system

:::::::
specific

:::::
model

::::::
instead

::
of

::::
BAT

::
is

::::::::::::
recommended.

:
5

P14, Line 8-10: I suggest adding a more detailed description to explain how to do “a distinct multifunctional translation”.

How the functional group translation is calculated for C97OOH in Fig.4(b)? The translated O:C ratio and molar mass can be

added in Tables S5 and S6 in the supplement.

Authors Response: See the response to the comment above and related changes to the manuscript. As suggested, we have

also added translated values to the SI tables.10

P14, Line 22-25: Is Fig.4a based on the carboxy-based, ketone-based, etc parameterizations? The shaded grey area and the

pink line in Fig. 4a are not explained in the main text. Please help me understand Fig.4a.

Authors Response: Yes, Fig. 4a shows the effect of BAT parameterizations with regard to the limit-of-miscibility lines when

based on the indicated functional groups rather than hydroxyl. The dotted pink line is the result of applying the multifunctional

hydroperoxide translation, which is used in Fig. 4b. This is stated in the figure caption and we now mention it in the text too.15

The grey area is the error in the O : C prediction, this is explained in the figure caption, and we also added a clarifying note in

the main text for this.

Manuscript Revisions on Page 15: We use this translation
:::
such

::::::::::
translations

:
to plot the limit of miscibility

:::::::::::::::
limit-of-miscibility

lines for all of the fitted functional group types considered (Fig. 4a).
:::
The

::::::
dotted

::::
pink

:::
line

::
is

::::
from

:::
the

::::::::::::
multifunctional

::::::::::::
hydroperoxide

:::::::::
translation

:::
and

:::
the

::::
gold

::::
line

:
is
:::::
from

::
the

:::::
PEG

::::::::::
translation,

::::
both

::::
have

:::::::
example

::::::::::
translations

:::::
shown

::
in
::::
Fig.

:::
4b

:::
and

::
4c

:::::::::::
respectively.20

:::
The

::::::::::
uncertainty

:::::
range

::
in

:::
the O : C

:::::::::
prediction

::
of

:
a
::::
limit

:::
of

::::::::
miscibility

::
is
::::
also

::::::
shown

::
in

::::
Fig.

::
4a

::
as

::
a
::::::
shaded

::::
gray

:::::::
region. These

miscibility limit lines represent the same process
:::::
(phase

:::::::::
separation

:::::
limit), but for different functional groups, so it is informative

to compare their relative positions .
::
in

:::
Fig.

:::
4a.

:

Minor comments:

(1) P5, Line 21: It is not proper to describe Eq. (6) as the effective volatility of “all species”. It is still the effective volatility of25

the compound j but includes water and inorganics in the absorbing phase.

Authors Response: We meant to state that it applies to all species; phrasing amended.

Manuscript Revisions on Page 5: The effective volatility of all
::::::::
saturation

:::::::::::
concentration

:::
of

::::
each species, including water

and other inorganic constituents in liquid phase π, is defined by Eq. (6).

(2) P9, Line 9: Could the authors explain more how you get the scaling factor in the form of [s1(1+O:C)s2]? From Section30

3.2 it seems s1 and s2 are fitted by the training dataset generated by the AIOMFAC model, instead of experimental data as you

wrote here on Line 9.

Authors Response: You are correct, it is fitted with the AIOMFAC training dataset.
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Manuscript Revisions on Page 9: In Eq. (16), ρorg and ρw are the liquid-state densities of the organic component and

water, respectively, while s1 and s2 are two scaling parameters determined from a model fit to experimental
:::::
during

:::
the

::::::
model

:::::
fitting

::
to

:::::::
training data.

(3) P10, Line 31: The authors wrote “the light green domain starts at ∼ 20% of the O:C ratio reached at the miscibility limit

and covers up to the blue domain”, but from Table S1, it seems the light green domains starts from O:C of 0.05 and covers5

up to the O:C of 10% of the miscibility line? In the excel file, the mid O:C region is “0.05<O : C < 0.1+ miscibility line”,

which is different from Table S1 (0 : 05<O : C < 0.1 miscibility line).

Authors Response: The excel file O : C bounds are correct, the SI has been revised to match this.

Table S1 range is the data used in the fitting of the coefficients but that range does not directly map to the coefficients used in

a BAT model calculation. A weighted averaged of the coefficients (SI section 2.3) are used in the BAT calculation; an example10

graph has been added to the SI. The text has been clarified accordingly.

Manuscript Revisions on Page 11: The blue domain includes components that have no miscibility limit with water. The

light green domain starts at∼ 20%
::::::
∼ 30%

:
of the O : C ratio reached at the miscibility limit and covers up to the blue domain.

. . .

Parameter optimization was carried out separately for each of the three domains, resulting in three distinct sets of BAT15

model parameters.
:::::
These

:::::::
domains

::::::::
represent

:::
the

:::::
three

::::::
regions

::::::
where

::::
each

:::
set

::
of

:::::::::
optimized

:::::::::
parameters

::::::::::
dominates.

:::::::::
Parameter

::::::::::
optimization

:::
for

::::
each

::::
sets

::
of

:::::::::
coefficients

::::
was

::::::
carried

:::
out

:::
on

:
a
:::::
wider

::::
and

::::::::::
overlapping O : C

:::::
range

::::
than

::::::
shown

::
in

:::
Fig.

:::
2a.

:

. . .

::
An

:::::::
example

::
of
:::
the

:::::::::
sigmoidal

::::::::
transition

:::::::
function

::
is

:::::
shown

:::
in

::
the

:::
SI,

::::
Fig.

:::
S1.

(4) P11, Line 8-10: Could the authors explain in a more detailed way how the equation (S14) is derived to calculate the limit20

of miscibility line? How you determined the O:C range of 0.05 to 0.45?

Authors Response: We added text to the SI (page 3, Sect. 2.2) to explain our approach for this.

SI Revisions on Page 3: The limit of miscibility line is determined from an initial BAT model fitting
::
fit involving the O : C

region close to where the miscibility gap vs. complete miscibility transition occurs.
::
We

::::::
started

:::
by

:::::
fitting

:::
the

::::
BAT

::::::::::
coefficients25

::::
using

::
a
::::
wide

:
O : C

::::
range

::::
(0.0

::
to

::::
0.8)

:::
and

::::
then

:::::::::::
progressively

::::::::
narrowed

::
it
::
to

:::
the

::::::::
transition

::::::
region

:
(O : C

::::
0.05

::
to

:::::
0.45).

:::
We

::::
then

:::::::
scanned O : C

:::
and

:::::
Morg ::

to
::::
map

:::
out

:::::
where

:::
the

:::::::::
miscibility

::::::::
transition

:::::::
occurred

::::::
(within

:::::
BAT).

:
The resulting O : C values defining

::::
were

::::
used

::
to

::
fit

:
the limit of miscibility line, ϑML, as a function of organic molar mass, was determined as

(5) P11, Line 29: The sentence is correct but the (aw > xw) confuses me as from Fig.3, for the higher O:C region, the

predicted aw is smaller than xw.30

Authors Response: Thanks for spotting this, you are correct. The sentence has been revised.

Manuscript Revisions on Page 12: Moving up towards higher O : C, there is a transition to rather hydrophilic behavior and

the water uptake at given equilibrium RH is predicted to become higher than that of an ideal mixture (aw > xw:::::::
aw < xw).

(6) P12, Line 6-7: I couldn’t see this result from Fig.3 and I don’t quite understand the grey areas in Fig.3. Could the authors

help explain it?35
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Authors Response: The increase with Morg can also be seen in Fig. 4a (hydroxyl curve) and from the additional isopleth

plots we added to the SI with this revised version of the manuscript.

The gray areas mark LLPS regions due to either activity (organic or water) being greater than 1, e.g. a pure organic phase

would have aorg = 1, which would therefore favor phase separation whenever the (forced) mixing leads to activities of one or

several components exceeding 1. LLPS also occurs where an identical activity (either aw or aorg) is predicted for two different5

mole fractions of water. In this figure, the gray shading indicates that an initial binary mixture within the gray area would be

unstable and undergo LLPS, leading to two phases of distinct compositions.

Manuscript Revisions on Page 13: In a binary mixture, LLPS is also clearly indicated anywhere a component activity

is (predicted) to be greater than 1.0 when assuming a single liquid phase in the calculation .
::::
(gray

::::::
areas

::
in

::::
Fig.

::
3).

::::::
These

::::
gray

:::::
areas

::::
mark

::::::
initial

:::::::::::
compositions

:::
that

::::::
would

::
be

::::::::
unstable

:::
and

:::::::
quickly

::::
lead

::
to

:::::::::
separation

::::
into

:::
two

::::::
phases

::
of

:::::::
distinct

:::::
water10

::::
mole

::::::::
fractions;

::
in

:::
the

::::
case

::
of

::::
Fig.

:
3
::::
with

:::
the

::::
final

:::::
phase

::::::::::::
compositions

::::
given

:::
by

:::
the

:::
two

::::::::::
intersection

:::::
points

::
of
::
a
:::
line

::
of
::::::::
constant

O : C
::
(of

:::::::::
compound

::
in

::::::::
question)

::::
and

:::
the

:::::
water

::::::
activity

:::::::
contour

::
at

:::
the

::::
edge

::
of

:::
the

:::::
phase

:::::::::
separation

:::::
area.

:::::::::
Additional

::::::::
isopleths

::
at

:::::::
different

::::::
organic

::::::
molar

::::::
masses

:::
(75

::
to

:::::
2000 gmol−1

:
)
:::
are

:::::
shown

::
in
:::
the

:::
SI

::::
Sect.

::
6. Based on BAT predictions, in comparison

to the case shown in Fig. 3, this phase separation region moves to higher O : C as the molar mass of the organics increases

and to lower O : C as molar mass decreases.15

(7) P14, Line 11: It is better to describe the Fig.4 from Fig.4(a) to (c).

Authors Response: We went with Fig.4b & c first as they are direct examples, which follow clearly from the introduction

of the translation methodology in the main text. We don’t think it is necessary for the figure description to be chronological

with the main text. We have considered changing the order of the Fig 4. (b & c graphs on the left then a), but we think it is

more aesthetically pleasing the way it is.20

(8) Figure 6: Should ξj be ξjguess in the output of the VBS neural network? I also suggest add aw,sep in the program outline.

Authors Response: We added aw,sep and we changed ξj to ξjguess.

1.2 Technical corrections

(1) P2, Line 31: “remains” should be “remain”. Authors Response: Changed.

(2) P10, Line15: should be organic↔ organic interactions. The latter “organic” is missing.25

Authors Response: Added.

(3) P31, Line1: There are two “the” at the beginning of the sentence.

Authors Response: fixed.
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2 Anonymous Referee #2

Gorkowski et al. present a modeling approach to predict the water content, CCN activity, liquid-liquid phase separation, and

gas-particle partitioning of single component and mixed organic aerosol. The focus of the work is to produce reduced com-

plexity models that have fast runtime while preserving the fidelity of the predictions. This is achieved by training the reduced

complexity model using more computationally expensive modeling framework. This manuscript is an ambitious attempt to5

contribute to the efficiency of modeling a wide range of organic aerosol processes. Constructing such comprehensive and fast

models is technically demanding and the authors should be complimented for their often clever approaches. For example, con-

ceiving and finding a suitable set of fitting coefficients that represent OA through Eq. (18) and (19) is impressive. A selected

set of validations is presented, and these validations appear to demonstrate that the reduced complexity models are adequate.

However, I do have concerns about the stability and validation of the model. A detailed formal evaluation of the BAT and NN10

model that is independent of training data is needed. Furthermore, more systematic validation of the model predictions against

experimental data is needed, especially against single component CCN data. I anticipate that the paper will be acceptable for

publication if formal, systematic, and independent validation is included.

Authors Response: We thank the reviewer for her/his positive comments and the concerns about model validation. Our

description did indeed not include finer details about the splits of the database into training/validation/testing data in the context15

of fitting the neural networks and of BAT. Although, such procedures were followed during development; we have improved

the description in the manuscript in this regard. In the revised manuscript version, we have added independent validation data

for fitting the BAT coefficients and explored the stability of the BAT model through additional plots added to the SI. Additional

text was added to describe the training of the neural networks using BAT-generated random data which was then separated

into training (70 %), validation (15 %), and testing (15 %) data sets. Below are our responses to specific comments, with20

reviewer comments in purple, our responses in black text, and changes to the manuscript showing removed text in red with

strikethroughs and added text in blue with underlines. The page numbers listed after “Manuscript Revisions on Page XX:”

refer to the revised manuscript.

2.1 Major comments

Both the BAT model and the NN model are trained. Figure 2a shows the training points for the BAT model. The standard25

approach in machine learning is to have a training set for which the model is optimized, and a validation set for compounds

that the model has not been tuned to. This does not appear to have been done and one might seriously question the fidelity of

the model outside the training set. Showing activity for citric acid is insufficient. I recommend that the authors test the model

against 100 (or so) compounds that were not used in the optimization and show a scatter plot of AIOMFAC vs. BAT for activity

coefficient at various RH, mole-fraction of the predicted miscibility gap, water activity of the miscibility gap, and predicted30

kappa CCN. Only through independent tests and systematic characterization of the error can one be confident that the BAT

coefficients truly represent AIOMFAC. A similar case is to be made for the NN training. Systematic validation against with

non-training data needs to be presented.

Authors Response:
The reliability and validation of both BAT and NN models were assessed as outlined more specifically below. We note here35
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that there is a distinction between the training of an unknown multivariate function, as in the case of a NN, requiring a machine

learning approach to determine the functional form (i.e. number of neurons and layers) and fit associated activation function

parameters – and that of the BAT model, for which a thermodynamic model was prescribed with fixed coefficient functions

(after initial tests), which then becomes a classical parameter optimization problem.

– Neural Networks: We have added a more detailed description of the training of the neural networks, as we did use the5

standard practice of training, validation, and test data sets. Also note that in the case of the NN, these are random data

sets generated by the function the NN is trying to invert and not measurements or AIOMFAC-generated data. Hence, a

large number of data points (∼ 10 million) were generated for the NN training and validation.

Manuscript Revisions on Page 20: To fit the neuron activation functions, we generate a random data set of O : Cj ,

Morg,j , xorg,j , and aw using the BAT model. The data corresponding to systems with a miscibility gap are parsed into10

two separate categories to train a separate NN.
::
We

::::::::
generated

::
a
::::::::
database

::
of

::::::::
9.8× 106

::::
data

:::::
points

:::
for

:::::::
miscible

::::::::
organics

:::
and

::::::::
4.6× 105

::::
data

:::::
points

:::
for

:::::
phase

::::::::
separated

:::::::
systems.

:::::
Each

:::::::
database

::::
was

::::
then

::::
split

:::
into

:::::::
training

::::
data

:::
(70

:::
%),

:::::::::
validation

::::
data

:::
(15

:::
%),

:::
and

::::
test

::::
data

:::
(15

:::
%),

:::::
which

::::
was

::::
used

::
to

:::::
train

:::
the

:::::::
BAT-NN.

:
Our NN inputs are O : Cj , Morg,j , and aw with

xorg,j as the target output.

And: We tested different NN input combinations and settled on using Cg+Σπ

j , O : Cj , Morg,j , BAT-derived water mass15

fraction (ww,j) and aw associated with organic component j.
:::::
Using

:::
the

::::
VBS

::
+

::::
BAT

::::::::::
equilibrium

:::::
solver,

:::
we

:::::::::
generated

:
a
:::::::
random

::::::::
database

::
of

::::::
13,000

::::
data

:::::
points

::::
split

::::
into

:::::::
training

::::
data

:::
(70

::::
%),

::::::::
validation

::::
data

::::
(15

:::
%),

::::
and

:::
test

::::
data

:::
(15

::::
%).

:::
This

:::::::::
generated

::::::::
database

::::
was

::::
then

::::
used

:::
for

:::
the

:::::::
training

:::
of

:::
the

:::
NN.

:
The NN output target is the vector of partitioning

coefficients, which is subsequently used as the initial guess for solving the coupled VBS + BAT system of non-linear

equations.20

– BAT model: Given that the BAT model is a multivariate function, a validation data set for it is also a good suggestion.

We have added the following clarifications.

Manuscript Revisions on Page 10-11: We generated a database of 37 known organic chemical structures and 123 artificial,

yet possible chemical structures.
::::
There

::::
were

:::
an

:::::::::
additional

::
16

:::::::
organic

::::::::
chemicals

:::::
used

::
for

::
a
:::::::::
validation

:::::::
database

:::
(SI

:::::
Table

::::
S6),

:::
and

::::::::
therefore

:::
not

:::::::
included

::
in

:::
the

:::::
fitting

::
of

:::
the

::::::
model.

:
25

. . .

:::
For

::::
each

::::::::
structure

:::::
there

:::
are

::
an

:::::::::
additional

:::
40

::::
data

::::::
points

::
at

:::::::
varying

::::
mole

::::::::
fractions,

::::::
which

:::::
means

:::
the

:::::::
training

::::::::
database

::::
has

::::
6400

:::::
points

::::
and

:::
the

::::::::
validation

::::::::
database

:::
has

::::
640

::::::
points.

. . . Page 11 . . .

::::::::
Generally,

:::
the

::::
BAT

::::::
model

::::::
showed

:::::
good

:::::::::
agreement

::
to

:::
the

:::::::
training

::::::::
database

::::
with

:
a
::::
root

:::::
mean

:::::::
squared

:::::
error

:::::::
(RMSE)

::
in

:::
aw ::

of30

:::::
0.058

:::
(5.8

::
%

::::
RH)

::::
and

::
in

:::::::
organic

::::::
activity

::::::
(aorg)

::
of

:::::
0.090.

::::
The

::::::::
validation

::::::::
database

:::::::
showed

:
a
:::::::
similar

:::::::::
agreement

::::
with

:
a
::::::
RMSE

::
in

::
aw:::

of
:::::
0.066

:::
and

::
in

::::
aorg::

of
::::::

0.096
::::::
(details

::
in

::
SI

:::::
Sect.

:::
5).

:::
The

::::
BAT

:::::
model

::
is
:::::
valid

:::
for

:::::::
organic

::::::::
molecules

::::::
within

:::
the

::::::::
following

:::::::
domain:

:::::::::::::
0≤ O : C ≤ 2

:::
and

:::::::::::::::::::::::
75≤ Morg ≤ 500gmol−1

::::
with

:::::::
realistic

:::::::
behavior

:::
up

::
to

:::::::::::
750gmol−1.

:::::::::
Additional

:::::
error

:::::::
analysis

::
for

:::
the

::::
BAT

::::::
model

::
is

:::::
shown

:::
in

::
SI

::::
Sect

::
5. In panels (b) and (c) of Fig. 2, we show two examples of the BAT predictions, after

domain-specific optimization, compared to the AIOMFAC-generated data.35

SI Revisions: SI Sect. 5, titled "BAT Model Validation and Error Analysis", Pages 8 – 12: copied section begins
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:
5
::::
BAT

::::::
Model

::::::::::
Validation

:::
and

::::::
Error

::::::::
Analysis

:::::
Given

:::
that

:::
the

:::::
BAT

:::::
model

::
is
::
a
::::::::::
multivariate

::::::::
function,

:
a
:::::::::
validation

::::
data

::
set

::
is
:::::

used
::
to

:::::
assess

:::
the

:::::::::
possibility

:::
of

::::::::
overfitting

:::
of

::
the

::::::
model

:::::::::
depending

:::
on

:::
the

:::::::
training

::::
data

:::
set.

::::
The

::::::
species

:::::
used

::
in

:::
the

:::::::
training

:::
and

:::::::::
validation

::::::
(Table

:::
S6)

::::
data

::::
sets

:::
are

:::::
listed

::
in

:::
the

:::::::
attached

:::
MS

::::::
Excel

:::
file,

:::
the

::::::::
summary

:::
of

:::
the

::::
error

::::::::
analyses

:::
are

::::::
shown

::
in

:::::
Table

:::
S5.

::::::
Figure

:::
S3

::::::::
compares

:::
the

:::::::::
calculated

::::
water

::::
and

:::::::
organic

:::::::
activities

::
at
:::

the
:::::

same
:::::::
organic

::::
mole

::::::::
fraction,

:::::
which

::
is
::::::
clearer

::::
than

:::::::
directly

:::::::::
comparing

:::::::
activity

::::::::::
coefficients5

::::
from

::::
each

::::::
model.

::::
For O : C

:::::
values

::::::
lower

::::
than

:::
0.2,

:::
the

::::::::
deviation

:::::
from

:::
the

:::
1:1

::::
line

::
is

::::
more

::::::::::
substantial

::::
than

:::
the

::::::::
deviation

:::
for

:::::
higher

:
O : C

:::::::::
compounds.

::::
This

::
is
::::::::
expected

::
as

::::
such

::::::::::
compounds

:::::
show

:
a
:::::::::
miscibility

:::
gap

::::
over

::
a
::::
wide

:::::
range

::
of

:::::::::::
composition

:::::
space

:::
and

:::::::::
associated

::::
high

::::::::
activities

:::::
when

::::::::
computed

:::
for

:::
the

::::::
initial,

:::::::::
well-mixed

:::::::::::
single-phase

:::::
case.

:::
For

:
a
::::::::::
quantitative

::::::::::
assessment

:::
we

::::::::
calculated

:::
the

::::
root

::::
mean

:::::::
squared

::::
error

:::::::
(RMSE)

::
of

:::
the

::::::::
activities

::::::::
predicted

::
by

:::
the

:::
two

:::::::
models

::::::::::
(AIOMFAC

::::
being

:::
the

:::::::::::
benchmark).

:
If
:::::
there

:::
was

:::::::::
substantial

::::::::::
overfitting,

::::
there

::::::
would

::
be

:
a
:::::
large

::::::::
difference

::
in
:::
the

::::::
RMSE

::::::::
between

:::
the

:::::::
training

::::
data

:::
and

:::
the

:::::::::
validation10

::::
data.

:::
For

:::
the

::::::
RMSE

::::::::::
calculation,

:::
we

::::::::
excluded

:::
the

:::::
points

::::::
where

:::
the

:::::::
activity

:::
was

::::::
greater

::::
than

::::
one,

:::
as

:::::
those

:::::::
represent

::::::::
unstable

:::::::
physical

:::::
states

:::
and

:::::
large

:::::::::
deviations

:::::
there

:::
can

::::::::::
overwhelm

:::
the

:::::::
RMSE.

:::::::::::
Model–model

:::::::::
deviations

:::
for

:::::
those

::::::::
unstable

:::::
cases

:::
are

::::::
largely

::::::::
irrelevant

::
in

:::::::
practise,

:::::::
because

:::::
what

::::::
matters

::
is

:::
the

::::::::::
comparison

::
of

:::
the

:::::::::
predictive

::::
skill

:::
for

:::
the

::::::::::
composition

::
of

:::
the

::::::
stable

:::::
phases

:::
(in

:::::
LLPS

:::
or

::::::::::
single-phase

::::::
case).

:::::
Table

::
S5

::::
lists

:::
the

::::::::
compiled

:::::
error

::::::::::
assessments

:::
for

:::
the

:::::::
training

::::
data

:::
and

:::
the

:::::::::
validation

::::
data.

:::
The

:::::::
similar

:::::
RMSE

::::::
values

:::::::
between

:::
the

::::::::
hydroxyl

:::::::
training

:::
and

:::::::::
validation

:::
data

:::::::
suggest

:::
the

:::::
model

::
is
:::
not

:::::::::
overfitting

::::
and

:::
has15

::::::
general

::::::::::
applicability

::::::
within

:::
the

::::::
training

:::::::
domain

::
of

:::
the

::::::::
parameter

:::::
space

:
(O : C

:::
and

:::::
molar

:::::
mass

:::::::
ranges).

::::
This

::::::::
agreement

:::::::
suggest

:::
that

::::::
model

:::::::
behavior

::
is
:::::::
realistic

::::
and

:::
our

::::::
excess

:::::
Gibbs

::::::::
function

::
is

::::::
smooth

:::::
with

::
no

:::::::::::::
discontinuities.

::::
The

::::::
smooth

::::::
excess

::::::
Gibbs

:::::::
function

::::
then

::::
leads

:::
to

::::::
smooth

:::::::
activity

:::::
curves

::::
and

::::::
activity

:::::::::::
coefficients.

::::::::::::
Discontinuities

::::
like

:::::::::::
liquid–liquid

:::::
phase

:::::::::
separation

:::
are

::::
only

::::::
derived

::::
from

:::::::
analysis

:::
of

:::
the

:::::
excess

::::::
Gibbs

:::::::
function

:::
(via

::::::::::::::
post-processing)

:::
and

:::
are

:::
not

:::::::
directly

::::
built

::::
into

:::
the

::::::::::
coefficients

::
of

::
the

:::::
BAT

::::::
model.20

:::
We

:::
did

:::
not

:::::::
generate

:::::::::
additional

::::::::
validation

::::
data

::::
sets

:::
for

:::
the

:::::::::
translation

:::::::::
coefficients

:::
for

::::
each

:::::::::
molecular

:::::::::::
functionality

::::
type

:::
for

:::
two

:::::::
reasons.

:::::
First,

::::
our

:::::::::
translation

:::
has

::::
only

::::
four

::::::::::
coefficients

::::
and

::::
will

::
be

:::::
well

::::::::::
constrained

::
by

:::::
100+

::::
data

::::::
points

::::
used

:::
in

:::
the

::
fit.

:::::::
Second,

:::
our

:::::::::
translation

::::::::
function

:::::::::
constitutes

:
a
:::::::
smooth

::::
map;

:::::
thus,

::
no

::::::::
artifacts

:::
due

::
to

::::::::
potential

:::::::::
overfitting

:::
are

::::::::
expected.

::
In

:::::::
addition

::
to

::
the

:::::::::::::
thermodynamic

:::::::::
activities,

::
we

::::
can

:::
also

::::::::
compare

:::
how

::::
well

:::
we

:::::
detect

::::
and

::::::
predict

:::
the

:::::
aw,sep:::::

point.
:::
For

:::
the

:::::::
organic

:::::::::
compounds

::
in

:::
the

::::::
binary

::::::
aquous

::::::
systems

::::
that

:::::::::
underwent

:::::
phase

:::::::::
separation,

:::
the

::::::
RMSE

::
of

::::
BAT

:::
vs.

:::::::::
AIOMFAC

:::::
aw,sep::::::::::

predictions25

::
are

:::::
listed

::
in

:::::
Table

:::
S5.

:::::::
Overall

:::
the

::::
BAT

:::::
aw,sep:::::::::

prediction
:::
was

::::::::
<±0.01,

:::
the

:::
aw:::::::::

prediction
:::
was

::::::::
<±0.09

::
(9

::
%

::::
RH),

::::
and

:::
the

::::
aorg

::::::::
prediction

::::
was

:::::::
<±0.15

:::::::::
compared

::
to

::::::::::
AIOMFAC.
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Figure 1. :SI Figure S5
::::::::::
Comparisons

::
of

::
the

::::
BAT

:::::::::
predictions

:::
with

:::
the

:::::::::
AIOMFAC

:::::
model

::::::::
predictions

:::
for

:::
the

:::::::
validation

::::
data

::
set

:::::
(Table

::::
S6).

::
An

::::::
activity

::::
value

:::::
above

:::
one

::::::::
represents

::
an

::::::
unstable

::
or

::::::::
metastable

::::::
mixing

::::
state,

:::
and

::
in

::::::
practice

::
the

::::::
mixture

:::::
would

:::::
phase

::::::
separate

:::::
readily

:::::
when

::::
given

:::
that

:::::
initial

::::::
mixture

::::::::::
composition.

::::
The

::::
color

:::
bar

::::::::
represents

::
the

:
O : C

:
of

:::
the

:::::::::
compound,

:::
and

::::
each

:::::::::::
organic–water

:::::
system

::
is
:::::
shown

:::
by

::
40

:::::::::
comparison

:::::
points

:::::::
spanning

::
the

::::::::::
composition

::::
range

::::
from

:::::
dilute

::
to

::::::::::
concentrated.

::::
Water

::::::
activity

::::::::::::::::
(aw = γw(1−xorg))::

is
:::::
shown

::
in

:::
(a)

:::
and

:::::
organic

::::::
activity

::::::::::::::
(aorg = γorgxorg)

::
in

:::
(b).

::::
Both

::::::
models

::
are

::::::::
compared

:
at
:::

the
::::
same

::::::
organic

::::
mole

:::::::
fraction,

::::
xorg .
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Table 1. :SI Table S5
:::
BAT

:::::
model

:::
data

:::::
point

::::::
numbers

:::
for

::::
model

::
fit
:::
and

::::::::
validation

::
as

:::
well

::
as

:::
root

:::::
mean

::::::
squared

::::
errors

:::::::
(RMSE)

::
for

:::
the

::::::
training

:::
and

:::::::
validation

::::::::
databases,

:::::
which

::::
were

:::::::
generated

::
by

:::
the

:::::::::
AIOFMAC

:::::
model.

::::::::
Hydroxyl

::::::::
(training)

::::::::
Hydroxyl

:::::::::
(validation)

:::::::
Carboxyl

:::::::::::::
Hydro-peroxide

:::::::::::::
Hydro-peroxide

::::
SOA

::::
PEG

::::::
Ketone

::::
Ether

: ::::
Ester

:

:::::
Points

::::::::
for

::::::
activity

:::::::::
comparison

::::::
(a < 1)

::::
5511

:::
607

:::
451

: :::
573

:::
910

:::
120

:::
421

:::
557

:::
488

:

:::::
RMSE

:::
of

::
aw: ::::::

0.0580
::::::
0.0667

::::::
0.0408

::::::
0.0690

::::::
0.0711

::::::
0.0335

::::::
0.0845

::::::
0.0730

::::::
0.0820

:::::
RMSE

:::
of

::::
aorg ::::::

0.0901
::::::
0.0964

::::::
0.0771

::::::
0.0950

::::::
0.0982

::::::
0.0520

::::::
0.1320

::::::
0.0970

::::::
0.1450

:::::
Points

::
for

:::::::::::
LLPS

:::::::::
comparison

:

::
52

:
4

:
5

:
9

:
5

::::
none

::
10

:
9

::
21

:::::
RMSE

::::::::
of

:::::
aw,sep:

::::::
0.0066

::::::
0.0127

::::::
0.0031

::::::
0.0039

::::::
0.0061

::::
none

::::::
0.0075

::::::
0.0032

::::::
0.0024

5.1
::::
CCN

:::::::::::::
Hygroscopicity

:::::::::
Parameter

::::::::
Validation

:::
We

::::::::
compare,

::
in

::::
Fig.

:::
S4,

::::::::::::::::::
measurement-derived

::::::
κCCN ::::

data
::::::
against

:::
the

:::::
BAT

:::
and

::::::::::
AIOMFAC

::::::
model

:::::::::
predictions

:::
of

::::::
κCCN.

:::
The

:::::::::
validation

::::::
dataset

:::::::::
contained

:::
16

::::::::::::
supersaturated

:::::::
growth

::::::::::::
measurements

:::
on

::::::
known

::::::::
chemical

:::::::
species,

:::::
listed

:::
in

:::::
Table

:::
S6

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Petters et al., 2009; Broekhuizen et al., 2004; Brooks et al., 2004; Frosch et al., 2010; Huff Hartz et al., 2006; Petters et al., 2016, 2006; Pradeep Kumar et al., 2003; Raymond, 2003; Suda et al., 2014; Svenningsson et al., 2006)

:
.
:::
The

:::::::
average

::::
error

:::
in

:::
the

::::::::::::
measurements

::
is

:::::
shown

:::
as

:::
the

::::::
shaded

::::
gray

::::::
region

:::
and

::
is

:::
the

:::::::
average

::
of

:::
the

:::::
κCCN:::::

range
:::::::::

observed.5

:::
The

:::::::::
validation

::::
data

::::::
shows

::::::
similar

:::::::::
agreement

::::::::
between

:::
the

::::
two

::::::
models

::::
with

::
a
::::::::::::
measurement

:::
vs.

::::
BAT

::::::
RMSE

:::
of

:::::
0.061

::::
and

:::::::::::
measurement

::
vs.

::::::::::
AIOMFAC

::::::
RMSE

::
of

::::::
0.059.

:::
The

::::::::::
AIOMFAC

:::::
κCCN::::::::::

predictions
:::
are

:::::
better

::
in

:::
the

:::::::::
miscibility

::::::::
transition

::::::
region

:::
than

:::::
those

:::::
from

::
the

:::::
BAT

::::::
model,

:::
but

::::::
overall

::::
both

::::::
models

:::::
show

::::::
similar

::::::::::
predictions.
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Figure 2. :SI Figure S6
:::::::::
Comparison

::
of

:::::::::::::
single-component

::::::
organics

:::::
κCCN:::::::::::

measurements
::::::
against

::::
those

:::::::
predicted

::
by

::::
BAT

:::::
(black

::::::
circles)

:::
and

::::::::
AIOMFAC

:::::
(white

::::::
circles)

:::::
model

:::::::::
simulations

::
of

:::::
CCN

::::::::
activation.

:::
The

::::
blue,

::::::
dashed

::::
lines

::::::
connect

:::
the

::::
BAT

:::
and

::::::::
AIOMFAC

:::::::::
predictions

:::
for

::
the

::::
same

::::::
species

:::::
when

::::
there

::
is

:
a
::::
large

::::::::
difference.

::::
Gray

:::::::
shading

:::::::
represents

:::::::
± 42 %

::::::
average

::::::::
uncertainty

::
in
:::

the
::::::::
measured

:::::
κCCN.

:::
The

:::::
black

:::::
dashed

:::
line

::
is
:::
the

::::
BAT

:::::
model

::::
linear

:::
fit

:::
with

::
a
:::
zero

::::::::
intercept,

::::::::::::::::::::::::::::::::::
κCCN,BAT = κCCN,measured × 0.78 [± 0.078]

::::
with

:
a
::::::::

Pearson’s
:::::::::
R2 = 0.48.

:::
The

::::
black

:::::
dotted

::::
line

:
is
:::

the
:::::::::
AIOMFAC

:::::
model

:::::
linear

::
fit

:::
with

::
a
:::
zero

::::::::
intercept,

:::::::::::::::::::::::::::::::::::::::
κCCN,AIOMFAC = κCCN,measured × 0.75 [± 0.066]

:::
with

::
a

::::::::
R2 = 0.57.

:::
The

::::::
RMSE

::::::
between

:::
the

:::::::::::
measurements

:::
and

::::::::
predictions

::::
were

:::::
0.061

::
for

::::
BAT

:::
and

:::::
0.059

::
for

:::::::::
AIOMFAC.

:::
The

:::::::::
simulations

:::::::
assumed

:
a
:::
100

:
nm

::::::
diameter

::::::::
equivalent

::::::
volume

::
of
::::::

organic
::::::

matter
:
at
:::

the
:::::
CCN

:::::::
activation

:::::
point

:::
and

:::
the

:::::
droplet

::::::
surface

::::::
tension

:::
was

::::::::
calculated

::
as
::

a

:::::::::::::
volume-weighted

::::
mean.

::
A
:::
list

::
of

::
the

:::
16

:::::::
validation

:::::
points

::
is

::::
given

::
in

::::
Table

:::
S6

copied section ends

Note, the table and citation errors of text overflow only show up in the tracked changes text, and not in the clean/re-
vised manuscript and SI text.

Related to this point: “Therefore, in an attempt to design a more general organic activity coefficient model, we made two

important changes. First, we change the independent composition variable used in Eq. (15). Instead of mole fraction xorg,5

we introduce a scaled volume fraction (’org) in the series expansion of GE/RT. Second, we introduce a parameterization of

the scalar c0 n coefficients by means of multivariate functions, which are dependent on common characteristics of organic

molecules.”

(1) Please provide some rationale why switching to volume fraction was required. It is not clear to the referee or from the

text.10
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Authors Response: As described near the bottom of page 9: "The scaled volume fraction acknowledges that neither mole

fraction nor volume fraction (nor mass fraction) perfectly accounts for the composition-dependence of activity coefficients

when describing various binary systems." The switching to volume fraction is not required per se, but some form of scaling

of the mole fraction composition scale is advantageous when the same binary Gibbs excess function is used for more than a

single system and in particular when targeting a wide range in molecular masses of the organic component and therefore large5

shape and size differences compared to water molecules. Using volume fraction scaling is a better natural choice as it includes

accounting for differences in molecular sizes, while the scaling further helps to achieve optimal model performance, which

was also confirmed by preliminary tests we run before settling for the present functional form of the BAT model. We add the

following text to explain this step.

Manuscript Revisions on Page 9–10: The introduced change of composition scale improves the flexibility of this model10

when optimized for a wide range of binary systems characterized by the same set of model parameters (s1,s2;an,1,an,2,an,3,

etc., with n= 1,2 . . .). The
::::
mole

:::::::
fraction

::::
scale

::::::
works

::::
well

:::
for

:::::
binary

:::::::
systems

::::::::
involving

::::
two

::::::::::
components

::
of

::::::
similar

:::::::::
molecular

:::
size

::::
and

:::::
shape.

::::::::
However,

::::
this

::
is

:::::
rarely

:::
the

::::
case

::
in

::::::::
aqueous

::::::
organic

::::::::
mixtures

::::
with

::::::
organic

::::::::::
compounds

::
of

:::::::::::
substantially

::::::
higher

:::::
molar

::::
mass

:::::
than

:::::
water.

::::
The

::::::
volume

:::::::
fraction

:::::
scale

::::::::
implicitly

:::::::
accounts

:::
to

::::
some

::::::
extent

:::
for

:::
the

:::
size

:::::::::
difference

:::::::
between

:::::::
organic

:::
and

:::::
water

::::::::::
molecules,

:::::
which

::::::
means

::::
that

::::
the

:::::::::
coefficient

::::::::
functions

:::
cn:::

do
:::
not

:::::
need

::
to

:::::::
correct

:::
for

:::
the

:::::::::
molecular

:::::
size-

::::
and15

::::::::::::::::::::
composition-dependence

::
as

:::::
much

::
as

:::::
when

::::
mole

:::::::
fraction

::::
were

:::::
used.

:
It
::
is

:::
for

:
a
::::::
similar

::::::
reason

::::
that

::::
local

::::::::::
composition

::::::
models

::::
like

:::::::
UNIFAC

:::::::
describe

:::::::
organic

::::::::
molecules

::
as

::
a

::::::::::
combination

::
of

:::::::::::
similar-sized

:::::::
segments

::::::::::
(subgroups)

:::::::::
occupying

:
a
:::::::
regular

::::::
lattice,

:::::
which

:::::::::
contributes

::
to

:::
the

::::::::
so-called

:::::::::::
combinatorial

:::::::
activity

::
in

::::
those

:::::::
models.

::::
The scaled volume fraction acknowledges that neither mole

fraction nor volume fraction (nor mass fraction) perfectly accounts for the composition-dependence of activity coefficients when

describing various binary systems.
:::::::::::
Alternatively,

:
a
::::::
scaled

::::
mole

:::::::
fraction

::::::::::
composition

:::::
scale

:::::
could

::::
have

::::
been

:::::
used,

:::
but

:::
we

:::::
chose20

::
to

::::
scale

:::::::
volume

::::::::
fractions

::
as

:::
the

:::::::
scaling

::::::::
coefficient

::::::
values

:::::::::
constitute

:
a
:::::::
smaller

:::::::::
adjustment

:::::
when

:::::
used

::::
with

:::
this

:::::::::::
composition

:::::
scale,

:::::::
meaning

::::
that

:
a
:::::::
simpler

::::::
scaling

:::::::
function

:::
was

:::::::::
sufficient. Importantly, Eq. (19) remains consistent with all thermodynamic

relations, including that GE becomes zero at both limits: φorg = 0 (when xorg = 0), φorg = 1 (when xorg = 1).

(2) I don’t understand why using Redlich-Kister was selected. The RK expansion can fit to arbitrary precision. While it is

true that the model is thermodynamically consistent in the limit of x = 1 and x = 0, the polynomial can lead to maxima and25

minima in the excess [Gibbs] function that may or may not be realistic. This is particularly concerning since the polynomial

coefficients are themselves computed through a multivariate model. (It is impressive that the system converged). I am concerned

that the BAT model coefficients are overfitted and not be representative of other compositions, especially with respect to a phase

separation which represents a discontinuity and is highly sensitive to very small fluctuations in the excess [Gibbs] function.

This issue re-emphasizes the need to independently verify the fidelity of the BAT model. When addressing this concern,30

the authors should discuss why RK was selected instead of the Margules or van Laar model, which would be less sensitive

to error from the use of polynomials by limiting the shape of the excess [Gibbs] function. There are a few comparisons to

actual data. While it is clear that the model cannot be compared to every data point in the literature, the real-world validation

appears not to be systematic. For example, it’s not clear why single component data from Marsh et al. (2019) was selected

for hygroscopic growth and various a-pinene SOA for CCN. The composition dependence of subsaturated water content on35

O:C for SOA (e.g. Pajunoja et al., 2015, doi:10.1002/2015GL063142) is far more revealing than the supersaturated data. Many

data sets for single subsaturated water uptake of single component organic aerosol are available. Ideally a proper validation set

11



would systematically probe O:C and functional group coverage, and would considers experimental error. A plot like Figure 11

should be made for available single component CCN data, including for cases where LLPS is known to control CCN activity. A

validated dataset with comparison against UNIFAC/LLPS is available in Petters et al. (2016, GMD, 10.5194/gmd-9-111-2016).

Authors Response:
BAT function: We chose the Redlich–Kister functional form specifically because it could be fitted to arbitrary precision5

and account for extrema in activity coefficients, if necessary; however, more than two coefficient terms (c1, c2) seemed to

add little value to the fits (see description in Section 3.2). Use of two coefficient terms (in BAT as parameterized functions)

also means that the shape of the Gibbs excess function is constrained towards realistic behavior, similar to a two-parameter

Margules model. We also wanted the excess Gibbs function and activity coefficients to be capable of expressing maxima and

minima as that behavior is important for models that allow for liquid–liquid phase separation, thus we did not use the van Laar10

model. Since we went with two polynomial terms and had 1000+ data points covering the range from very low to very high

concentrations of aqueous organic systems to fit the model, the behaviour of BAT is well constrained in the O : C and molar

mass space considered. Additional isopleth of Figure 3 for lower and higher molar masses were added to explore functional

irregularities in the BAT Model Validation and Error Analysis section of the SI.

Manuscript Revisions on Page 8:
:
In

::::::::
addition

:::
GE

:::::
must

::
be

:::::::
capable

::
of

:::::::::
expressing

:::::::
maxima

::::
and

:::::::
minima

:::::
within

:::
the

::::::
mixed15

::::::::::
composition

:::::
space

::::::::::::
(0< xorg < 1)

::
to

::::::::
correctly

::::::
capture

:::::::
possible

::::::
phase

:::::::::
separation

::::::::
behavior.

Validations: The concerns about validation/overfitting to AIOMFAC have been addressed in the response to the first com-

ment; validation to measurements are discussed below.

We used the comparison to measurements by Marsh et al. (2019) mainly since the chemical species in those experiments

are known. This is also why we did not use any measured OA data sets for subsaturated conditions, for which chemical20

composition is not well known. More comparisons and analyses of ambient and laboratory data sets (e.g. Pajunoja et al., 2015,

doi:10.1002/2015GL063142) have been split off to future work as additional analysis is required (estimations/assumptions

of volatility, molecular weight, and O : C distributions), which would distract from the the main point of introducing the

VBS + BAT model. We have added a comparison plot showing modelled vs. measured κCCN data as suggested for single-

component (aqueous) organic aerosol.25

Manuscript Revisions on Page 30–32:
::::
After

::::::
mainly

::::::::::
comparing

::
to

::::
data

::::
for

:::::::::::
subsaturated

:::::::::
conditions

::
in

::::
Fig.

::::
11,

:::
we

:::
now

:::::
focus

:::
on

::::::::::
predictions

:::
for

:::
the

::::::
regime

:::::::::::::
supersaturated

::::
with

:::::::
respect

::
to

:::::
water

::::::
vapor.

::
In

::::
Fig.

:::
12,

::::
the

:::::::::::
measurement

:::::::
derived

:::::
κCCN ::

is
::::::::
compared

::::
with

:::
the

::::::::::::
corresponding

::::
BAT

::::::
model

:::::::::
prediction.

::::
The

::::
data

::
set

::::::::
contains

::
30

:::::::::::::
supersaturated

::::::
droplet

:::::::::
activation

:::::::::::
measurements

::
of
::::::
known

::::::::
chemical

::::::
species

::::
(e.g.,

:::::
oleic

::::
acid,

:::::::
glucose,

::::
and

::::::::::::
levoglucosan).

:::
The

:::::::
average

:::::
error

::
in

:::
the

::::::::::::
measurements

:
is
::::::
shown

:::
as

:::
the

::::
gray

::::::
shaded

::::
area

:::
in

:::
Fig.

::::
12,

:::::
which

::::::
covers

:::
the

:::::::
average

::
of

:::
the

:::::
κCCN::::::

range
::::::::
observed

:::
for

::::
each

::::::::::
component.

::
A30

:::::
subset

::
of

::
18

:::::::::
chemicals

:::::::
reported

:
a
:::::
κCCN::::::

range,
::::
from

:::::
which

:::
the

:::::::
average

::::
error

::::
was

:::::::::
calculated

::
to

::
be

:::::::
± 42 %.

:::
The

::::
data

:::
set

:::
we

::::
used

:::
was

::::::::
compiled

::
by

:::::::::::::::::
Petters et al. (2016)

:::
and

::::::::::::::::::::::::::
Petters and Kreidenweis (2007),

:::::
which

:::::::
includes

::::::::::::
measurements

:::::::
derived

::::
from

:::::::
multiple

::::::
sources

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Broekhuizen et al., 2004; Brooks et al., 2004; Frosch et al., 2010; Huff Hartz et al., 2006; Petters et al., 2006; Petters and Kreidenweis, 2007; Petters et al., 2009, 2016; Pradeep Kumar et al., 2003; Raymond, 2003; Suda et al., 2014; Svenningsson et al., 2006)

:
.
:::
Our

::::::::::
comparison

:::::::
excludes

:::
the

:::::::::::::::::
nitrogen-containing

::::::::::
compounds.

:::
The

::::
BAT

:::::::::
predictions

::::::::
assumed

::
no

:::::::
organic

:::::::::::::
co-condensation

::::
and

:::
had

:::
an

:::::::
evolving

::::::
surface

:::::::
tension

::
as

::::::::
described

::
in
:::::

Sect.
:::
5.3.

::::
The

::::
BAT

:::::::::
predictions

:::
vs.

::::::::::::
measurements

::::
had

::
an

::::::
RMSE

::
of

:::::
0.055

::::
and35

::::::
overall

::::::
agreed

:::::
within

:::
the

:::::::
reported

:::::::::::
measurement

:::::
error.

::::::::::
Substantial

:::::::::
differences

:::
are

:::::
found

:::
for

:::
the

:::::::::::::::::
0.35<O : C< 0.55

::::::
range,

::
in

:::::
which

:::
the

:::::::
resulting

:::::
κCCN::

is
::::::
highly

:::::::
sensitive

::
to

:
a
:::::::
correct

::::::::
prediction

::
of

:::::::::
miscibility.

::::
For

:::::::
example,

:::
the

:::::::::
miscibility

::
is

::::::::::::
over-predicted

12



::
for

:::::::
phthalic

::::
acid

:::::::::::
(O : C = 0.5)

:::::
while

::
it

::
is

:::::::::::::
under-predicted

:::
for

::::
pinic

::::
acid

:::::::::::::
(O : C = 0.44),

:::::
shown

::
in

::::
Fig.

:::
12.

::
In

:::
the

:::
full

::::
data

:::
set

::
of

::
30

:::::::::
molecules,

:::::::
another

:::::
subset

::
of

:::
16

::::::::
molecules

::::
were

:::
not

::
in

:::
the

:::::::
training

::::::::
database

::
of

:::
the

::::
BAT

:::::
model,

:::
so

:
a
::::::::::::
corresponding

::::
plot

::::
with

:::
only

::::
this

::::::::
validation

::::
data

::
is
::::::
shown

::
in

:::
the

::::::
section

:::
5.1

::
of

:::
the

::
SI,

::::::::
including

::::::::::
predictions

::
by

::::
both

::::
BAT

:::
and

::::::::::
AIOMFAC.

:::
The

:::::::::
validation

::::
data

:::::
shows

::::::
similar

:::::::::
agreement

::
to

::::
Fig.

:::
12,

::::
with

:
a
:::::::::::
measurement

:::
vs.

::::
BAT

::::::
RMSE

::
of

:::::
0.061

:::
and

:::::::::::
measurement

:::
vs.

:::::::::
AIOMFAC

::::::
RMSE

::
of

:::::
0.059.

::::
The

:::::::::
AIOMFAC

:::::
κCCN::::::::::

predictions
:::
are

:::::
better

::
in

:::
the

:::::::::
miscibility

:::::::::
transition

:::::
region

::::
than

:::
the

::::
BAT

::::::
model,

:::
but

:::::::
overall

:::
the5

::::::
models

::::
show

:::::::
similar

::::::::
predictive

::::
skill

:::
for

::::
this

::::::
metric.

:::
We

:::::
chose

::
to

:::::
focus

:::
on

::::::::::
well-defined

::::::::
chemical

:::::::
systems

:::
for

::
all

::
of
::::

the
:::::
direct

:::
BAT

:::::::::::::::::
model–measurement

::::::::::::
comparisons,

:::::::
allowing

:::
for

:::::::
minimal

::::::::::
uncertainty

::
in

:::
the

::::
input

:::::
data.

:::::::::
Additional

:::::::::::
comparisons

::
of

::::
BAT

::
to

:::::::
complex

:::::::
ambient

:::
and

:::::::::
laboratory

:::
OA

:::::::
systems

::::
will

::
be

::::::
carried

::::
out

::
in

:::
the

:::::
future,

:::::
since

:::::::::
additional

:::::::
analyses

:::
are

:::::::::
necessary

:::
for

:::
the

::::::::
estimation

:::
of

::::::::
volatility,

::::::::
molecular

::::::
mass,

:::
and

:
O : C

:::::::::::
distributions.

::::
Such

::::::::
analyses

:::
will

::::::
enable

::
a

:::
fair

:::::::::
evaluation

:::
of

::::
VBS

::
+

::::
BAT

:::::
model

:::::::::
predictions

:::::::
against

::::::::::::
measurements

::
for

:::::::
systems

::::
that

:::
are

:::::::::
unresolved

::
on

:::
the

:::::::::
molecular

::::::::::
composition

:::::
level.10
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Figure 3. :Main text Figure 12:
:::::::::::::
Single-component

::::::
organic

::::::
aerosol

::::::::::::
measurements

::
of

:::::
κCCN:::

are
::::::::

compared
::::::

against
:::::

those
::::::::

predicted

::
by

:::::::::::
corresponding

:::::
BAT

:::::
model

::::::::::
simulations

::
of
:::::

CCN
:::::::::

activation.
::::
The

::::
gray

:::::::
shading

::::::::
represents

:::::::
± 42 %

:::::::
average

:::::::::
uncertainty

::
in
::::

the

:::::::
measured

::::::
κCCN.

::::
The

::::::
dashed

::::
line

::
is
::

a
::::::

linear
::
fit

:::::
with

::
a

::::
zero

::::::::
intercept,

::::::::::::::::::::::::::::::::::::
κCCN,BAT = κCCN,measured × 0.799 [± 0.059]

:::::
with

::
a

:::::::
Pearson’s

:::
R2

:::
of

::::
0.66.

::::
The

::::::::::::::::
model–measurement

::::::
RMSE

::::
was

:::::
0.055.

::::
The

::::
BAT

::::::::::
simulations

::::::
assume

::
a
:::
100

:
nm

::::::
diameter

:::::::::
equivalent

:::::
volume

:::
of

::::::
organic

::::::
matter

::
at
::::

the
:::::
CCN

::::::::
activation

:::::
point.

::::
The

::::::
droplet

::::::
surface

::::::
tension

:::
is

::::::::
calculated

:::
as

::
a
:::::::::::::
volume-weighted

::::::
mean.

:
A
::::

list
::

of
::::

the
:::

30
:::::::::::

measurement
:::::

points
:::

is
:::::

given
:::

in
:::::
Table

:::
S6

:::
of

:::
the

:::
SI,

:::::
with

:::
the

::::
data

::::::::
obtained

::::
from

::::
the

::::::::
following

:::::::
studies:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Broekhuizen et al. (2004); Brooks et al. (2004); Petters et al. (2006); Petters and Kreidenweis (2007); Petters et al. (2009, 2016); Frosch et al. (2010); Huff Hartz et al. (2006); Pradeep Kumar et al. (2003); Raymond (2003); Suda et al. (2014); Svenningsson et al. (2006)

.
:
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Other comments

The tone of the hygroscopic growth and CCN section should be revised. For examples

“Over the past decade, the research community then progressed by characterizing (organic) aerosol hygroscopic growth mea-

surements by a single κ value, with sometimes inconsistent distinction between a κ value at subsaturated and supersaturated

humidity conditions.”5

“Our clear distinction between κ CCN and the more general κHGF helps the community understand clearly the subsaturated

and supersaturated behavior of organic aerosol”

While it is true that there has been a debate on κCCN and κHGF the authors should acknowledge that 100s of experimental

and modeling papers were devoted to this subject, with many important individual contributions explaining the origin of the

discrepancy and the composition dependence of κHGF. While the BAT model may capture some of these now very well un-10

derstood effects, it does not really reveal anything new. Please rephrase the text and/or provide a more nuanced perspective on

the topic.

Authors Response: Right, the BAT model does not reveal any new processes. Nevertheless, it may provide a different way

to visualize the sub- vs. supersaturated hygroscopicity signatures. Everything we showed could also be done – and most has

been done – with models like UNIFAC or AIOMFAC. We have added that point and revised this section’s statements to address15

this reviewer’s concerns. An advantage of the BAT model, with its intrinsic and continuous dependence on Morg and O : C, is

its ability to compute the isolines shown in Figure 10, which would have to be discretized by a set of molecular formulas in a

similar figure when using UNIFAC/AIOMFAC.

Manuscript Revisions on Page 25–27:
copied section begins20

Our last model application focuses on κ at the CCN activation point, denoted as κCCN of the organic aerosol. The BAT

model is used to understand composition effects on the hygroscopic growth parameter of organic species at CCN activation

conditions and the related ongoing discussion within the atmospheric science community. The
::::
BAT

:::::
model

::::
can

::::::
predict

:::
an

:::::
entire

::::::
Köhler

:::::
curve

::::::
directly

::::
and

::::
does

:::
not

::::
rely

::
on

::
a

:::::
κCCN ::::::::

prediction
:::
for

::::::::::
applications

:::
in

:::
the

::::::
context

::
of

:::::
cloud

::::::
droplet

:::::::::
formation

::::::::::::::
thermodynamics.

:::::
Thus,

:::
the

:::::::
exercise

::
of

:::::::::
predicting

:::::
κCCN::

is
::::
here

::::::
mainly

::::::
carried

:::
out

::
to

::::::
inform

:::
on

:::
the

::::::::::
relationship

::::
with

:::::::
existing25

:::::::::
approaches.

::::
The

:
κ-Köhler framework reduces hygroscopic growth to a single parameter (κ) that can be used to compare the

properties of different potential CCN particles (Petters and Kreidenweis, 2007). Over the past decade, the research community

then progressed by characterizing (organic) aerosol hygroscopic growth measurements by a single κ value , with sometimes

inconsistent distinction between a κ value at subsaturated and supersaturated humidity conditions
::
for

::::
ease

::
of

::::::::::
comparison

::::
and

:::
use

:::
for

:::::::::::::::
parameterizations

::
of

:::::
CCN

::::::::
activation

:::
in

:::::::::
large-scale

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Petters and Kreidenweis, 2007; Rastak et al., 2017).30

The overarching goal was to link measured aerosol physicochemical properties to CCN activation behavior (critical supersatu-

ration, critical dry diameter, etc.). A common approach was to fit a linear dependence of κ to organic O : C (Jimenez et al., 2009;

Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Duplissy et al., 2011; Frosch et al., 2011; Lambe et al., 2011; Wong

et al., 2011; Rickards et al., 2013; Thalman et al., 2017). A resulting linear fit was not always consistent with observations, due

to the nonlinear behavior of κ vs. O : C, so Kuwata et al. (2013) introduced a set of water-solubility bins to account for nonlin-35

ear step changes. More recently, Wang et al. (2019) focused on relating κ to molar mass and assumed ideal mixing of organics

with water. There are at least two main problems that likely led to the current understanding of κ fororganic aerosol
::::::
factors
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:::
that

:::::
many

::
of

:::
the

::::::::
previous

:::::::::
approaches

:::
do

:::
not

::::
fully

:::::::
account

:::
for. The first was the common assumption of

::
is assigning a single

κ value
:::
and

::::::::
assuming

:
it
:

to be representative at all RH levels, which is often inaccurate (
:::
has

::::
been

::::::
shown

::
to

:::
be

:::::::::
inaccurate

::
in

:::::::
multiple

::::
cases

:::
as

:::
this

::::::::
treatment

::::
does

:::
not

:::::::
account

:::
for

::::::::
non-ideal

:::::::
behavior

::::::::
changing

::::
with

:::
RH

:::
(or

::::
aw),

:::::::::
especially

::
in

:::
the

:::
RH

:::::
range

::
of

::
90

::
–

:::
100

::
%

::
(see Fig. 8b). The second being the fixation with using

:::
use

::
of

:
a linear function to describe nonlinear behavior .

We may gain a better insight on the link between organic aerosol properties to CCN activity properties by using the
::::::::
non-linear5

:::::::
behavior

::::::
caused

:::
by

:::::::::::
liquid–liquid

:::::
phase

::::::::::
separation.

:::::
More

::::::::
advanced

:::::::::::::
thermodynamic

:::::::
models,

::::
like

::::::::
UNIFAC

::::
and

::::::::::
AIOMFAC,

::::
have

::::
been

::::
used

::
to

::::
gain

::::::
insight

::::
into

:::
the

:::::::
complex

:::::
CCN

::::::::
activation

::::::
process

::::::::::
accounting

::
for

:::::
phase

:::::::::
separation

::::
and

::::::::
non-ideal

::::::
mixing

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Petters et al., 2016; Ovadnevaite et al., 2017; Renbaum-Wolff et al., 2016; Rastak et al., 2017; Hodas et al., 2016)

:
.
:::
The

::::
BAT

::::::
model

:::
can

:::::::
simulate

:::
the

::::
same

::::::::
processes

::
as
:::::
those

:::::
more

::::::
detailed

:::::::::::::
thermodynamic

:::::::
models,

:::
but

::::
with

:::
less

:::
(or

::::::::::
incomplete)

::::::::::
information

:::::
about

::
the

:::::::::
molecular

::::::::
structure

::::::
and/or

::::::::::
composition

::
of

::::
the

::::::
organic

:::::::
aerosol

:::::::
fraction.

:::
We

:::::::::::
acknowledge

::::
that

:::::
there

::::::
remain

::
a

::::::
number

:::
of10

::::::::
challenges

::::::::::::
accompanying

::::::::::
predictions

::
of

::::
CCN

::::::::
activation

::::::::
potential,

::::::::
including

:::::::::
accounting

:::
for

:::::::::::::::::::
composition-dependent

:::::::::::
bulk–surface

:::::::::
partitioning

::
of
::::::::
different

::::::
organic

::::
and

::::::::
inorganic

::::::::::
components

::
in

:::::::::::::
multicomponent

:::::::
aerosol

:::
and

:::::::::
associated

:::::::
evolving

::::::
surface

:::::::
tension

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ruehl et al., 2016; Malila and Prisle, 2018; Davies et al., 2019).

:::
At

:::::::
present,

:::::
those

::::::
aspects

:::::
may

::
be

::::
best

::::::::::
understood

::::
and

:::::::::
represented

:::
by

::::::
detailed

:::::::
process

:::::::
models,

:::::
though

::::::
future

::::
BAT

:::::::::
extensions

::::
may

:::::
enable

::::::::::::
improvements

::::
also

::
on

:
a
:::::::::::::::::
reduced-complexity

::::
level.

:
15

:::
The

:::::::::::::::::
reduced-complexity

:::::
inputs

:::
of

:::
the

:
BAT model to predict the

::
and

:::
its

::::::::::
continuous

:::::::
behavior

:::
as

:
a
::::::::
function

::
of

:
O : C and

Morg dependence of κCCN. In this context
:::::
allow

:::
for

::::::::::
establishing

:
a
:::::
direct

::::
link

:::::::
between

:::::
those

::::::
organic

:::::::
aerosol

::::::::
properties

:
(O : C

:::
and

::::::
Morg)

:::
and

:::
the

::::::::
predicted

:::::
CCN

::::::::
activation

::::::::
potential.

::::
For

::::
these

:::::
BAT

:::::
model

::::::::::
predictions, we revert to the original definition

of κCCN by assuming no organic co-condensation in Eq. 22 (i.e., Vorg,dry = Vorg). Accounting for the Kelvin effect with an

assumption about the air–droplet surface tension, one can calculate the equilibrium saturation ratio S of the aerosol / CCN,20

copied section ends

Manuscript Revisions on Page 34: The the interplay between O : C, molar mass, and water uptake for CCN activation

revealed
::::::
clearly

::::
show

:
the complex behavior of organic κCCN values. Our clear distinction between κCCN and the more general

κHGF helps the community understand clearly the
:
to

::::::::::
differentiate

::::::::
between

:::
the subsaturated and supersaturated behavior of

organic aerosol. The use of the BAT model in κCCN prediction correctly captures the nonlinear dependence of κHGF (and25

κCCN) on organic properties and is preferable to previous linear fitsusing .
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Abstract. Water plays an essential role in aerosol chemistry, gas–particle partitioning, and particle viscosity, but it is typically

omitted in thermodynamic models describing the mixing within organic aerosol phases and the partitioning of semivolatile or-

ganics. In this study, we introduce the Binary Activity Thermodynamics (BAT) model, a water-sensitive, reduced-complexity

model treating the non-ideal mixing of water and organics. The BAT model can process different levels of physicochemical

mixture information enabling its application in the thermodynamic aerosol treatment within chemical transport models, the5

evaluation of humidity effects in environmental chamber studies, and the analysis of field observations. It is capable of using

organic structure information including O : C, H : C, molar mass, and vapor pressure, which can be derived from identified

compounds or estimated from bulk aerosol properties. A key feature of the BAT model is predicting the extent of liquid–liquid

phase separation occurring within aqueous mixtures containing hydrophobic organics. This is crucial to simulating the abrupt

change in water uptake behavior of moderately hygroscopic organics at high relative humidity, which is essential for capturing10

the correct behavior of organic aerosols serving as cloud condensation nuclei. For gas–particle partitioning predictions, we

complement a Volatility Basis Set (VBS) approach with the BAT model to account for non-ideality and liquid–liquid equi-

librium effects. To improve the computational efficiency of this approach, we trained two neural networks; the first for the

prediction of aerosol water content at given relative humidity, and the second for the partitioning of semivolatile components.

The integrated VBS + BAT model is benchmarked against high-fidelity molecular-level gas–particle equilibrium calculations15

based on the AIOMFAC model. Organic aerosol systems derived from α-pinene or isoprene oxidation are used for comparison.

Predicted organic mass concentrations agree within less than a 5 % error in the isoprene case, which is a significant improve-

ment over a traditional VBS implementation. In the case of the α-pinene system, the error is less than 2 % up to a relative

humidity of 94 %, with larger errors past that point. The goal of the BAT model is to represent the bulk O : C and molar mass

dependencies of a wide range of water–organic mixtures to a reasonable degree of accuracy. In this context, we discuss that20

the reduced-complexity effort may be poor at representing a specific binary water–organic mixture perfectly. However, the

averaging effects of our reduced-complexity model become more representative when the mixture diversity increases in terms

of organic functionality and number of components.
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1 Introduction

In observational and modeling studies, non-ideal molecular interactions in liquid phases play an essential role in organic

aerosol partitioning, cloud droplet activation, and atmospheric chemistry (Petters and Kreidenweis, 2007; Zuend et al., 2010;

Pankow et al., 2015; Rastak et al., 2017; Ovadnevaite et al., 2017). Common thermodynamic mixing models and related

equilibrium frameworks are highly valuable for the computation of non-ideal mixing effects within liquid (aqueous) inorganic,5

organic, or mixed organic–inorganic phases through activity coefficient predictions. Models frequently used by the atmospheric

aerosol community include the Aerosol Inorganic-Organic Mixtures Functional group Activity Coefficient (AIOMFAC) model

(Zuend et al., 2008, 2011, 2010), the Universal Quasichemical Functional-group Activity Coefficients (UNIFAC) model (Fre-

denslund et al., 1975; Yan et al., 1999; Compernolle et al., 2009), the Model for Simulating Aerosol Interactions and Chemistry

(MOSAIC) (Zaveri et al., 2008), the improved thermodynamic equilibrium aerosol model (ISORROPIA II, “equilibrium” in10

Greek) (Nenes et al., 1998; Fountoukis and Nenes, 2007), and the Extended Aerosol Inorganics Model (E-AIM) (Clegg et al.,

1992, 2001; Wexler, 2002; Clegg and Seinfeld, 2004, 2006). Each model comes with its specific advantages and limitations in

chemical species and temperature range covered, as well as the trade-off in computational efficiency vs. accuracy. Such mod-

els, in combination with vapor pressure models, can predict the gas–aerosol partitioning of volatile and semivolatile inorganic

and/or organic species and thereby the expected aerosol composition and mass concentration for given environmental condi-15

tions and appropriate structural information about the chemical species involved. This makes detailed thermodynamic models

very useful for model–measurement comparisons in the context of well-characterized laboratory experiments and modeling

case studies of particulate matter (PM).

For inorganic salts, acids, and bases, it is possible to directly implement equilibrium thermodynamics models in “online”

large-scale Chemical Transport Models (CTMs). A typical implementation in CTMs is ISORROPIA II, which uses the avail-20

ability of molecular-level information about the abundance of inorganic aerosol constituents or their gaseous precursors (e.g.,

ammonia and nitric acid) as model inputs (Nenes et al., 1998; Zhang et al., 2000; Fountoukis and Nenes, 2007; Zhang et al.,

2012). More recently, MOSAIC has been used to account for the dynamic partitioning of semivolatile inorganic gases (Zaveri

et al., 2008). In the case of organic aerosol and its volatile precursors, molecular-level chemical constituent information is gen-

erally lacking. Implementations of organic aerosol non-ideality, in current and past CTMs, approach the problem by choosing25

representative surrogate molecules for broad classes of organic compounds or by merely assigning a hygroscopicity parameter

to characterize at least the water-affinity of the organic aerosol fraction (Pankow and Barsanti, 2009; Pankow et al., 2015; Pye

et al., 2017; Zhang et al., 2012; Jathar et al., 2016; Kim et al., 2019). Aside from mechanistic and implementation challenges,

the direct modeling of organic molecular structures would further have very few validation points as ambient measurements are

currently limited and constrained to a select set of identified organics (Tsigaridis et al., 2014; Lopez-Hilfiker et al., 2016; Sand30

et al., 2017). On top of that, atmospheric organic chemistry and aerosol formation remains
::::::
remain an active area of ongoing

research (Öström et al., 2017; Brege et al., 2018; Schum et al., 2018; McFiggans et al., 2019). However, research shows that

including non-ideal water↔ organic interactions (here“↔” indicates an interaction) can have a substantial impact on organic

aerosol particulate mass concentrations, water content, biphasic morphology, and cloud condensation nuclei (CCN) properties
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(Buajarern et al., 2007; Zuend and Seinfeld, 2012; Song et al., 2013; You and Bertram, 2015; Freedman, 2017; Gorkowski et al., 2017; Ovadnevaite et al., 2017; Rastak et al., 2017)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Buajarern et al., 2007; Zuend and Seinfeld, 2012; Song et al., 2013; You and Bertram, 2015; Gorkowski et al., 2016; Freedman, 2017; Gorkowski et al., 2017; Ovadnevaite et al., 2017; Rastak et al., 2017)

.

Rastak et al. (2017) showed the importance of aerosol water content in modeling and understanding both experimental

findings as well as climate impacts via aerosol–radiation and aerosol–cloud–radiation interactions. In that study, non-ideal5

molecular interactions and liquid–liquid equilibrium were considered for reconciling aerosol simulations with laboratory mea-

surements of organic aerosol hygroscopicity parameters below and above 100 % relative humidity. To explore the impact on

climate, Rastak et al. (2017) assigned a fixed hygroscopicity parameter (κ) to the organic aerosol fraction, either 0.05 or 0.15,

resulting in significant changes in the average top-of-the-atmosphere radiative fluxes in both the NorESM (-1.0 W m−2) and

ECHAM6-HAM2 (-0.25 W m−2) climate model simulations. Therefore, the aerosol effects on climate are sensitive to aerosol10

water content and, by extension, the aerosol hygroscopicity representation in such large-scale models.

A practical model for non-ideal thermodynamics needs to handle varying levels of chemical input information while pro-

ducing realistic predictions. The typical models for non-ideal aqueous organic thermodynamics applicable to a broad class of

compounds, like AIOMFAC and UNIFAC, require relatively detailed molecular structure information as input. AIOMFAC is

a chemical structure-based activity coefficient model that explicitly incorporates solution non-ideality among organics, wa-15

ter, and inorganic ions (https://aiomfac.lab.mcgill.ca; Zuend et al., 2008, 2011; Zuend and Seinfeld, 2012). In that model, as

in UNIFAC, the computations involving organic compounds follow a group-contribution approach, which characterizes each

organic molecule as a combination of present functional groups and their abundances within that molecule. In contrast, a ther-

modynamic model able to accept either detailed molecular structure information or far less detailed bulk chemical properties,

e.g., molar masses and oxygen-to-carbon ratios (O : C) of organics, would offer more flexibility in environmental chemistry20

applications where molecular-level chemical structure information is often imperfect or lacking entirely. Only through a tight

coupling of adequate models and measurements can we decipher observational evidence pointing at thermodynamic mixing

effects, kinetic mass transfer limitations, or new chemical reaction pathways.

In this study, we introduce a newly developed, flexible thermodynamic mixing model and demonstrate its fidelity for activity

coefficient calculations and coupled gas–particle partitioning predictions of aqueous organic aerosols. This non-ideal mixing25

model, called the Binary Activity Thermodynamics (BAT) model, accounts for water↔ organic interactions and thereby offers

a method for determining the impact of water and the water content of organic phases at a given temperature and equilibrium

relative humidity. The model was parameterized using a training database generated with the AIOMFAC model. The training

database reliably constrains the BAT model coefficients across the full composition space of interest, as further discussed in

Sect. 3. Such a systematic constraint would likely be unattainable if we were to use experimental data only. However, via30

the use of AIOMFAC, the BAT model is indirectly constrained by experimental data, since the adjustable parameters of the

AIOMFAC model were optimized using experimental data (Zuend et al., 2011).

On its own, the BAT model can predict the non-ideal mixing in aqueous organic systems, including a computationally ef-

ficient and implicit treatment of the effects of liquid–liquid phase separation, which is important for scarcely water-soluble

organic compounds. Moreover, the atmospheric chemistry and physics community will be particularly interested in our inte-35
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gration of the BAT model within an equilibrium gas–particle partitioning model. The partitioning model we use is a form of

the non-ideal Volatility Basis Set (VBS) approach, which is introduced in Sect. 2.

2 Theory: Volatility Basis Set with Consideration of Non-ideality and Liquid–Liquid Equilibria

Our VBS describes the gas–liquid equilibria of organics and water using mass concentrations in the derivation, which allows

for an easier interpretation of aerosol measurements. The partitioning components can also be lumped into logarithmically-5

spaced volatility bins forming a basis set, which is typically done in CTMs for computational efficiency. In this VBS derivation,

with non-ideality and liquid–liquid equilibria considered, we bring together published information and outline more clearly

important considerations and adaptations for a general multiphase case. The vapor–liquid equilibrium for a single liquid phase

is derived from the modified Raoult’s law (e.g. Pankow, 1994; Zuend et al., 2010). Subsequently, the general non-ideal VBS

framework introduced here, accounts for the potential presence of multiple liquid phases in equilibrium. This VBS framework10

is independent of the activity coefficient model used – as long as compatible activity coefficient reference states are applied

(conversions are possible among different choices). Thus, the fundamental equations do not change as activity coefficient

models improve.

Derivation of a non-ideal VBS starts from Raoult’s law with the inclusion of activity coefficients (Eq. 1). Non-ideal refers

here to the mixing behavior in the liquid phase, while the gas phase is assumed to be an ideal gas mixture, which is a good15

approximation for air under atmospheric pressure (the use of fugacity coefficients would extend it to non-ideal gas mixtures).

The jth component in liquid phase π has a pure-component liquid-state saturation vapor pressure psat
j (a function of temper-

ature only), a mole fraction xπj , and a composition- and temperature-dependent activity coefficient γ(x),π
j . The (x) superscript

denotes it as a mole-fraction-based activity coefficient, and the π superscript stands for liquid phase π. The component’s

equilibrium partial pressure (vapor pressure) over a bulk solution, pj , is20

pj = psat
j x

π
j γ

(x),π
j . (1)

On the general notation adhered to hereafter: the subscripts j or k index chemical species, while a subscript Σk (or Σj) is

a short-hand notation referring to the summed total covering all species. The superscripts indicate the corresponding phase:

g for gas, Σπ for all liquid phases, and g+ Σπ for the combined total of the gas phase plus all liquid phases. Multiple liquid

phases are indexed by π and labeled by the superscripts α, β, and so on until the Ω phase. Where applicable, a superscript in25

parentheses indicates the reference state (e.g., (x) for a mole-fraction-based quantity).

The mass-concentration-based VBS framework is related to Eq. (1) by using the ideal gas law to convert vapor pressures

and pure-component saturation vapor pressures into gas phase concentrations (i.e., Cgj and Csat
j ). This step yields Eq. (2), with

the liquid phase composition expressed via component mole fractions as

Cgj = Csat
j x

π
j γ

(x),π
j . (2)30

4



The mole fractions (xπj ) in that phase can be calculated from liquid phase concentrations Cπj if the molar masses (Mj) of all

components are known (or reasonably estimable), resulting in

xπj =
Cπj

Mj

∑
k

Cπk
Mk

. (3)

The equilibrium gas-phase concentration of species j, expressed by mass concentrations, is obtained by combining Eqs. (2)

and (3) into5

Cgj = Csat
j

Cπj

Mj

∑
k
Cπk
Mk

γ
(x),π
j . (4)

In Eq. (4), we have essentially converted Raoult’s law into a mass-concentration-based framework while accounting for non-

ideality on a mole fraction basis.

2.1 Consideration of Multiple Liquid Phases

We have thus far considered the classical case referring to a single liquid phase, for which Eqs. (4) is sufficient to express10

the gas-phase concentration. If there are multiple liquid phases, like α and β, they too must be in thermodynamic equilibrium

with each other as well as the common gas phase. Meaning the total liquid concentration (CΣπ
j =

∑
πC

π
j ) further separates

into distinct liquid phases.

We define the fraction of species j in each liquid phase (relative to total of j in liquids) by qπj (e.g., Cαj = qαj ×CΣπ
j ). By this

definition, the summation of qπj for a single species over all phases is equal to one and the cumulative liquid-phase amounts of15

j can be determined using any phase of choice, since

CΣπ
j =

Cαj
qαj

=
Cβj

qβj
= ...=

CΩ
j

qΩ
j

. (5)

With Cgj and multiple liquid phases defined, we can establish a relationship with the effective saturation concentration (C∗j ),

also called the gas–particle partitioning coefficient or effective volatility. The initial definition of C∗j by Donahue et al. (2006)

targeted mixtures of organic compounds only, but Zuend et al. (2010) pointed out its interpretation in a more general form.20

The effective volatility of all
:::::::
saturation

::::::::::::
concentration

::
of
:::::

each
:
species, including water and other inorganic constituents in

liquid phase π, is defined by Eq. (6). The distribution of a species j among multiple phases π is accounted for in the effective

saturation concentration by using Eq. (5). The summation over k covers all species and is equal to the total mass concentration

from all liquid phases, CΣπ
Σk

(=
∑
k

∑
πC

π
k ); this has also been denoted as CPM or COA for organic aerosol systems in other

studies. In this derivation, CΣπ
Σk

is used as we include all liquid-phase species while excluding potential solid phases. Therefore,25

C∗,πj =
CgjC

Σπ
Σk

Cπj
qπj . (6)

The classical single-phase limit is obtained from Eq. (6) by setting qπj = 1 and simplifying CΣπ
Σk

to CΣk or CPM, which is

valid in that case. Continuing the derivation, we then substitute Eq. (4) into Eq. (6) to arrive at a general expression of C∗,πj as

5



follows:

C∗,πj = Csat
j CΣπ

Σk

γ
(x),π
j qπj

Mj

∑
k
Cπk
Mk

. (7)

The superscript π in C∗,πj denotes that the πth liquid phase properties (Cπk , γ(x),π
j , and qπj ) are used in this computation.

The fraction of j partitioned to the condensed phase (i.e. the total of liquid phases), ξj , follows this general definition,

ξj =

(
1 +

C∗j
CΣπ

Σk

)−1

. (8)5

Lastly, the total species concentration Cg+Σπ
j (i.e., the summed concentrations of j in gas phase plus liquid phases) multi-

plied by ξj yields the total concentration present in the liquid phase or phases (without specifying amounts in individual liquid

phases),

CΣπ
j = Cg+Σπ

j ξj . (9)

The theoretical core for the equilibrium between multiple liquid phases and a single gas phase is built into Eqs. (7) and10

(8) – however, without information about how the phase fractions at equilibrium are determined in practice. Moreover, if the

system is at thermodynamic equilibrium, then C∗j would be independent of which set of liquid phase properties are used in the

calculation, i.e.,

C∗j = C∗,αj = C∗,βj = ...= C∗,Ωj . (10)

In the following applications, we have only considered up to two liquid phases α and β, even though the theory derived in15

this section applies to any number of liquid phases. Our convention is to use phase α as the water-rich phase and phase β as the

water-poor (therefore organic-rich) phase. Since we use two phases, only qαj needs to be known as 1− qαj is equal to qβj in the

context here. Lastly, we emphasize again that any mole-fraction-based activity coefficient model can be used in applications of

the vapor–liquid equilibrium theory derived in this section.

3 Binary Activity Thermodynamics (BAT)20

The goal of the BAT model is to produce realistic results of non-ideal water–organic mixing behavior using minimal chemical

information. Our target application is organic aerosol thermodynamics, but the BAT model may find applications in a variety of

other fields. In any research problem constrained by limited chemical structure information about organic molecules interacting

with water in solution, the BAT model can aid in elucidating those non-ideal interactions.

For organic aerosol, the missing thermodynamic effects which have a significant impact on simulations within CTMs or25

in the context of controlled laboratory studies, are the pseudo-binary interactions among water ↔ organic, ion ↔ organic,

and organic↔ organic pairs of solution species. In complex solution systems, such pair-interactions occur among and in the

6
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Figure 1. (a) Schematic of a realistic model for mixture component activity coefficients, accounting for non-ideal interactions between all

species. (b) The BAT approximation separates the organic species and treats each organic species as a binary mixture with water. The water

mole fraction in each binary mixture is then equilibrated with the gas phase water activity (i.e., RH). The water and organic masses in the

equilibrated binary mixtures are then added together to represent the total liquid mixture.

presence of a multitude of organic and inorganic ion species. Thus, our initial foray in this work is in predicting activity co-

efficients of binary mixtures of water and one organic component, which are then applied to estimate the non-ideal mixing in

aqueous multi-organic solutions. At this point, we focus on aqueous organic aerosol phases in the absence of inorganic ions.

Most observations and CTMs will report relative humidity (RH) rather than constraining the total water (vapor) mass concen-

tration. Under the typical low mass concentrations of organic particulate matter, the RH constraint allows for the prediction5

of the equilibrium water content and the organic activity coefficient associated with each binary organic–water mixture. This

functional dependence of organic activity coefficients on water content can then be used in aerosol partitioning models to sim-

ulate co-condensation of several organics with water (e.g., as RH increases) and to determine the possibility and extent of a

liquid–liquid equilibrium. For example, this can be performed as a coupled activity–partitioning scheme within the non-ideal

VBS partitioning model outlined in Sect. 2.10

Reducing the complexity of multicomponent mixing to a system characterized by binary interactions for numerical simplicity

is where we elect to introduce a first approximation. In general, the activity coefficients used in Eq. (7) should account for the

effects of non-ideal interactions among all species of a liquid phase. However, we approximate the activity coefficient of the

jth organic in the liquid phase as being established solely due to interactions with its associated water fraction at given RH.

This concept is shown in Fig. 1 and is related to the idea of the Zdanovskii-Stokes-Robinson (ZSR) mixing rule, which is15

often applied to determine the water content of multicomponent aqueous (electrolyte) solutions (Zdanovskii, 1948; Stokes and

Robinson, 1966; Clegg and Seinfeld, 2004). We are effectively saying that the only non-ideal interactions of a given organic

species j are those with its associated water amount and not with other organic species. For typical secondary organic aerosol

(SOA) systems, we will show that the resulting error is less than 5 % for the majority of ambient RH.

7



3.1 BAT Activity Coefficient Model

With the scope of the BAT model outlined, we describe the theoretical thermodynamic framework for the binary activity

coefficient calculations in the following. In a binary system, the only requirement for a thermodynamically sound activity

coefficient model is satisfying the Duhem–Margules relation (Eq. 11), which implies conformance with the more familiar

Gibbs–Duhem relation (Margules, 1895; McGlashan, 1963; Gokcen, 1996);5

(1−xorg)
dln(γ

(x)
w )

dxorg
+xorg

dln(γ
(x)
org)

dxorg
= 0, (for T , p constant). (11)

Here, xorg is the mole fraction of the organic component, T is the temperature, p the total pressure, and R the ideal gas

constant. Note that the binary case implies xw = 1−xorg for the mole fraction of water. Consistent with the Duhem–Margules

relation, the molar excess Gibbs energy of mixing (GE) is here defined as

GE/RT = (1−xorg) ln(γ(x)
w ) +xorg ln(γ(x)

org). (12)10

This function describes the excess portion of the molar Gibbs energy of mixing, i.e., the contribution from non-ideal mixing

behavior leading to deviations from the ideal molar Gibbs energy of mixing. The two mole-fraction-based activity coefficients

are then related to GE via

ln(γ(x)
w ) = (GE/RT )−xorg

d(GE/RT )

dxorg
; (13)

15

ln(γ(x)
org) = (GE/RT ) + (1−xorg)

d(GE/RT )

dxorg
. (14)

Equations (12 – 14) are generally valid for a wide range of functional forms of the composition dependence of GE . The

only thermodynamic constraint is that a GE function must also satisfy Eq. (11), which means GE must be zero for both

xorg = 0 and xorg = 1.
:
In

::::::::
addition

:::
GE

:::::
must

::
be

:::::::
capable

:::
of

:::::::::
expressing

:::::::
maxima

::::
and

::::::
minima

::::::
within

:::
the

::::::
mixed

:::::::::::
composition

::::
space

:::::::::::::
(0< xorg < 1)

::
to

::::::::
correctly

:::::::
capture

:::::::
possible

:::::
phase

:::::::::
separation

::::::::
behavior.

:
To accomplish this dependence, Redlich and20

Kister (1948) and McGlashan (1963) used a power series expansion in xorg of the following form:

GE/RT = xorg(1−xorg)
[
c′1 + c′2(1− 2xorg) + . . .+ c′n(1− 2xorg)

n−1
]
. (15)

Using Eq. (15) with Eqs. (13, 14), this power series with adjustable coefficients, c′n (n= 1,2, . . .), can be used to fit mea-

sured activity coefficient data for any binary system. By increasing the number of adjustable coefficients, any desired level of

precision can be achieved – a powerful feature of such a model. In practice, fitting of four or fewer coefficients (not necessarily25

in sequence) usually leads to model–measurement agreement within experimental uncertainty (e.g. Clegg and Seinfeld, 2006;

Zuend et al., 2011). Determining the coefficients for a binary mixture (e.g., malonic acid + water) using Eq. (15) will result

in a set of coefficients only meaningful for that system (but unlikely applicable to similar other systems, say succinic acid +

water). Therefore, in an attempt to design a more general organic activity coefficient model, we made two important changes.

8



First, we change the independent composition variable used in Eq. (15). Instead of mole fraction xorg, we introduce a scaled

volume fraction (φorg) in the series expansion of GE/RT , which can be expressed as a function of xorg as follows:

φorg = xorg

(
xorg + (1−xorg)

ρorg
ρw

Mw

Morg
[s1(1 + O : C)s2 ]

)−1

. (16)

The activity coefficients in Eqs. (13) and (14) remain on a mole-fraction-based scale, because the scaled volume fraction is

accounted for in the derivative of the molar Gibbs excess energy with respect to xorg, by using5

d(GE/RT )

dxorg
=

d(GE/RT )

dφorg

dφorg
dxorg

. (17)

The exact equations and derivatives are listed in Sect. 2 of the Supplementary Information (SI).

In Eq. (16), ρorg and ρw are the liquid-state densities of the organic component and water, respectively, while s1 and s2

are two scaling parameters determined from a model fit to experimental
:::::
during

:::
the

:::::
model

::::::
fitting

::
to

:::::::
training

:
data. Note that

without the scaling factor in brackets [. . .], this equation would simply relate volume fractions to mole fractions. The densities10

of organic components are calculated using the relatively simple model by Girolami (1994) outlined in SI Sect. 4. This is

advantageous for the reduced-complexity application of this work, because the Girolami (1994) model allows for an estimation

of density based on molar mass, O : C, H : C, and N : C only – compatible with limited input information about the chemical

structures of organics.

Second, we introduce a parameterization of the scalar c′n coefficients by means of multivariate functions, which are depen-15

dent on common characteristics of organic molecules. The notation change from c′n to cn denotes the use of the scaled volume

fraction composition scale and the use of a parameterization for cn. Here we use the elemental oxygen-to-carbon ratio (O : C)

and molar mass (Morg) to characterize the organic compounds. We also explored the use of the elemental H : C ratio as an

additional molecular property, but found that this descriptor did not noticeably improve the model at the attempted reduced-

complexity level. The functional form for the parameterized coefficients based on organic properties is shown by Eq. (18),20

where an,1 to an,4 are the scalar fit parameters for the nth coefficient and exp(. . .) is the natural exponential function;

cn = an,1 exp(an,2×O : C) + an,3 exp

(
an,4

Mw

Morg

)
. (18)

With these changes, we can state a different series expansion of the GE function using our scaled volume fraction formula-

tion, including the parameterized coefficients cn (via Eq. 18),

GE/RT = φorg(1−φorg)
[
c1 + c2(1− 2φorg) + ... cn(1− 2φorg)

n−1
]
. (19)25

The introduced change of composition scale improves the flexibility of this model when optimized for a wide range of binary

systems characterized by the same set of model parameters (s1,s2;an,1,an,2,an,3, etc., with n= 1,2 . . .). The
::::
mole

:::::::
fraction

::::
scale

::::::
works

::::
well

:::
for

:::::
binary

:::::::
systems

:::::::::
involving

:::
two

::::::::::
components

:::
of

::::::
similar

:::::::::
molecular

:::
size

::::
and

::::::
shape.

::::::::
However,

:::
this

::
is
::::::

rarely

::
the

:::::
case

::
in

:::::::
aqueous

:::::::
organic

::::::::
mixtures

::::
with

::::::
organic

::::::::::
compounds

:::
of

:::::::::::
substantially

:::::
higher

::::::
molar

:::::
mass

::::
than

:::::
water.

::::
The

:::::::
volume

::::::
fraction

:::::
scale

::::::::
implicitly

::::::::
accounts

::
to

:::::
some

:::::
extent

:::
for

:::
the

::::
size

:::::::::
difference

:::::::
between

:::::::
organic

:::
and

:::::
water

:::::::::
molecules,

::::::
which

::::::
means30

9



:::
that

:::
the

:::::::::
coefficient

::::::::
functions

::
cn:::

do
:::
not

::::
need

:::
to

::::::
correct

:::
for

:::
the

::::::::
molecular

::::
size-

::::
and

::::::::::::::::::::
composition-dependence

:::
as

:::::
much

::
as

:::::
when

::::
mole

:::::::
fraction

::::
were

:::::
used.

:
It
::
is
:::
for

::
a

::::::
similar

:::::
reason

::::
that

::::
local

:::::::::::
composition

::::::
models

:::
like

::::::::
UNIFAC

:::::::
describe

:::::::
organic

::::::::
molecules

::
as

::
a

::::::::::
combination

::
of

:::::::::::
similar-sized

::::::::
segments

::::::::::
(subgroups)

::::::::
occupying

:
a
:::::::
regular

:::::
lattice,

::::::
which

:::::::::
contributes

::
to

:::
the

:::::::
so-called

::::::::::::
combinatorial

::::::
activity

::
in

:::::
those

:::::::
models.

::::
The scaled volume fraction acknowledges that neither mole fraction nor volume fraction (nor mass

fraction) perfectly accounts for the composition-dependence of activity coefficients when describing various binary systems.5

:::::::::::
Alternatively,

:
a
::::::
scaled

:::::
mole

::::::
fraction

:::::::::::
composition

:::::
scale

:::::
could

::::
have

::::
been

:::::
used,

:::
but

:::
we

:::::
chose

:::
to

::::
scale

:::::::
volume

:::::::
fractions

:::
as

:::
the

::::::
scaling

::::::::
coefficient

::::::
values

::::::::
constitute

:
a
:::::::
smaller

:::::::::
adjustment

:::::
when

::::
used

::::
with

:::
this

::::::::::
composition

:::::
scale,

::::::::
meaning

:::
that

:
a
:::::::
simpler

::::::
scaling

:::::::
function

:::
was

:::::::::
sufficient. Importantly, Eq. (19) remains consistent with all thermodynamic relations, including that GE becomes

zero at both limits: φorg = 0 (when xorg = 0), φorg = 1 (when xorg = 1).

Equations (16 – 19) establish a thermodynamically sound activity coefficient model capable of describing various binary10

organic–water systems with a common set of model parameters, as shown subsequently. Note, due to the normalization by

RT , when optimizing our GE/RT model, we are implicitly accounting for a part of the temperature dependence of activity

coefficients, notwithstanding the temperature-independent form of the cn function. Activity coefficients are weakly dependent

on temperature so the error caused by a temperature deviation from 298 K will be relatively small for tropospheric condi-

tions. With the equations for the BAT model derived, the fitted coefficients can subsequently be determined based on suitable15

experimental or model-generated data sets.

3.2 BAT Model: Training Data and Parameter Optimization

The adjustable parameters of our BAT model were determined by numerical optimization using a database generated by the

AIOMFAC model to cover a wide range of organic O : C ratios, molar masses, and mixture compositions at room temperature

(298.15 K). The use of the AIOMFAC model as a benchmark allows for generating xorg, γ(x)
org, and γ(x)

w data from highly20

dilute to highly concentrated binary aqueous organic mixtures for each system considered, covering the full parameter space of

interest. Since the AIOMFAC model includes a UNIFAC group contribution model for short-range molecular mixing, the data

we generate in this work reflects the AIOMFAC flavor of a modified UNIFAC model (Zuend et al., 2011) as we do not cover

interactions of organics with inorganic ions at this stage. In future, we plan to include ion↔ organic and organic↔
::::::
organic

interactions, in which case AIOMFAC may serve again as a benchmark model to generate training data.25

We generated a database of 37 known organic chemical structures and 123 artificial, yet possible chemical structures.
:::::
There

::::
were

::
an

:::::::::
additional

::
16

:::::::
organic

::::::::
chemicals

:::::
used

:::
for

:
a
::::::::
validation

::::::::
database

:::
(SI

:::::
Table

::::
S6),

:::
and

::::::::
therefore

:::
not

:::::::
included

::
in
:::
the

::::::
fitting

::
of

:::
the

::::::
model. The artificial chemical structures start with a carbon chain backbone of variable length, to which a number of

OH functional groups are attached. The chain lengths and the number of OH groups were varied such that a comprehensive

population of the 2-dimensional O : C versus molar mass parameter space is achieved. The 37 known chemical structures30

(mainly dicarboxylic acids) provide some diversity in the covered types of oxygen-bearing functional groups.
::
For

::::
each

::::::::
structure

::::
there

:::
are

:::
an

::::::::
additional

:::
40

::::
data

:::::
points

::
at
:::::::

varying
:::::
mole

::::::::
fractions,

:::::
which

::::::
means

:::
the

:::::::
training

::::::::
database

:::
has

:::::
6400

:::::
points

::::
and

:::
the

::::::::
validation

:::::::
database

::::
has

:::
640

::::::
points.

10



Figure 2a shows the data used in the model parameter optimization. This training database was used to simultaneously fit

the scalar a and s coefficients of the BAT model (Eqs. (16 – 19) using a constrained global optimization method (known as

GLOBAL) by Csendes (1988), which offers a Fortran implementation of the Boender-Rinnooy-Kan-Stougie-Timmer algorithm

(Boender et al., 1982). Through trial-and-error optimization tests, we arrived at the functional forms of the eight power series

coefficients (an,1−4; n= 1,2) in Eq. (18) and the two volume fraction scaling coefficients (s1, s2) in Eq. (16). Only the first5

two terms (involving c1 and c2) in the power series expansion (Eq. 19) were found to be justified given the diversity of organic

structures to be represented by a common parameterization. Moreover, we split the model parameterization into three different

domains based on the limit of complete miscibility of organics with water and further separated by O : C, shown in Fig. 2a as

blue, light green, and dark green regions. The blue domain includes components that have no miscibility limit with water. The

light green domain starts at∼ 20%
::::::
∼ 30%

:
of the O : C ratio reached at the miscibility limit and covers up to the blue domain.10

The dark green region covers the remaining lower O : C space, which is populated by non-polar, poorly water-soluble organic

compounds. In contrast, the blue domain represents relatively hydrophilic organic compounds, whereas the light green domain

contains moderately hydrophobic molecules. Parameter optimization was carried out separately for each of the three domains,

resulting in three distinct sets of BAT model parameters.
::::
These

::::::::
domains

:::::::
represent

:::
the

:::::
three

::::::
regions

:::::
where

:::::
each

::
set

::
of

:::::::::
optimized

:::::::::
parameters

:::::::::
dominates.

:::::::::
Parameter

::::::::::
optimization

:::
for

:::::
each

:::
sets

::
of

::::::::::
coefficients

::::
was

::::::
carried

:::
out

:::
on

:
a
:::::
wider

::::
and

::::::::::
overlapping O : C15

::::
range

:::::
than

:::::
shown

::
in
::::

Fig.
:::
2a.

:
A sigmoidal function was introduced to provide a smooth transition when traversing from one

of the domains to the next in the 2-D parameter space (e.g., when O : C is increased gradually at a constant molar mass

coordinate) – otherwise, spurious discontinuities would occur. The sigmoidal function provides a weighted mapping between

the parameters from one domain to the next (over a short range in the boundary region). The optimal BAT model parameter

sets and transition functions are tabulated in SI Sect. 2.
::
An

::::::::
example

::
of

:::
the

::::::::
sigmoidal

::::::::
transition

:::::::
function

::
is

:::::
shown

::
in
:::
the

:::
SI,

::::
Fig.20

:::
S1.

The limit of miscibility line in Fig. 2a marks the onset of a potential liquid–liquid phase separation in O : C vs. molar mass

space. In the domain below that line (at lower organic O : C), a miscibility gap is expected over a certain composition range

(and corresponding water activity), while above that line there is none predicted. The miscibility limit was determined through

an initial BAT fit using only the data in the O : C range from 0.05 to 0.45, prior to the division of the 2-D space into the three25

domains .
::::::
(details

::
in

::
SI

:::::
Sect.

::::
2.2).

:

::::::::
Generally,

:::
the

:::::
BAT

::::::
model

::::::
showed

:::::
good

:::::::::
agreement

:::
to

:::
the

:::::::
training

:::::::
database

:::::
with

:
a
::::

root
:::::
mean

:::::::
squared

:::::
error

:::::::
(RMSE)

:::
in

::
aw:::

of
:::::
0.058

::::
(5.8

::
%

::::
RH)

:::
and

:::
in

::::::
organic

:::::::
activity

:::::
(aorg)

::
of

::::::
0.090.

::::
The

::::::::
validation

::::::::
database

::::::
showed

::
a
::::::
similar

:::::::::
agreement

::::
with

::
a

:::::
RMSE

:::
in

:::
aw ::

of
:::::
0.066

:::
and

:::
in

::::
aorg ::

of
:::::
0.096

:::::::
(details

::
in

::
SI

:::::
Sect.

:::
5).

:::
The

:::::
BAT

:::::
model

::
is
:::::
valid

:::
for

::::::
organic

:::::::::
molecules

::::::
within

:::
the

::::::::
following

:::::::
domain:

::::::::::::::
0 ≤ O : C ≤ 2

:::
and

:::::::::::::::::::::::::
75 ≤ Morg ≤ 500 g mol−1

::::
with

:::::::
realistic

:::::::
behavior

:::
up

::
to

::::::::::::
750 g mol−1.

:::::::::
Additional30

::::
error

:::::::
analysis

:::
for

:::
the

::::
BAT

::::::
model

::
is

::::::
shown

::
in

::
SI

:::::
Sect

::
5. In panels (b) and (c) of Fig. 2, we show two examples of the BAT

predictions, after domain-specific optimization, compared to the AIOMFAC-generated data. The BAT model tends to perform

very well for the organics of the blue domain, as shown by the citric acid + water example. Citric acid is marked by a blue star in

the coordinate space of Fig. 2a. The deviations of the BAT model prediction compared to AIOMFAC increases for hydrophobic

compounds; an example is shown for 1-hexanol + water. Even though the model–model deviation increases, those discrepancies35

11
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Figure 2. (a) The 160 molecular structures (black symbols) used in optimizing the BAT model for hydroxyl functional groups. The three

colored regions indicate distinct sets of BAT model fit parameters: the blue region represents high-O : C, the light green medium-O : C and

the dark green low-O : C organic molecules. The black line marks the determined miscibility limit, meaning that at lower O : C, organic

molecules exhibit a miscibility gap with water (according to BAT) over a certain composition range, while at higher O : C complete miscibil-

ity with water is predicted. (b,c) Comparison of the training data generated by AIOMFAC (open circles) with the BAT model (dashed lines)

for two examples: (b) citric acid + water and (c) 1-hexanol + water. Predicted water activity is shown in blue and organic activity in black.

are typically amplified where one of the activities (i.e., the product of mole fraction times activity coefficient of a component)

is greater than one, which refers to a non-equilibrium state. That is, over the related binary composition range, a miscibility

gap would occur at equilibrium, consideration of which is further discussed in Sect. 4.

The non-ideal behavior of water–organic mixtures is now explored using the fitted BAT model. In Fig. 3, we can explore

where non-ideal behavior is substantial enough to require consideration in aerosol thermodynamic modeling. Isolation of a5

single parameter in the BAT model can be more informative than using the more detailed AIOMFAC model. In the example

of Fig. 3, we fix the molar mass at 200 g mol−1 and then scan the O : C ratio from 0 to 1.2. The first items of note are

the contours and the associated color space showing water activity, which clearly indicates non-ideal mixing behavior. If the

binary mixture were ideal, the white contour lines would be vertical lines referring to aw = xw. We show an example for

xw = 0.2 = aw(ideal) in Fig. 3. In the rather hydrophobic region (O : C ≤ 0.4), the equilibrium water uptake in terms of xw10

at given water activity (i.e., bulk equilibrium RH) is less than that of an ideal mixture. For example, an organic compound of

O : C≈ 0.19 would require aw = 0.4 to result in a mixture water content of xw = 0.2, while an ideal mixture would achieve

this water content already for aw = 0.2. Moving up towards higher O : C, there is a transition to rather hydrophilic behavior

and the water uptake at given equilibrium RH is predicted to become higher than that of an ideal mixture (aw > xw::::::::
aw < xw).

12



A narrow O : C zone bridges the hydrophilic and hydrophobic domains, there the binary mixture would behave like an ideal

mixture. In the parameter space displayed, the behavior of any specific binary water–organic system is non-ideal over nearly the

whole xw range. As the mole fraction of water increases beyond 0.9, a binary mixture approaches ideal behavior for high-O : C

organic compounds (O : C & 0.8).

The composition and O : C-dependence of liquid–liquid phase separation (LLPS) within binary water–organic systems is5

also evident from Fig. 3. In general, LLPS is expected to occur when the Gibbs energy of the whole system is minimized

(globally) by splitting the system into two (or more) liquid phases of distinct compositions (Zuend et al., 2010, e.g.). In the case

of binary aqueous systems, LLPS is indicated when an identical activity (either aw or aorg) is predicted for two different mole

fractions of water, with the composition range in between defining the miscibility gap (Ganbavale et al., 2015). An example

of this is occurring along the aw = 0.99 contour line, denoted by a dashed line in Fig. 3.
::
A

::::::
clearer

:::::::
example

::
of

:::::::::
identifying

::::
this10

:::::
phase

::::::::
separation

::
is

::::
also

::::::
shown

::
in

:::
Fig.

:::
S2

::
of

:::
the

:::
SI. In a binary mixture, LLPS is also clearly indicated anywhere a component

activity is (predicted) to be greater than 1.0 when assuming a single liquid phase in the calculation .
::::
(gray

:::::
areas

::
in

::::
Fig.

:::
3).

:::::
These

::::
gray

:::::
areas

::::
mark

::::::
initial

:::::::::::
compositions

:::
that

::::::
would

:::
be

:::::::
unstable

:::
and

:::::::
quickly

::::
lead

::
to

:::::::::
separation

:::
into

::::
two

::::::
phases

::
of

:::::::
distinct

::::
water

:::::
mole

::::::::
fractions;

::
in

:::
the

::::
case

:::
of

:::
Fig.

::
3
::::
with

:::
the

::::
final

:::::
phase

::::::::::::
compositions

:::::
given

::
by

:::
the

::::
two

::::::::::
intersection

:::::
points

::
of

::
a
:::
line

:::
of

:::::::
constant O : C

:::
(of

:::::::::
compound

::
in

::::::::
question)

:::
and

:::
the

:::::
water

:::::::
activity

:::::::
contour

::
at

:::
the

::::
edge

::
of

:::
the

:::::
phase

:::::::::
separation

:::::
area.

:::::::::
Additional15

:::::::
isopleths

::
at

::::::::
different

::::::
organic

:::::
molar

:::::::
masses

:::
(75

::
to

:::::
2000 g mol−1

:
)
:::
are

::::::
shown

::
in

:::
the

::
SI

:::::
Sect.

::
6.

:
Based on BAT predictions, in

comparison to the case shown in Fig. 3, this phase separation region moves to higher O : C as the molar mass of the organics

increases and to lower O : C as molar mass decreases.

3.3 Functional Group
:::::::::
Molecular

::::::::::::
Functionality

:
Translation

The BAT model described so far is tailored towards molecules dominated by hydroxyl functional groups in terms of oxygen-20

bearing groups. To increase the model’s versatility, we will discuss our approach for incorporating other important oxygen-

bearing functional groups into the BAT model framework. One option would involve generating another AIOMFAC training

database focused on other functional groups with the subsequent fitting of new BAT model coefficients. This is possible, but

for large functional groups the coverage in the O : C vs.Morg space would be sparse, leading to poorly constrained parameters.

Due to that limitation, we went with a functional group
:::::::
molecule

:::::::::::
functionality translation approach. This approach assumes that25

the O : C ratio is proportional to a molecule’s polarizability, which is then dependent on the type of oxygen-bearing functional

group. If that assumption holds to good approximation, the effects of different oxygen-bearing groups on activity coefficients

can all be translated using a common polarizability scale based on the molecule’s O : C ratio. Similarly, if molar mass mainly

provides information about the molecules effective volume, then a translation to a new volume scale (affecting the organic

volume fraction) is needed as well. The density used in the BAT model is also modified since it is calculated from the O : C30

and Morg inputs.

Based on these assumptions, we use the hydroxyl functional group
::::::::::
functionality

:
as a reference oxygen-bearing group and

translate the specific properties of all other functionalized molecules to a hypothetical hydroxyl-equivalent molecule of mod-

ified O : C and Morg. We introduce a two-coefficient sigmoidal function to perform this translation (see details in Sect. 2.4

13
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Figure 3. Predicted water activity contours generated by the BAT model for binary aqueous mixtures of generic organic compounds of

constant molar mass of 200 gmol−1 yet variable O : C at T = 298.15 K. The contours link water mole fraction and the organic O : C to the

resulting water activity in a binary water–organic mixture. The combined shaded regions in dark (aw > 1) and light gray (aorg > 1) represent

the minimum extent of liquid–liquid phase separation for a certain O : C. The dashed tie-line shows an example of phase separation occurring

over a limited range in composition along the aw = 0.99 contour, as evident due to two possible xw values at the same aw. The bumps in

the contours at O : C of 0.12 and 0.4 stem from the transitions between the BAT model’s low-, medium-, and high-O : C parameterization

domains.

of the SI). The coefficients of the translation function were fitted using AIOMFAC-generated data (xorg , γorg, and γw) for

each molecular functionality. For example, a common functionality formed via atmospheric chemistry is the hydroperox-

ide (CHnOOH) group. If a molecule consisted of only hydroperoxide functional groups as oxygen-bearing groups, with an

O : C ratio of 1.0 and Morg of 200 g mol−1, the translated hydroxyl-equivalent molecule would have an O : C ratio of 0.51

and Morg of 137 g mol−1. Those two hydroxyl-equivalent molecular parameters are then used as inputs for the (hydroxyl-5

based) BAT model to compute the activity coefficients of water and the actual organic molecule comprising the hydroper-

oxide functional groups. We reiterate that the BAT model is describing the whole molecule, and so these translations are

not for the individual functional groupson a multifunctional molecule .
:::::

This
::::::
method

::
is

::::::::
different

::::
from

:::
the

:::::
group

:::::::::::
contribution

:::::::
approach

:::::
taken

:::
by

::::::::
UNIFAC

:::
and

:::::::::::
AIOMFAC,

::
as

::::
here

:::
the

::::::
whole

::::::::
molecule

::
is

:::::::
assigned

::::
one

:::::::
effective

:::::::::::
functionality. For multi-

functional molecules, a distinct multifunctional translation must
::::
may be derived, like we did for the SOA oxidation prod-10

14



ucts (see Fig. 4b). If that is not possible
:::
This

::::
can

::
be

:::::
done

:::
by

:::::
using

:::::::::
AIOMFAC

::
to
::::::::

generate
:::::::
training

::::
data

:::
for

:::::::::::::
multifunctional

::::::::
molecules

::::
that

:::
are

::::::::::::
representative

:::
of

:::::
VOC

::::::::
oxidation

::::::::
products.

::::
The

:::::::::
molecular

:::::::::
translation

::::::::::
coefficients

:::
are

:::::
then

:::::
fitted

:::::
using

::
the

:::::::::
generated

:::::::
training

::::::::
database.

::
If
::::

this
::::::
fitting

::
of

:::
the

::::::::::
translation

::::::::::
coefficients

::
is

:::
not

::::::::
practical, then the most dominant and

most representative oxygen functionality
::::::::::
predominant

::
or

:::::
most

::::::::::::
representative

:::::::::::::
oxygen-bearing

:::::::::::
functionality

:::
on

:::
the

::::::::
molecule

should be chosen .
::
for

:::
an

:::::::::::
approximate

::::::::
molecule

:::::::::::
functionality

:::::::::
translation.

::::::::::
Extensions

::
to

:::::::
include

::::::
organic

::::::
nitrate

::::
and

::::::
sulfate5

:::::::::::
functionalities

::::
will

:::
be

::
a

::::
topic

:::
of

:::::
future

::::::::::::
development.

::
In

:::::::::
principle,

::::::::
additional

:::::::::
molecular

:::::::::::
functionality

::::::::::
translations

:::
for

:::::
each

::::::::::
combination

::
of

:::::::::
molecular

::::::::::::
functionalities

::::
could

:::
be

:::::::::
developed,

:::::
which

::::::
would

::
be

:::::::
practical

::
if
:::
the

:::::::
number

::
of

:::::::::::
permutations

:
is
::::::
small.

:
If
:::
the

:::::::
number

::
of

::::::::::::
combinatorial

:::::::::::
permutations

::
of

:::::::::
molecular

::::::::::::
functionalities

:
is
:::::
large,

::::
then

::::
that

:::::::::::
development

:::::::
direction

::::::
would

::::
lead

::
to

::::::::
increased

::::::::::
complexity,

:::::
which

::
is

:::
not

:::
the

::::
goal

::
of

:::
the

::::
BAT

::::::
model.

::::
We

:::
will

:::::::
explore

:::::::
different

:::::::::
weighting

:::
and

::::::
scaling

::::::::
methods

::
of

::
the

::::::::::
translations

::::::::::
coefficients

:::::
based

:::
on N : C

:::
and

:
S : C

::::::::
elemental

:::::
ratios

::
to
::::::
retain

:::
the

::::::::::::::::
reduced-complexity

:::::::::
approach.

:
If
::::::::

accurate10

::::::
activity

:::::::::
coefficient

:::::::::
predictions

::
of

::
a

:::::
known

:::
set

::
of

:::::::::::::
multifunctional

:::::::::
molecules

::
are

:::::::
desired

:::
and

:::
the

::::::::
molecular

::::::::
structures

:::
are

:::::::
known,

:::
then

:::
the

::::
use

::
of

:::::::::
AIOMFAC

::
or

::
a
::::::
system

::::::
specific

::::::
model

::::::
instead

::
of

::::
BAT

::
is
:::::::::::::
recommended.

Figure 4b shows an example for the translation of a multifunctional hydroperoxide molecule (i.e., containing hydroxyl,

ketone and hydroperoxide functionalities). Such multifunctional hydroperoxide molecules are among the most difficult to

represent well when using the functional group translation approach. We show two BAT model activity predictions, BAT (OH)15

directly used the molecules O : C and Morg, whereas the BAT (translated) predictions use the translated molecule properties.

In general, the translation gives the correct characteristics in terms of predicted water and organic activities but can have

large errors. For the multifunctional hydroperoxide example, the BAT (translated) prediction is more hydrophobic than the

untranslated BAT (OH) prediction. The more hydrophobic behavior is consistent with the AIOMFAC predictions. The PEG-

414 translation example (Fig. 4c) shows how close PEG is to a hydroxyl molecule, as the BAT (OH) activity curves agree with20

AIOMFAC. However, the BAT (translated) prediction does show improvement at xw > 0.85. If there is ever a concern about

the prediction accuracy for a given molecule, the BAT model output should be compared to experimental data (where available)

and/or the AIOMFAC-web model (https://aiomfac.lab.mcgill.ca).

The translation approach works
:::
This

:::::::::
translation

::::::::
approach

:::
can

:::::
work

:
in both directions, so we can also move the whole BAT

model to a different functional group basis, e.g., resulting in carboxyl-based, ketone-based, ether-based, etc. parameterizations25

of the BAT model (here for the purpose of illustration). We use this translation
::::
such

::::::::::
translations to plot the limit of miscibility

:::::::::::::::
limit-of-miscibility

:
lines for all of the fitted functional group types considered (Fig. 4a).

:::
The

::::::
dotted

::::
pink

::::
line

::
is

:::::
from

:::
the

::::::::::::
multifunctional

::::::::::::
hydroperoxide

:::::::::
translation

::::
and

:::
the

::::
gold

:::
line

::
is

::::
from

:::
the

:::::
PEG

:::::::::
translation,

::::
both

::::
have

:::::::
example

::::::::::
translations

::::::
shown

::
in

:::
Fig.

:::
4b

:::
and

:::
4c

::::::::::
respectively.

::::
The

::::::::::
uncertainty

:::::
range

::
in

:::
the O : C

::::::::
prediction

:::
of

:
a
:::::
limit

::
of

:::::::::
miscibility

::
is

::::
also

:::::
shown

:::
in

:::
Fig.

:::
4a

::
as

:
a
:::::::
shaded

::::
gray

::::::
region.

:
These miscibility limit lines represent the same process

:::::
(phase

:::::::::
separation

:::::
limit), but for different30

functional groups, so it is informative to compare their relative positions .
::
in

:::
Fig.

:::
4a. The higher in O : C the curve is, the more

hydrophobic that functional group is
::::::
makes

:
a
::::::::
molecule

::::::::
compared

::
to
::::::::

hydroxyl
::::::
groups, as it requires a higher O : C to become

completely miscible in water (at all proportions of mixing). The relatively large variability among the miscibility limits in terms

of O : C ratio emphasizes the importance of distinguishing among different types of oxygen-bearing functional groups. In the

case of ambient and laboratory-generated aerosol mixtures containing inorganic salts, the transition from LLPS to completely35

15



miscible (at any composition) spans a O : C ratio range from 0.4 to 0.8 based on experimental data (Song et al., 2012; You

et al., 2014; You and Bertram, 2015). That O : C range is comparable to the difference between a hydroperoxide molecule with

a molar mass of 100 g mol−1 vs. 400 g mol−1. The wide O : C range can also be achieved by fixing molar mass at 400 g mol−1

and either having a hydroxyl or a hydroperoxide functionalization. This similarity suggests that the types and abundances of

oxygen-bearing functional groups are as important as the salting-out effect by dissolved inorganic ions – at least concerning the5

miscibility with water. A future investigation on the limit of miscibility line for mixtures with and without dissolved inorganic

ions may help elucidate that characteristic.

By the nature of this translation approach, each functional group case will have a similar curvature in the miscibility limit

line, as it was propagated from the hydroxyl-based curve.
::::
After

:::::::::
accounting

:::
for

:::
the

:::::
RMSE

:::
of

::
the

::::::::
different

::::::::
molecular

::::::::::
translations

::
the

::::::
overall

:::::
BAT

:::::
model

:::::
error

::
in

:::
the

::::
water

:::::::
activity

:::::::::
separation

::::
point

::::
was

::::::::
<±0.01,

:::
the

:::
aw ::::::::

prediction
:::::
error

:::
was

::::::::
<±0.09,

::::
and

:::
the10

::::
aorg ::::::::

prediction
:::::
error

::::
was

:::::::
<±0.15

::::
(see

:::
SI

::::
Sect.

:::
5).

:
Also, note that organic molecules with only ester functional groups are

predicted to be the only ones having a miscibility gap up to O : C of 1.0 according to the BAT model – and by extension

AIOMFAC. Esters are among the poorly-constrained functional groups in AIOMFAC, whereas the hydroxyl functional group

is among the well-constrained groups (Zuend et al., 2011). This is the case because the hydroxyl functional group benefits from

a large amount of experimental data covering aqueous mixtures of alcohols, polyols, and sugars, enabling tight constraints for15

its interactions with water and other organic groups. This justifies the use of the hydroxyl group as a reference oxygen-bearing

group during our initial fit of the BAT model’s coefficients.

4 Coupled VBS + BAT Model

The non-ideal BAT model and the VBS approach can now be integrated into a coupled VBS + BAT model to simulate the

gas–particle partitioning of organic aerosol systems. This integrated model will be benchmarked against high-fidelity AIOM-20

FAC gas–liquid equilibrium simulations with consideration of liquid–liquid phase separation. Conceptually, the VBS + BAT

approach assumes that each organic is contributing its own water content to the total water content. We use the water mass

fractions per organic compound predicted by the BAT model for a given water activity (equivalent to a given equilibrium RH

for a bulk solution case) to sum up all the water contributions. This approach is closely related to the ZSR mixing rule for

aqueous solutions. Aside from the organic mass concentrations (traditional VBS), the variable CΣπ
Σj

includes the cumulative25

water mass concentration from all particle phases, which in turn affects the C∗j values of all the organic species.

A conceptual flow chart of our VBS + BAT computational approach is shown in Fig. 6. The current version of the program

is written in MathWorks ® MATLAB (R2018b) and is available for download (see code availability section).

4.1 Consideration of Liquid–Liquid Phase Partitioning

The first nontrivial change in the integrated VBS + BAT model is the consideration and treatment of a potential miscibility30

gap. In the case of a liquid–liquid equilibrium, the relative phase preferences are described by qαj , the fractional liquid–liquid

partitioning of a component to phase α (qαj ≤ 1.0 in the two-liquid-phases case). Liquid–liquid phase separation in a binary

16



��� ��� ��� ��� ���
�

���

���

���

���

�

�
��
��
��
�
�

���

���

��
�����		������
���

��������

�����

�������������
�������������
�
�������������

�����

�
�
����

	�����

���

�����������������
������������������������

����������������
�������
���
�����
�������
��������
���

�

�
��
���

�

�

�

� ��� �
��������
�����
����

�

�

�

�

�
��
���

��� ���

���

O

HO

O

HO

�
���

��������
���� ��

�������
���
����

�­����

�������
��������������

Figure 4. (a) Predicted limit-of-miscibility lines for different types of oxygen-bearing functional groups, generated from a translation of the

hydroxyl-based BAT model (see text and SI
:::
Sect.

:::
2.4). Above the line, the organic is completely miscible in water, and below the line, it

has a miscibility gap with water. The uncertainty range (
:::
gray

:
shaded region) for the hydroxyl-based limit is the average difference in O : C

for the seven molecules that did not conform to the hydroxyl-based miscibility limit line. We propagated the uncertainty range from the

hydroxyl-based to the hydroperoxide-based line.
:::
The

:::::
dotted

::::
pink

:::
line

:
is
:::
the

::::::::
translation

::::
used

::
in (b

:
),

:::
and

::
the

::::
gold

:::
line

::
is

::
the

::::::::
translation

::::
used

::
in

:
(c).

::::
(b,c)

:
Comparison of the data generated from AIOMFAC (circles), the BAT model with hydroxyl-based (OH) parameters (dashed lines)

and the BAT model with translated input values for O : C and Morg (solid lines). The change in the model input parameters are shown in (a)

as stars for the original value (used in the BAT (OH) line) and circles indicating the translated values used as input for the BAT (translated)

calculation. Water activity is in blue and organic activity in black. The comparison for a multifunctional hydroperoxide (C97OOH) is shown

in (b). The BAT (translated) curve represents a more hydrophobic organic than the BAT (OH) curve , and it show
:::::
shows an aw > 1 range,

which is qualitatively consistent with AIOMFAC. The PEG-414 comparison is shown in (c) and highlights that the BAT (OH) model already

captures most of the PEG behavior. The BAT (translated) curve for PEG-414 shows an improved treatment at xw > 0.85. All cases for

T = 298.15 K.
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water–organic system at RH < 100% is reduced to a point and manifests itself by a jump discontinuity (Fig. 5a). The liquid

phase is either a water-poor (β) or water-rich (α) phase, with a sharp transition between these two possible states at a certain

water activity (qαj = 1 or 0). However, in the more general case of multicomponent aqueous organic mixtures, there is no

discontinuity; rather, a smooth transition occurs in terms of individual component fractions partitioned to each phase depending

on phase preference (related to polarity). Hence, the component fractions in phase alpha follow a smooth transition function5

for qαj with changing RH. In AIOMFAC-based equilibrium calculations, the smooth transition results from the numerical

minimization of a system’s Gibbs energy, which depends on water content and therefore water activity. For our VBS + BAT

model, regardless of binary or multicomponent cases, we represent the transition from a water-poor phase to a water-rich phase

as a smooth transition occurring over a finite range in water activity. Instead of using a computationally expensive explicit

numerical solution for the individual component’s liquid–liquid partitioning, we approximate this transition behavior in a10

simplified, computationally efficient manner by prescribing a sigmoidal functional form for qαj of the organic components in

the aw transition range. This functional form is not arbitrary; rather, it is a result of liquid–liquid equilibrium theory relating qαj
to activity coefficient ratios in coexisting phases (Zuend and Seinfeld, 2013). Contrary to the organic species, the qαw value for

water is a derived quantity and not prescribed, since the mass fraction of water contributions are accounted for on a per organic

basis in each phase, resulting in a qαw value that depends on the liquid–liquid partitioning of all organics.15

To approximate the location and aw-width over which the liquid–liquid phase separation is prescribed to occur, we first

determine a designated reference point, the so-called water activity separation point (aw,sep). When an organic is in a binary

mixture with water, this point denotes the aw value at which the organic jumps from the water-poor to the water-rich phase (α-

phase) according to the BAT model prediction (refer to Fig. 5a). The aw,sep is determined using the BAT model activities and

associated Gibbs energy of mixing; see Sect. 3 of the SI for the specifics.
:::::
Note,

:::
the

::::
BAT

:::::
model

:::::
does

:::
not

::::::
directly

::::::
output

::::::
aw,sep,20

:::
but

:::::
aw,sep::

is
::::::
derived

:::::
from

:::
the

::::
BAT

:::::
model

::::::::
predicted

:::::::::
activities. When there are multiple organic components, each has it’s own

defined aw,sep derived from its mixing behavior with water in the binary case. Alternatively, in our model implementation,

there is a program option to use a single aw,sep for a multi-organic mixture, with the aw,sep value based on average molecular

properties of all organics. These average molecular properties are the mass-weighted means of O : C and Morg calculated

from the liquid-phase species in a β-phase-only VBS + BAT equilibrium calculation (where qαorg = 0). This step allows us to25

estimate a single representative aw,sep value for the multicomponent organic-rich phase, even though in reality each organic

species may deviate from this average behavior. We then use the aw,sep value as a reference point when approximating the

liquid–liquid phase separation of multicomponent organic mixtures. Since both the behavior of average organic mixtures as

well as individual organic compounds can be approximated by single aw,sep values, the following broadening treatment for the

liquid–liquid transition can be applied in both situations.30

In our approximation, we set qαorg = 0.99
(
= qαw,sep

)
at the aw,sep point. Then, for the curve broadening (of the step-like

discontinuity), we use a sigmoidal function to approximate the qαorg values representative of a multicomponent aqueous organic

mixture (Fig. 5b). With the functional form and one point on the sigmoidal curve determined, we further need to constrain the

width of the curve (or alternatively the slope at midpoint). We use the aw gap from aw,sep to complete aqueous dilution,

where aw→ 1, to set a case-dependent transition function width (∆aw,sep = 1− aw,sep). Choosing ∆aw,sep as the sigmoid35
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Figure 5. Example of the liquid–liquid phase partitioning for 1-hexanol as a function of water activity, expressed by qαorg . The qαorg value is

only relevant for mixtures that exhibit a miscibility gap. (a) The sharp transition present in a two-component water–organic mixture. (b) The

broadening of the organic qαorg to better represent behavior in multicomponent organic mixtures (Eq. 21).

half-width results in a gradual two-phase transition and allows the transition range to change for each organic mixture (or

organic molecule in the binary case). For molecules that are more hydrophobic than the example represented in Fig. 5, the

aw,sep value would be closer to 1.0, leading to a smaller ∆aw,sep, which is consistent with the expected behavior predicted by

independent AIOMFAC calculations. We place a minimum limit of 10−6 on ∆aw,sep, so that ∆aw,sep retains a nonzero width.

However, this limit remains a customizable model parameter. Based on these definitions, the sigmoid curve parameter (sc) can5

be determined as

sc = ln

(
1

1− qαw,sep

− 1

)
1

∆aw,sep
. (20)

The value of qαorg as a function of aw is then obtained as

qαorg = 1− 1

1 + exp[sc(aw − aw,sep + ∆aw,sep)]
. (21)

Even with this approach, the liquid–liquid equilibrium partitioning can sometimes be unrealistic due to the binary mixture10

approximation. Unrealistic cases are identified by the VBS + BAT-predicted liquid organic aerosol mass dropping below that

predicted for a corresponding single-phase simulation (only a single, organic-rich phase present). In such an unrealistic case,

we use the average of the ξj coefficients of the single-phase prediction and that from a two-phase simulation. Lastly, it is

important to note that the qα broadening treatment is only applied when the properties of any of the organic mixture species

points to a possible miscibility gap at the water activity of interest. Otherwise, complete miscibility is assumed.15
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4.2 Deep Learning Neural Networks

Moving on from the phase separation treatment, we describe in the following a number of key computational features of

our implementation. In designing the VBS + BAT model and its implementation, we aimed both for flexibility and minimal

computational overhead. The main computational burden is associated with the non-ideal VBS solver when compared to a VBS

solver assuming ideal mixing in the liquid phase, since the number of independent variables increases. The increase is because5

the C∗ values cannot be approximated as constants, because they are dependent on the mole fractions of the organics and water

as well as the activity coefficients. This means achieving convergence iteratively by varying only CΣπ
Σj

is not possible; instead

iteration over the partitioning coefficients ξj is necessary, i.e., solving a system of coupled algebraic equations numerically to

a desired level of precision. A simple way to speed up convergence towards the equilibrium state is by improving the initial

guess for the ξj vector. Here we introduce a powerful application of deep learning Neural Networks (NN) for that purpose.10

We employ a so-called deep belief network, which consists of multiple layers of artificial neurons (Liu et al., 2017). The

neurons are arranged in a matrix and use a sigmoidal activation function which takes inputs from the neurons in the preceding

layer, leading to a degree of activation of each neuron, which is then providing input to the next neuron layer. Artificial neural

networks require large data sets of desired inputs and outputs to fit the activation function coefficients for each neuron. This

allows the NN to “learn” the unspecified functional relationship between known inputs and outputs. In our case, large data sets15

can easily be generated with random VBS + BAT simulations, allowing for the training of the NN. We found useful applications

for NNs for both an inversion of the BAT model and the coupled VBS + BAT model calculations, as noted in Fig. 6.

We use NNs with the BAT model to find the correct xorg,j input, since in most applications aw is known but not xorg,j .

For example, in CTM applications RH is a known quantity and, for bulk equilibrium simulations, the RH in the gas phase is

equal to the aw in the liquid phase (when the Kelvin effect is negligible). The BAT model calculates aw for a given xorg,j , so20

a computationally more expensive approach would be to iterate over xorg,j until the given RH in the gas phase and aw in the

liquid phase match (using a solver for non-linear equations). The NN approach attempts to shortcut this costly iterative method

by directly guessing xorg,j for a given aw. To fit the neuron activation functions, we generate a random data set of O : Cj ,

Morg,j , xorg,j , and aw using the BAT model. The data corresponding to systems with a miscibility gap are parsed into two

separate categories to train a separate NN.
::
We

::::::::
generated

::
a
:::::::
database

::
of

::::::::
9.8× 106

::::
data

:::::
points

:::
for

:::::::
miscible

:::::::
organics

::::
and

::::::::
4.6× 10525

:::
data

::::::
points

::
for

::::::
phase

::::::::
separated

:::::::
systems.

::::
Each

::::::::
database

:::
was

::::
then

::::
split

::::
into

::::::
training

::::
data

:::
(70

:::
%),

:::::::::
validation

::::
data

:::
(15

:::
%),

:::
and

::::
test

:::
data

:::
(15

::::
%),

:::::
which

::::
was

::::
used

::
to

::::
train

:::
the

::::::::
BAT-NN.

:
Our NN inputs are O : Cj , Morg,j , and aw with xorg,j as the target output.

The NN is then generated and its parameters fitted using MATLAB’s Neural Network Toolbox. The resulting BAT-NN inverts

the BAT model quite well over the full aw space up to water activities of∼ 0.95, above which an iterative refinement is required

for good agreement with the targeted aw. For the aw < 0.95 cases, the evaluation time for the BAT model is insignificant, only30

the iterative refinement of xorg to match the given aw (for aw > 0.95) causes the 0.58 ms computation time indicated in Fig. 6.

The reported computation times were all determined by using a single core on an Intel Core i7-6500 U
::::::::
processor clocked at

2.50 GHz.
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Next, we attempted to reduce the computational cost of the VBS + BAT equilibrium solver. For this purpose, we employ a

distinct artificial neural network to estimate the equilibrium gas–liquid partitioning coefficient (ξj) of each species. To facilitate

using an NN, we first group the species into 11 decadal Csat bins from 10−6 µg m−3 to 104 µg m−3. We tested different NN

input combinations and settled on using Cg+Σπ
j , O : Cj , Morg,j , BAT-derived water mass fraction (ww,j) and aw associated

with organic component j.
:::::
Using

:::
the

::::
VBS

::
+
::::
BAT

::::::::::
equilibrium

::::::
solver,

:::
we

::::::::
generated

::
a
:::::::
random

:::::::
database

::
of

::::::
13,000

::::
data

::::::
points5

:::
split

::::
into

:::::::
training

::::
data

:::
(70

::::
%),

:::::::::
validation

::::
data

:::
(15

:::
%),

::::
and

:::
test

::::
data

::::
(15

:::
%).

::::
This

:::::::::
generated

:::::::
database

::::
was

::::
then

:::::
used

:::
for

:::
the

::::::
training

:::
of

:::
the

::::
NN. The NN output target is the vector of partitioning coefficients, which is subsequently used as the initial

guess for solving the coupled VBS + BAT system of non-linear equations. This two-step process (first NN, then numerical

equilibrium solver) takes on average 12.8 ms for a system with 11 species (the time required for the VBS + BAT equilibrium

solver step scales approximately linearly with number of species).10

The VBS-NN shows a smaller error for lower-O : C (< 0.5) systems, but in all cases, it still needs some refinement by

an iterative equation solver to achieve a target precision of less than 10−5 in ξj error. With that said, the VBS-NN initial

guess is successful in approximating the non-trivial equilibrium solution, which facilitates using an efficient, though less

robust, gradient descent method. Our VBS + BAT equilibrium implementation in MATLAB uses the fmincon solver with the

sequential quadratic programming algorithm for an average evaluation time of ∼ 10 ms. Without the VBS-NN initial guess,15

a more robust interior-point algorithm must be used to find the non-trivial solution, resulting in an average evaluation time of

∼ 40 ms.

The total evaluation time for a system comprised of 11 organic species plus water at a given aw is between 13 and 19 ms,

depending on whether the iterative refinement loop within the BAT evaluation is active or skipped. This evaluation time is

similar to that for a standard (ideal mixing) VBS, which on the same CPU results in an evaluation time of 7.2 – 15 ms (either20

using the sequential quadratic programming or interior-point algorithm, respectively). Moreover, we expect an optimized For-

tran implementation to further improve computational efficiency; thus, the penalty for a higher fidelity organic aerosol model

may be even lower. With these implementation issues addressed, the integrated VBS + BAT model can be used to asses the

impact of non-ideal mixing thermodynamics on predicted gas–aerosol partitioning and water content, both at low and high RH

and for different levels of molecular-level input information.25

5 Results: Comparison of VBS + BAT and AIOMFAC Predictions

The model comparison focuses on the predictions of bulk liquid aerosol mass concentration and how that metric changes

when input data of lower chemical fidelity is used. AIOMFAC-based equilibrium gas–particle partitioning predictions are used

as a benchmark. These calculations account for liquid–liquid phase separation and consider relatively high-fidelity input, as the

AIOMFAC model uses functional group information for chemical structures and accounts for non-ideal interactions among all30

species. In contrast, the VBS + BAT approach only includes non-ideal water↔ organic interactions (implicitly assuming ideal

organic↔ organic mixing) and rather limited molecular structure information (O : Cj and Morg,j).
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Figure 6. High level program outline for the VBS + BAT model, including the use of two artificial neural networks. The listed times represent

time per single evaluation call, averaged over 13,000 random simulations for a system comprised of 11 species. The H : C value, used in the

component density calculation, is estimated when not given (see SI Sect. 4).

For our simulated aerosol systems, we use surrogate systems representing α-pinene SOA and isoprene SOA products based

on predictions from the Master Chemical Mechanism, as was detailed in Zuend and Seinfeld (2012) and Chen et al. (2011),

respectively. The α-pinene SOA system used here contains 10 organic species as surrogates of the SOA and the isoprene SOA

system is comprised of 21 organic surrogate species; these are listed in Sect. 5
:
7
:

of the SI. Both systems have been compared

to experimental data using AIOMFAC equilibrium calculations (Zuend and Seinfeld, 2012; Rastak et al., 2017). The pure com-5

pound liquid-state vapor pressures used in AIOMFAC equilibrium calculations were predicted by the EVAPORATION model

(Compernolle et al., 2011). We use the equilibrium state at ∼0 % RH (i.e., dry conditions) from the AIOMFAC equilibrium

simulation to approximate organic particulate matter amounts, comparable to experimental measurements under dry condi-

tions. From the dry AIOMFAC equilibrium simulation, the effective Csatdry for each organic species is calculated, which is used
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as an input in the VBS + BAT simulations. This process allows for a fair comparison between AIOMFAC and VBS + BAT

equilibrium simulations, since we are starting with the same dry mass concentrations, the only difference being the treatment

of non-ideality and phase equilibria as a function of RH.

5.1 Co-condensation of Organic Matter

Organic matter co-condensation is the first improvement the VBS + BAT model offers over the standard VBS (dry) model.5

Here, co-condensation refers to the RH-dependent gas–particle partitioning of different organic compounds alongside changes

of aerosol water content (Topping et al., 2013). In Fig. 7a, the VBS + BAT model, using the individual organic molecule

properties (O : Cj , H : Cj , Mj and effective Csatj,dry), is compared to a standard VBS (dry) prediction (inputs: Mj and effective

Csatj,dry) and a VBS + BAT prediction using average molecular properties for representing the organic aerosol fraction. The

average inputs (O : Cavg, H : Cavg and Mavg) used in the VBS + BAT (avg. prop.) simulation case are mass-weighted means10

obtained from the dry AIOMFAC equilibrium calculation output. That calculation case uses a recalculated effective Csatavg.dry.

The recalculated Csatavg.dry is needed to force all the simulations to be equal in total organic aerosol mass concentration at 0 %

RH. The VBS + BAT (avg. prop.) case mimics a situation where measurements of the volatility distribution (Csatdry) and of bulk

organic properties (O : Cavg, H : Cavg and Mavg) are available, e.g. from laboratory or field experiments. This also reflects a

situation comparable to using the minimal input properties needed for a implementation of VBS + BAT in a CTM.15

The percentage difference in PM organic mass of both the high fidelity and averaged VBS + BAT simulations compared to

the benchmark calculation is less than 5 % over the majority of the RH range (Fig. 7b). A notable deviation occurs only at high

(> 96 %) RH, where a relatively sharp transition to a water-rich phase occurs in the α-pinene SOA system (affected by the

approximation via the prescribed qα function in VBS + BAT). At an RH of 99.95 % the error in VBS + BAT, VBS + BAT (avg.

prop.), and VBS (dry) are respectively 43 %, −12 %, and −21 % for α-pinene SOA. The agreement is closer for the isoprene20

SOA case, for which the error in VBS + BAT, VBS + BAT (avg. prop.), and VBS (dry) are respectively 0.01 %, −0.2 %, and

−44 % at an RH of 99.95 %. The VBS + BAT model performs remarkably well and represents a clear improvement over the

standard VBS (dry) model, which ignores relevant water uptake of the isoprene SOA system over a large range in RH and the

high-RH change to a water-rich phase in the α-pinene SOA case. The latter is particularly relevant for capturing more realistic

CCN activation behavior, further discussed in Sect. 5.3.25

A second AIOMFAC equilibrium calculation probes the effect of inorganic salts by adding a 50 % dry mass fraction of

ammonium sulfate. The salting-out effect does not drastically affect the resulting organic particulate matter mass concentration.

However, there is room for improvement of the BAT model by accounting for ion↔ organic interactions. The inorganic salts

will affect which phase or phases the organics partition into, yet the present VBS + BAT model is not accounting for this.

This result suggests a CTM implementation could use a ZSR approximation to combine the water content contributed by30

inorganic salts and organics (treated as completely phase-separated). To validate that approach and its limitations, we will need

to evaluate a much broader set of organic species and salt concentrations in future work.
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Figure 7. (a) Comparison of predicted PM organic mass concentrations as a function of equilibrium relative humidity for a bulk solution

(= aw) at 298.15 K. Simulations for isoprene SOA are shown in blue and those for α-pinene SOA in green. The benchmark AIOMFAC

equilibrium predictions are shown for the salt-free cases (circles); for comparison, an additional case (diamonds) shows SOA mixed with

approximately 50% ammonium sulfate (dry mass fraction). In the AIOMFAC equilibrium calculation, ammonium sulfate crystallization

was suppressed for RH > 35%. Note that the ammonium sulfate mass concentration in the PM is not shown, only its indirect effect on

organic mass concentration. The thick curves show the VBS + BAT predictions with multiple organic surrogate components of individual

molecular properties, while the thin curve shows a simulation assuming a hypothetical average molecule calculated from the dry mass, i.e.,

a mass-weighted mean of O : Cj , H : Cj , Mj , but keeping the set of individual molecule effective Csatj,dry values to mimic a distribution of

volatilities. The thin dashed line shows the standard VBS simulation ignoring water uptake (dry). (b) The percentage difference of the three

VBS simulations compared to the organics-only benchmark case. Figure S2
:

S8
:
of the SI shows an equivalent graph but with expanded limits.
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5.2 Hygroscopic Growth

Equilibrium water uptake as a function of RH and its indirect effect on the partitioning of organics is a crucial process.

The VBS + BAT simulations account for this process, while traditional VBS implementations do not. Referring to the SOA

systems shown in Fig. 7, the hygroscopic growth predictions by VBS + BAT and the AIOMFAC-equilibrium model are com-

pared in Fig. 8. Panel (a) shows the absolute PM water mass concentrations as a function of RH, while panel (b) represents5

hygroscopicity in terms of predicted κHGF parameters. According to the AIOMFAC-based equilibrium prediction, the water

uptake by α-pinene SOA is low for RH < 98 %, as expected from previous studies (Rastak et al., 2017; Zuend and Sein-

feld, 2012), which the VBS + BAT model captures well. For isoprene-derived SOA, the VBS + BAT (avg. prop.) simulation

underpredicts the water content by a substantial amount, while the case with individual surrogate components performs well.

We traced this discrepancy back to the treatment of the IEPOX isoprene oxidation products in the VBS + BAT (avg. prop.)10

run. In the molecule-specific VBS + BAT simulation, the IEPOX products are treated using hydroxyl functional groups, and

all other components are multifunctional hydroperoxides. Whereas the VBS + BAT (avg. prop.) run forces all species to be

multifunctional hydroperoxides which causes the IEPOX products to be represented as less hygroscopic than they actually are.

To alleviate this side effect, one could split average organic properties into two groups: one assuming hydroxyl functionality

and one assuming multifunctional hydroperoxides (e.g., 50 % by mass being from the hydroxyl class and 50 % from the hy-15

droperoxide class). Lastly, it is interesting that at 90 % RH the large relative deviation in water mass (55 %) for isoprene SOA

only translated to a 4 % error in predicted PM organic mass (Fig. 7a). This characteristic is mainly due to one of the surrogate

species, a 2-methyl tetrol dimer (Lin et al., 2012), which is always partitioned to the PM (low vapor pressure) but the change

in the applied molecular functionality (in avg. prop. case) changes its effective hygroscopicity and thereby the water content of

the simulated aerosol at high RH. See Tables S5 and S6
::
S7

::::
and

::
S8

:
in the SI for details about the surrogate species of the SOA20

systems.

The VBS + BAT model provides simultaneous predictions of water and organic partitioning, which means that hygroscopic

growth parameters can be calculated for comparison with other models and simpler hygroscopicity parameterizations. In this

case, we predict the widely-used hygroscopicity parameter, κHGF, related to the hygroscopic growth factor of the organic

mixture as a function of composition (and indirectly RH). The definition of κHGF used in this study is slightly different from25

the κ parameter introduced by Petters and Kreidenweis (2007), since our definition accounts for the effect of organic co-

condensation. Our generalized definition of κHGF was introduced by Rastak et al. (2017) (see derivation and justification in

their SI). It is given by Eq. (22), where V indicates volume contributions, with Vorg the cumulative contribution of organic

component volumes at any RH level after gas–particle equilibration, while Vorg,dry quantifies the total (organic) volume under

dry conditions (RH ≈ 0%):30

1

aw
= 1 +κHGF

Vorg,dry

Vw +Vorg −Vorg,dry
. (22)

Figure 8b shows a comparison of the predicted κHGF values. Most VBS + BAT simulations are in good agreement with the

benchmark model, except for the VBS + BAT (avg. prop.) run for isoprene SOA. In the average prop. isoprene SOA case, the

underpredicted water content is propagated forward causing the κHGF value to underpredict the AIOMFAC-based benchmark

25
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Figure 8. (a) Comparison of PM water mass as a function of bulk equilibrium relative humidity. The isoprene SOA simulation is shown in

blue and the α-pinene SOA simulation in green. (b) The calculated κHGF parameter of the organic mixture, which changes as a function of

RH both due to non-ideal mixing and organic co-condensation.

value. For any given initial particle size, the Kelvin effect could be included and a κCCN predicted at an adequate level of

supersaturation. Although, if the interest is in cloud droplet activation, the Köhler curve can be directly calculated from the

VBS + BAT output.

5.3 BAT-derived CCN Properties

Our last model application focuses on κ at the CCN activation point, denoted as κCCN of the organic aerosol. The BAT5

model is used to understand composition effects on the hygroscopic growth parameter of organic species at CCN activation

conditions and the related ongoing discussion within the atmospheric science community. The
::::
BAT

:::::
model

::::
can

::::::
predict

:::
an

:::::
entire

::::::
Köhler

:::::
curve

::::::
directly

::::
and

::::
does

:::
not

::::
rely

::
on

::
a

:::::
κCCN ::::::::

prediction
:::
for

::::::::::
applications

:::
in

:::
the

::::::
context

::
of

:::::
cloud

::::::
droplet

:::::::::
formation

::::::::::::::
thermodynamics.

:::::
Thus,

:::
the

:::::::
exercise

::
of

:::::::::
predicting

:::::
κCCN::

is
::::
here

::::::
mainly

::::::
carried

:::
out

::
to

::::::
inform

:::
on

:::
the

::::::::::
relationship

::::
with

:::::::
existing

:::::::::
approaches.

::::
The

:
κ-Köhler framework reduces hygroscopic growth to a single parameter (κ) that can be used to compare the10
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properties of different potential CCN particles (Petters and Kreidenweis, 2007). Over the past decade, the research community

then progressed by characterizing (organic) aerosol hygroscopic growth measurements by a single κ value , with sometimes

inconsistent distinction between a κ value at subsaturated and supersaturated humidity conditions
::
for

::::
ease

::
of

::::::::::
comparison

::::
and

:::
use

:::
for

:::::::::::::::
parameterizations

::
of

:::::
CCN

::::::::
activation

:::
in

:::::::::
large-scale

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Petters and Kreidenweis, 2007; Rastak et al., 2017).

The overarching goal was to link measured aerosol physicochemical properties to CCN activation behavior (critical supersatu-5

ration, critical dry diameter, etc.). A common approach was to fit a linear dependence of κ to organic O : C (Jimenez et al., 2009;

Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Duplissy et al., 2011; Frosch et al., 2011; Lambe et al., 2011; Wong

et al., 2011; Rickards et al., 2013; Thalman et al., 2017). A resulting linear fit was not always consistent with observations, due

to the nonlinear behavior of κ vs. O : C, so Kuwata et al. (2013) introduced a set of water-solubility bins to account for nonlin-

ear step changes. More recently, Wang et al. (2019) focused on relating κ to molar mass and assumed ideal mixing of organics10

with water. There are at least two main problems that likely led to the current understanding of κ fororganic aerosol
::::::
factors

:::
that

:::::
many

::
of

:::
the

::::::::
previous

:::::::::
approaches

:::
do

:::
not

::::
fully

:::::::
account

:::
for. The first was the common assumption of

::
is assigning a single

κ value
:::
and

::::::::
assuming

:
it
:

to be representative at all RH levels, which is often inaccurate (
:::
has

::::
been

::::::
shown

::
to

:::
be

:::::::::
inaccurate

::
in

:::::::
multiple

::::
cases

:::
as

:::
this

::::::::
treatment

::::
does

:::
not

:::::::
account

:::
for

::::::::
non-ideal

:::::::
behavior

::::::::
changing

::::
with

:::
RH

:::
(or

::::
aw),

:::::::::
especially

::
in

:::
the

:::
RH

:::::
range

::
of

::
90

::
–

:::
100

::
%

::
(see Fig. 8b). The second being the fixation with using

:::
use

::
of

:
a linear function to describe nonlinear behavior .15

We may gain a better insight on the link between organic aerosol properties to CCN activity properties by using the
::::::::
non-linear

:::::::
behavior

::::::
caused

:::
by

:::::::::::
liquid–liquid

:::::
phase

::::::::::
separation.

:::::
More

::::::::
advanced

:::::::::::::
thermodynamic

:::::::
models,

::::
like

::::::::
UNIFAC

::::
and

::::::::::
AIOMFAC,

::::
have

::::
been

::::
used

::
to

::::
gain

::::::
insight

::::
into

:::
the

:::::::
complex

:::::
CCN

::::::::
activation

::::::
process

::::::::::
accounting

::
for

:::::
phase

:::::::::
separation

::::
and

::::::::
non-ideal

::::::
mixing

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Petters et al., 2016; Ovadnevaite et al., 2017; Renbaum-Wolff et al., 2016; Rastak et al., 2017; Hodas et al., 2016)

:
.
:::
The

::::
BAT

::::::
model

:::
can

:::::::
simulate

:::
the

::::
same

::::::::
processes

::
as
:::::
those

:::::
more

::::::
detailed

:::::::::::::
thermodynamic

:::::::
models,

:::
but

::::
with

:::
less

:::
(or

::::::::::
incomplete)

::::::::::
information

:::::
about20

::
the

:::::::::
molecular

::::::::
structure

::::::
and/or

::::::::::
composition

::
of

::::
the

::::::
organic

:::::::
aerosol

:::::::
fraction.

:::
We

:::::::::::
acknowledge

::::
that

:::::
there

::::::
remain

::
a

::::::
number

:::
of

::::::::
challenges

::::::::::::
accompanying

::::::::::
predictions

::
of

::::
CCN

::::::::
activation

::::::::
potential,

::::::::
including

:::::::::
accounting

:::
for

:::::::::::::::::::
composition-dependent

:::::::::::
bulk–surface

:::::::::
partitioning

::
of
::::::::
different

::::::
organic

::::
and

::::::::
inorganic

::::::::::
components

::
in

:::::::::::::
multicomponent

:::::::
aerosol

:::
and

:::::::::
associated

:::::::
evolving

::::::
surface

:::::::
tension

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ruehl et al., 2016; Malila and Prisle, 2018; Davies et al., 2019).

:::
At

:::::::
present,

:::::
those

::::::
aspects

:::::
may

::
be

::::
best

::::::::::
understood

::::
and

:::::::::
represented

:::
by

::::::
detailed

:::::::
process

:::::::
models,

:::::
though

::::::
future

::::
BAT

:::::::::
extensions

::::
may

:::::
enable

::::::::::::
improvements

::::
also

::
on

:
a
:::::::::::::::::
reduced-complexity25

::::
level.

:

:::
The

:::::::::::::::::
reduced-complexity

:::::
inputs

:::
of

:::
the

:
BAT model to predict the

::
and

:::
its

::::::::::
continuous

:::::::
behavior

:::
as

:
a
::::::::
function

::
of

:
O : C and

Morg dependence of κCCN. In this context
:::::
allow

:::
for

::::::::::
establishing

:
a
:::::
direct

::::
link

:::::::
between

:::::
those

::::::
organic

:::::::
aerosol

::::::::
properties

:
(O : C

:::
and

::::::
Morg)

:::
and

:::
the

::::::::
predicted

:::::
CCN

::::::::
activation

::::::::
potential.

::::
For

::::
these

:::::
BAT

:::::
model

::::::::::
predictions, we revert to the original definition

of κCCN by assuming no organic co-condensation in Eq. 22 (i.e., Vorg,dry = Vorg). Accounting for the Kelvin effect with an30

assumption about the air–droplet surface tension, one can calculate the equilibrium saturation ratio S of the aerosol / CCN,

S = aw exp

(
4σMw

RTρwD

)
. (23)

Here, we assume a fixed volume of organics equal to a spherical droplet of 100 nm (dry) diameter over the full RH range

(Vorg = Vorg,dry). This fixed organic volume means that we are neglecting co-condensation, so that these κCCN values are
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Figure 9. Three different organics with O : C of 0.5 (blue), 0.25 (green) and 0.0 (orange) with constant Morg of 200 gmol−1 at T =

298.15 K. (a) CCN growth curves for the three water–organic mixtures. (b) κHGF versus water activity curves for the water–organic mixtures.

The circles represent the extracted κCCN values, based on the maximum in saturation ratio vs. particle diameter. The β-phase curve is shown

in a darker shade for the organics with a miscibility gap (green and orange). The miscibility gap is denoted by a dotted line, and is an

undefined region in a thermodynamic equilibrium context (crossing it is a transient, non-equilibrium feature). The simulations assume a

100 nm diameter-equivalent volume of organic matter at all points, while water uptake changes the overall particle diameter. The surface

tension is approximated as a volume-weighted mean surface tension with pure water σ of 72 mNm−1 and pure organics of 30 mNm−1.

independent of the organic’s volatility. Including co-condensation would tend to increase the apparent value of κCCN when

the organic volatility is sensitive to co-condensation, e.g. in the case of semi-volatile organic compounds, but not for ex-

tremely low-volatility organic compounds (ELVOC). The surface tension (σ) used here is a volume-weighted average of water

(∼ 72 mN m−1) and a typical organic (∼ 30 mN m−1). Examples of the Köhler curves and the associated κHGF values are

shown in Fig. 9. The κCCN value is the κHGF value that corresponds to the maximum point on a Köhler curve. If the organic5

is completely miscible with water, there is just a single κCCN value. When there is a miscibility gap, we can calculate a κCCN

for both the α and β phases. Here, the β-phase κCCN marks the global maximum on the Köhler curve, so we use it as an

approximation for these organics. A non-equilibrium model would be needed to accurately resolve the full Köhler curve during

dynamic particle growth; the Köhler curve may extend to higher supersaturations in the miscibility gap region since both size

and surface tension evolve (which would affect the effective κCCN). When the organic particle approaches an O : C of zero,10

the particle does not activate into a cloud droplet as it remains non-hygroscopic (though it may adsorb a water film at high

supersaturations). In those cases, we assign κCCN to be the κHGF value as the water activity asymptotically approaches one.

Using the extracted κCCN from individual Köhler curves we can show isopleths of Morg in Fig. 10a or O : C (Fig. 10b).

Note, these are two-component systems of water and a single organic, which is not necessarily the same as a mixture with an
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equivalent mean Morg and O : C values. The relationship between the mean properties and the resulting κCCN of an organic

mixture would depend on the spread of the individual compounds that make up the mixture, which may span non-linear regions

in the water uptake behavior. In Fig. 10a, the κCCN values exhibit an O : C-dependence, but the magnitude of that dependence

varies with molar mass. The O : C-dependence of κCCN increases towards lower molar mass of the organic. Focusing on the

Morg-dependence of κCCN at a fixed O : C in Fig. 10b, we notice a nonlinear dependence on molar mass. This is anticipated5

as the κCCN “ideal” formula also suggests a nonlinear relationship, κCCN = iρorgMw/(ρwMorg), with i as the Van’t Hoff

factor, i.e., the effective degree of solute dissociation. By synthesizing the two molecular dependencies shown in Fig. 10, we can

anticipate how κCCN varies within distinct aerosol populations. As SOA particle mass loading increases, the aerosol fraction

of relatively lower molar mass organics (of higher abundance in the gas phase) tends to increase too, which in turn leads to an

increase in κCCN. A lower total aerosol mass concentration would typically mean that the average molar mass is larger and10

thus decreases κCCN and indirectly the O : C-dependence. This mass loading effect may explain the remaining variability in

reported κCCN values, but will need further study.

The measured κCCN data of α-pinene SOA shown in Fig. 10a indicate a water-rich α-phase-like behavior. It is interesting

that the measured data points start roughly at the limit of miscibility predicted by the BAT model when using the hydroxyl

functionalization. That might mean only a small fraction of species need to be miscible to drive the water uptake – and/or that15

hydroxyl and carboxyl groups are the dominant functionalities of the molecules (both sharing the same BAT functional group

translation parameters).

It is also worth comparing the α-phase κCCN predictions for Morg = 300 g mol−1 when applying either the hydroxyl

or hydroperoxide molecular functionality parameters with the BAT model. The two α-phase curves in Fig. 10a are nearly

identical, suggesting that the type of oxygen-bearing functional group is marginal in dilute systems (at the same O : C ratio).20

This observation explains why an ideal mixing rule can work well over a broad range of O : C (Wang et al., 2019). A limitation

when applying an ideal mixing rule by default is clearly identified for system of intermediate to low average O : C, in which a

β-to-α phase transition occurs under hydration conditions.

6 Discussion

We developed the BAT model from the desire to capture the thermodynamics of non-ideal water ↔ organic interactions25

with only bulk species information, like O : C. In that reduced-complexity effort, we focus on determining representative

average relationships and do not expect to model a single component’s hygroscopicity and gas–particle partitioning perfectly.

The latter case is better approached by group-contribution models like UNIFAC and AIOMFAC – or for high accuracy by

system-specific parameterizations (e.g., using a Duhem-Margules model). The goal of the BAT model is to represent the

bulk O : C and molar mass dependencies of a wide range of water–organic mixtures to a reasonable degree of accuracy.30

From this premise, the VBS + BAT model might fail when any one organic compound from a mixture dominates the water

uptake. For example, we expect an equimolar mixture of squalane (O : C = 0, H : C = 2, Morg = 422 g mol−1) and malonic

acid (O : C = 1.33, H : C = 1.33, Morg = 104 g mol−1) to have significant errors (> 10 %) in predicted organic PM mass
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Figure 10. Comparison of κCCN derived from α-pinene SOA measurements with those from BAT model simulations of CCN activation.

The simulations assume a 100 nm diameter equivalent volume of organic matter at the CCN activation point. The droplet surface tension is

calculated as a volume-weighted mean; see Sect. 5.3. Shown are the predictions for two-component systems comprising water and a single

organic. (a) BAT simulations and experimental data for κCCN as a function of O : C. The data for α-Pinene SOA is listed in the SI (Massoli

et al., 2010; Poulain et al., 2010; Frosch et al., 2011; Kuwata et al., 2013; Rickards et al., 2013; Cain and Pandis, 2017; Wang et al., 2019).

(b) The molar mass dependence of κCCN for two cases at constant O : C of 0.35 or 0.9, showing ideal mixing as well as miscibility gap

considerations with BAT in the O : C = 0.35 case. (a, b) BAT simulations based on the hydroxyl group parameter set are shown as solid

curves while the dashed curves show a BAT calculation using the hydroperoxide functional group parameters. The thick curves represent

single-organic + water systems with the κCCN of the β-phase transitioning to the one based on the α-phase at O : C ratios of 0.3 – 0.4. The

hexagons show κCCN for an organic component assuming ideal mixing with water (in panel (a) for Morg = 300 gmol−1) and a van’t Hoff

factor of 1.

and water content, since the bulk properties of those compounds are very different. However, a mixture of squalane and 1-

hexanol (O : C = 0.16, H : C = 2.33, Morg = 102 g mol−1), both having a low O : C ratio, is expected to be represented

more accurately in a VBS + BAT simulation. That understanding is a prerequisite when using the VBS + BAT model for the

interpretation of laboratory studies, but perhaps less critical for the modeling of tropospheric aerosol. An ambient (organic)

aerosol is made up of a distribution of organic species, which is in line with the assumptions inherent in the design of the5

VBS + BAT model. The more species present in a mixture, the less influential any single species becomes. This effect in more

complex mixtures may further support the assumption of quasi-ideal mixing among organic compounds (exception may exist).

Thus, we expect the VBS + BAT model accuracy to be often better for complex organic aerosol systems than for seemingly

simpler ternary systems.
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We can examine how this mixture diversity concept plays out by comparing BAT model predictions to recent experimental

findings by Marsh et al. (2019), none of which were used in determining the BAT parameter sets. Their experimental work used

a comparative kinetic electrodynamic balance method to measure the organic mass fraction (worg) of a mixed water–organic

droplet (Rovelli et al., 2016). Marsh et al. (2019) measured worg over a wide range of water activities, making this a good

comparison for the BAT model; shown in Fig. 11. In their experiments, they had used a few nitrogen–containing organics. In5

our application of the BAT model for those compounds, the nitrogen atoms were only accounted for in the organic density

and molar mass input of the model. We use the organic mixture composition and measured RH from Marsh et al. (2019) for

each data point to run an iterative BAT calculation to retrieve the water uptake, which then allow retrieving a worg value. In

Fig. 11, the measured and modeled worg values of a variety of aqueous mixtures cluster along the 1:1 line, indicating good

agreement. The majority of data points are within ± 10 % model–measurement uncertainty. Mixtures of pimelic acid isomers10

(orange squares) will all have identical properties in the BAT model representation due to identical O : C and Morg values of

these compounds. Therefore, the pimelic acid isomer mixture has no diversity from the BAT model perspective, characterizing

a system for which BAT is expected to perform less accurately. The mixture consisting of amino acids only is also a case where

the BAT model clearly deviates from the measurements. Since the BAT model was not trained to predict nitrogen–containing

organics, this behavior is not unexpected. However, when the mixture diversity increases by adding dicarboxylic acids to the15

amino acid mixture, the model error in organic mass fraction, and concurrently water content, reduces to less than 10 %. The

error in predicting the water uptake of mixtures of dicarboxylic acids is also on the order of± 10 %. In conclusion, the accuracy

of the BAT model tends to improve when the organic mixture becomes more diverse.

::::
After

::::::
mainly

:::::::::
comparing

::
to

::::
data

::
for

:::::::::::
subsaturated

:::::::::
conditions

:
in
::::
Fig.

:::
11,

:::
we

:::
now

:::::
focus

::
on

::::::::::
predictions

::
for

:::
the

::::::
regime

::::::::::::
supersaturated

::::
with

::::::
respect

::
to

::::::
water

:::::
vapor.

:::
In

::::
Fig.

:::
12,

:::
the

::::::::::::
measurement

::::::
derived

::::::
κCCN::

is
:::::::::
compared

::::
with

:::
the

::::::::::::
corresponding

:::::
BAT

::::::
model20

:::::::::
prediction.

:::
The

::::
data

:::
set

::::::::
contains

::
30

:::::::::::::
supersaturated

::::::
droplet

::::::::
activation

:::::::::::::
measurements

::
of

::::::
known

::::::::
chemical

::::::
species

:::::
(e.g.,

:::::
oleic

::::
acid,

:::::::
glucose,

::::
and

::::::::::::
levoglucosan).

:::
The

:::::::
average

:::::
error

::
in

:::
the

::::::::::::
measurements

::
is

::::::
shown

::
as

:::
the

::::
gray

::::::
shaded

::::
area

::
in
::::
Fig.

:::
12,

::::::
which

:::::
covers

:::
the

:::::::
average

:::
of

:::
the

::::::
κCCN :::::

range
::::::::
observed

:::
for

:::::
each

::::::::::
component.

::
A

::::::
subset

:::
of

::
18

:::::::::
chemicals

::::::::
reported

:
a
::::::
κCCN::::::

range,

::::
from

:::::
which

::::
the

::::::
average

:::::
error

::::
was

::::::::
calculated

:::
to

::
be

::::::::
± 42 %.

:::
The

::::
data

:::
set

:::
we

:::::
used

:::
was

::::::::
compiled

:::
by

:::::::::::::::::
Petters et al. (2016)

:::
and

:::::::::::::::::::::::::
Petters and Kreidenweis (2007)

:
,
:::::
which

:::::::
includes

::::::::::::
measurements

::::::
derived

::::
from

::::::::
multiple

::::::
sources

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Broekhuizen et al., 2004; Brooks et al., 2004; Frosch et al., 2010; Huff Hartz et al., 2006; Petters et al., 2006; Petters and Kreidenweis, 2007; Petters et al., 2009, 2016; Pradeep Kumar et al., 2003; Raymond, 2003; Suda et al., 2014; Svenningsson et al., 2006)25

:
.
:::
Our

::::::::::
comparison

:::::::
excludes

:::
the

::::::::::::::::
nitrogen-containing

:::::::::::
compounds.

:::
The

::::
BAT

::::::::::
predictions

:::::::
assumed

::
no

:::::::
organic

:::::::::::::
co-condensation

::::
and

:::
had

::
an

::::::::
evolving

::::::
surface

::::::
tension

:::
as

::::::::
described

::
in

::::
Sect.

::::
5.3.

::::
The

::::
BAT

:::::::::
predictions

:::
vs.

::::::::::::
measurements

::::
had

::
an

::::::
RMSE

::
of

:::::
0.055

::::
and

:::::
overall

::::::
agreed

::::::
within

:::
the

:::::::
reported

:::::::::::
measurement

:::::
error.

::::::::::
Substantial

:::::::::
differences

:::
are

:::::
found

:::
for

:::
the

:::::::::::::::::
0.35<O : C< 0.55

::::::
range,

::
in

:::::
which

:::
the

:::::::
resulting

:::::
κCCN::

is
::::::
highly

:::::::
sensitive

::
to

:
a
::::::
correct

:::::::::
prediction

::
of

:::::::::
miscibility.

:::
For

::::::::
example,

:::
the

:::::::::
miscibility

::
is

::::::::::::
over-predicted

::
for

:::::::
phthalic

::::
acid

:::::::::::
(O : C = 0.5)

:::::
while

::
it

::
is

:::::::::::::
under-predicted

::
for

:::::
pinic

::::
acid

:::::::::::::
(O : C = 0.44),

:::::
shown

::
in

::::
Fig.

:::
12.

::
In

:::
the

:::
full

::::
data

:::
set

::
of30

::
30

:::::::::
molecules,

:::::::
another

:::::
subset

::
of

:::
16

::::::::
molecules

:::::
were

:::
not

::
in

::
the

:::::::
training

:::::::
database

:::
of

:::
the

::::
BAT

::::::
model,

::
so

:
a
::::::::::::
corresponding

::::
plot

::::
with

::::
only

:::
this

::::::::
validation

::::
data

::
is

:::::
shown

::
in

:::
the

::::::
section

:::
5.1

::
of

:::
the

:::
SI,

::::::::
including

:::::::::
predictions

:::
by

:::
both

:::::
BAT

:::
and

::::::::::
AIOMFAC.

:::
The

:::::::::
validation

:::
data

::::::
shows

::::::
similar

::::::::
agreement

::
to
::::
Fig.

:::
12,

::::
with

:
a
:::::::::::
measurement

:::
vs.

::::
BAT

::::::
RMSE

::
of

:::::
0.061

::::
and

:::::::::::
measurement

::
vs.

::::::::::
AIOMFAC

::::::
RMSE

::
of

:::::
0.059.

::::
The

:::::::::
AIOMFAC

::::::
κCCN :::::::::

predictions
:::
are

:::::
better

::
in
:::
the

::::::::::
miscibility

::::::::
transition

:::::
region

::::
than

:::
the

:::::
BAT

::::::
model,

:::
but

::::::
overall

:::
the

::::::
models

:::::
show

::::::
similar

::::::::
predictive

::::
skill

:::
for

::::
this

::::::
metric.

:::
We

:::::
chose

::
to

:::::
focus

:::
on

::::::::::
well-defined

::::::::
chemical

:::::::
systems

:::
for

::
all

:::
of

:::
the

:::::
direct35
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Figure 11. Comparison of BAT model predictions of worg with measurements from a comparative kinetic electrodynamic balance by Marsh

et al. (2019). The amino acids are glycine, lysine, and arginine; the dicarboxylic acids are oxalic, malonic, glutaric, and methylsuccinic acid;

the isomers are pimelic acid, 2,2-dimethyl glutaric acid and 3,3-dimethyl glutaric acid. Gray shading: ± 10 % uncertainty in worg; blue

shading: ± 10 % uncertainty in wwater (= 1−worg). The compositions of each mixture are listed in the SI.

::::
BAT

:::::::::::::::::
model–measurement

:::::::::::
comparisons,

:::::::
allowing

:::
for

:::::::
minimal

::::::::::
uncertainty

::
in

:::
the

::::
input

:::::
data.

:::::::::
Additional

::::::::::
comparisons

::
of
:::::
BAT

::
to

:::::::
complex

:::::::
ambient

:::
and

:::::::::
laboratory

::::
OA

::::::
systems

::::
will

:::
be

::::::
carried

:::
out

::
in

:::
the

::::::
future,

:::::
since

::::::::
additional

:::::::
analyses

:::
are

:::::::::
necessary

:::
for

:::
the

::::::::
estimation

:::
of

::::::::
volatility,

::::::::
molecular

::::::
mass,

:::
and

:
O : C

::::::::::
distributions.

:::::
Such

:::::::
analyses

::::
will

::::::
enable

::
a

:::
fair

:::::::::
evaluation

::
of

:::::
VBS

:
+
:::::

BAT

:::::
model

::::::::::
predictions

:::::::
against

:::::::::::
measurements

:::
for

:::::::
systems

::::
that

:::
are

:::::::::
unresolved

::
on

:::
the

:::::::::
molecular

::::::::::
composition

:::::
level.

Future work will explore ways to improve the BAT model by adding extensions to include other intermolecular interac-5

tions thus far ignored. These additions will focus on organic ↔ organic and ion ↔ organic interactions, likely using a simi-

lar methodology. The liquid–liquid phase separation treatment via qα may benefit from improvements, so the predictions of

biphasic multicomponent systems become more accurate, especially for cases where the spread in O : C and Morg of organic

components is large. We will look at this using two methodologies, the first using AIOMFAC-derived data to fit the O : C

dependence of qα. The second method involves building a model similar to BAT, except for three species, i.e., water ↔ or-10

ganic ↔ organic (Redlich and Kister, 1948). That approach will allow calculating the qα for each organic directly, but this

would add additional computational costs within the VBS equilibrium solver. Throughout such improvements, added com-

plexity needs to be balanced by considerations of computational costs and whether a significant improvement over the current

methods are achieved.
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Figure 12.
:::::::::::::
Single-component

::::::
organic

:::::::
aerosol

:::::::::::
measurements

:::
of

:::::
κCCN::::

are
::::::::

compared
::::::

against
:::::

those
::::::::

predicted
:::

by
::::::::::::

corresponding

:::
BAT

::::::
model

:::::::::
simulations

:::
of

:::::
CCN

:::::::::
activation.

:::
The

:::::
gray

:::::::
shading

::::::::
represents

:::::::
± 42 %

:::::::
average

:::::::::
uncertainty

::
in
::::

the
::::::::
measured

::::::
κCCN.

:::
The

::::::
dashed

::::
line

:::
is

::
a
:::::

linear
:::

fit
:::::

with
::

a
::::

zero
::::::::

intercept,
:::::::::::::::::::::::::::::::::::::
κCCN,BAT = κCCN,measured × 0.799 [± 0.059]

:::::
with

::
a
::::::::

Pearson’s
::::
R2

:
of
::::::
0.66.

::::
The

::::::::::::::::
model–measurement

::::::
RMSE

::::
was

::::::
0.055.

::::
The

:::::
BAT

:::::::::
simulations

:::::::
assume

::
a
::::

100
:
nm

::::::
diameter

:::::::::
equivalent

:::::::
volume

:
of
:::::::

organic
::::::

matter
:::

at
:::

the
:::::

CCN
:::::::::

activation
:::::
point.

::::
The

:::::::
droplet

::::::
surface

:::::::
tension

::
is
:::::::::

calculated
::

as
:::

a
:::::::::::::
volume-weighted

::::::
mean.

:::
A

::
list

:::
of

::::
the

:::
30

:::::::::::
measurement

:::::
points

:::
is

:::::
given

:::
in

:::::
Table

:::
S6

:::
of
::::

the
:::

SI,
:::::

with
:::

the
:::::

data
:::::::

obtained
:::::

from
::::

the
::::::::

following
:::::::

studies:

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Broekhuizen et al. (2004); Brooks et al. (2004); Petters et al. (2006); Petters and Kreidenweis (2007); Petters et al. (2009, 2016); Frosch et al. (2010); Huff Hartz et al. (2006); Pradeep Kumar et al. (2003); Raymond (2003); Suda et al. (2014); Svenningsson et al. (2006)

.
:

7 Conclusions

In this study, we introduced the BAT model, which was designed to access varying levels of chemical fidelity. This flexi-

bility means that the integrated VBS + BAT model is well suited for both comparison to experimental observations and for

implementations in global and regional atmospheric chemical transport models. In both application cases, the typical lack of

chemical structure information precludes the direct use of more detailed models, such as AIOMFAC-based gas–particle equi-5

librium calculations. The VBS + BAT integration solves this problem by allowing for non-ideal thermodynamic simulations in

organic–water systems, even when molecular structure information is limited to bulk elemental composition. This flexibility

also promises its utility in CTM implementations, in which the tracking of the exact chemical structures for all species is

impractical, yet information about the evolution of the bulk aerosol (and gas phase) properties
:
is

:
often available. The com-

putational overhead for the VBS + BAT model is comparable to the standard VBS, due to the integration of deep learning10
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neural networks, reducing the need for costly numerical iteration. In conclusion, the implementation of a more realistic organic

aerosol model in CTMs is likely feasible.

Our comparisons of AIOMFAC-based equilibrium and VBS + BAT simulations demonstrate agreement within about 5 %

error over the majority of the RH range. Due to the limited information available from the BAT model, the transition through a

miscibility gap had to be prescribed via a semi-empirical transition function instead of an explicit prediction. This prescribed5

transition in the VBS + BAT model did introduce additional error in the equilibrium partitioning at high humidities for organic

mixtures with a miscibility gap – but is beneficial in terms of computational efficiency. The VBS + BAT model can be used

reliably across a wide range of the composition space, but our test cases show that caution should be used in the composition

range near the onset of a liquid–liquid miscibility gap.

The the interplay between O : C, molar mass, and water uptake for CCN activation revealed
:::::
clearly

:::::
show

:
the complex10

behavior of organic κCCN values. Our clear distinction between κCCN and the more general κHGF helps the community

understand clearly the
::
to

::::::::::
differentiate

:::::::
between

:::
the

:
subsaturated and supersaturated behavior of organic aerosol. The use of the

BAT model in κCCN prediction correctly captures the nonlinear dependence of κHGF (and κCCN) on organic properties and is

preferable to previous linear fitsusing .

Finally, we present a comparison between the BAT model and comparative kinetic electrodynamic balance measurements15

of organic mass fractions as a means of independent verification of BAT. The comparison highlights how the BAT model may

perform relatively poorly in the cases of certain individual organic species, but when modeling a mixture diverse in number

of components and functional groups, the accuracy tends to improve and is typically within ± 10 % uncertainty. A diverse

mixture is typically a good description of ambient organic aerosol. Therefore, the BAT model is well suited for reduced-

complexity predictions involving ambient organic aerosol thermodynamics. Future work in the context of simplified aerosol20

thermodynamics will be necessary for the development of computationally efficient models, similar to VBS + BAT, which

further account for organic↔ inorganic interactions in the presence of dissolved electrolytes.

Code and data availability. The data presented here, the MATLAB source code, and a standalone executable of the VBS + BAT model is

freely available at https://github.com/Gorkowski/Binary_Activity_Thermodynamics_Model.
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1 Overview

The supplemental information covers the BAT model equations and the approaches for the parameterizations of different

functional group classes and phase separation treatments. These approaches include the O : C blending method developed for

the transition regions between the three BAT model parameterization regions, the functional group translations approach to

convert input parameters to OH-group equivalents, finding the aw,sep point for the liquid–liquid transition from a organic-rich5

to a water-rich phase, and the density estimation method for organic compounds. The attached supplemental Microsoft ® Excel

workbook file contains all the coefficient values, the SOA model system’s input properties,
::::::::
validation

:::::::
systems,

:
and all the data

shown in the figures of the main text.

2 BAT model

2.1 BAT Equations10

The explicit equations for our BAT model are listed below in Eqs. (S1) to (S11). To improve the clarity, we define O : C≡ ϑ,

where O : C refers to the O : C of an organic component ("org") or the average O : C of a mixture of organics. The determined

coefficients are listed in Tables S1 & S2.
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c1 = a1,1 exp(a1,2 ϑ) + a1,3 exp

(
a1,4

Mw

Morg

)
(S1)

c2 = a2,1 exp(a2,2 ϑ) + a2,3 exp

(
a2,4

Mw

Morg

)
(S2)

φorg = xorg

(
xorg + (1−xorg)

ρorg
ρw

Mw

Morg
[s1(1 +ϑ)s2 ]

)−1

(S3)

GE/RT = φorg(1−φorg) [c1 + c2(1− 2φorg)] (S4)

d(GE/RT )

dxorg
=
d(GE/RT )

dφorg

dφorg
dxorg

(S5)5

dφorg
dxorg

=

(
ρorg
ρw

Mw

Morg
[s1(1 +ϑ)s2 ]

)(
φorg
xorg

)2

(S6)

d(GE/RT )

dxorg
=

{
(1− 2φorg) [c1 + c2(1− 2φorg)]− 2c2φorg(1−φorg)

}
dφorg
dxorg

(S7)

ln(γorg) = (GE/RT ) + (1−xorg)
d(GE/RT )

dxorg
(S8)

aorg = γorgxorg (S9)

ln(γw) = (GE/RT )−xorg
d(GE/RT )

dxorg
(S10)10

aw = γw(1−xorg) (S11)

Here, the activity coefficients of organic and water, γorg and γw, respectively, as well as the corresponding activities (aorg,

aw) are defined on mole fraction basis (i.e. γorg = γ(x)
org), each with the pure component as reference and standard states (where

activity coefficients become unity). The output from the BAT calculation can also be used to calculate the Gibbs energy of

mixing (∆mixG), since the non-ideal interactions are parameterized (i.e., the excess Gibbs energy of mixing: GE). Note, for15

simplicity, we do not include standard state chemical potentials of water and the organic, which would add an additional linear

component to the curve. This is deemed justified given the approximate nature of the miscibility gap treatment. We present this

calculation below with ∆mixG being normalized by R, T , and the total sum of moles nt = nw +norg in the binary system.

∆mixG
ideal

RTnt
= (1−xorg) ln(1−xorg) +xorg ln(xorg) (S12)

∆mixG

RTnt
=

∆mixG
ideal

RTnt
+

GE

RTnt
(S13)20
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Table S1. Scaled volume coefficients of the fitted BAT model.

Region O : C bounds
::::::
Training

::::
data

:::::
points s2 s1

low O : C O : C< 0.15
:::
1000 -5.988895 6.940689

mid. O : C 0.05<O : C< 0.1ϑML::::::::::::::::::::
0.05<O : C< ϑML + 0.1

: :::
2680

:
-1.219164 4.742729

high O : C ϑML <O : C
:::
3600

:
-0.078682 3.650860

misciblity line 0.05<O : C< 0.45
:::
2360

:
-1.237227 4.069905

Table S2. The eight power series coefficients (an,1−4; n= 1,2) used in the hydroxyl-group-parameterized BAT model.

Region a1,1 a2,1 a1,2 a2,2 a1,3 a2,3 a1,4 a2,4

low O : C 7.089476 -0.622678 -7.711860 -100.0 -38.859410 3.08E-09 -100.0 61.888120

mid. O : C 5.872214 -0.974049 -4.535007 -100.0 -5.129327 2.109751 -28.092320 -23.676830

high O : C 5.921550 -100.0 -2.528295 -100.0 -3.883017 1.353916 -7.898128 -11.601450

misciblity line 5.885109 -0.984901 -4.731250 -6.227207 -5.201652 2.320286 -30.822970 -25.840370

2.2 Limit of Miscibility Line

The limit of miscibility line is determined from an initial BAT model fitting
:
fit

:
involving the O : C region close to where the

miscibility gap vs. complete miscibility transition occurs.
::
We

::::::
started

:::
by

:::::
fitting

:::
the

::::
BAT

::::::::::
coefficients

:::::
using

:
a
:::::
wide O : C

:::::
range

:::
(0.0

::
to

::::
0.8)

:::
and

::::
then

:::::::::::
progressively

::::::::
narrowed

::
it

::
to

:::
the

::::::::
transition

:::::
region

:
(O : C

::::
0.05

::
to

:::::
0.45).

:::
We

::::
then

:::::::
scanned O : C

:::
and

:::::
Morg ::

to

:::
map

::::
out

:::::
where

:::
the

:::::::::
miscibility

::::::::
transition

::::::::
occurred

::::::
(within

:::::
BAT).

:
The resulting O : C values defining

::::
were

::::
used

::
to

::
fit

:
the limit5

of miscibility line, ϑML, as a function of organic molar mass, was determined as

ϑML =
0.205

1 + exp
(

26.6
(
Mw

Morg
− 0.12

))0.843 + 0.23. (S14)

2.3 O : C Transition Region Blending

We used three different sets of fitted coefficients for the base BAT model representing hydroxyl functionality molecules. The

split was based on the limit of complete miscibility of organics with water and further separated by O : C. A sigmoidal function10

was introduced to provide a smooth transition when traversing from one of the domains to the next in the 2-D parameter space

(e.g., when O : C is increased gradually at a constant molar mass coordinate) – otherwise, spurious discontinuities would occur.

The sigmoidal function provides a weighted map between the parameters from one domain to the next (over a short range in

the boundary region). In effect, we are blending the different regions in the hydroxyl BAT model. Low to medium O : C region

blending is listed first (Eqs. S15 to S22), where ϑML is the ϑ value at the limit of miscibility line and b1, b2, and bML are the15

3



blending coefficients (Table S3).
::::
These

:::
are

::::::::
followed

::
by

::::
and

:::::::
example

::
of

:::
the

::::::::
blending

::::::
weights

::
as

::
a
:::::::
function

::
of

:
O : C

:
,
:::
Fig.

:::
S1.

:

ϑb = ϑ−ϑMLbML (S15)

$b =
1

1 + exp[−b1(ϑb− b2)]
(S16)

ϑb,norm = ϑ− 0.75 ϑML bML (S17)

$norm =
1

1 + exp(−b1(ϑb,norm− b2))
(S18)5

$mid =$b/$norm (S19)

$low = 1−$mid (S20)

GE/RT

∣∣∣∣
blended

=$lowG
E/RT

∣∣∣∣
low

+$midG
E/RT

∣∣∣∣
mid

(S21)

d(GE/RT )

dxorg

∣∣∣∣
blended

=$low
d(GE/RT )

dxorg

∣∣∣∣
low

+$mid
d(GE/RT )

dxorg

∣∣∣∣
mid

(S22)

Medium to high O : C region blending (Eqs. S23 to S27):10

ϑb = ϑ−ϑML (S23)

$high =
1

1 + exp(−b1(ϑb− b2))
(S24)

$mid = 1−$high (S25)

GE/RT

∣∣∣∣
blended

=$highG
E/RT

∣∣∣∣
high

+$midG
E/RT

∣∣∣∣
mid

(S26)

d(GE/RT )

dxorg

∣∣∣∣
blended

=$high
d(GE/RT )

dxorg

∣∣∣∣
high

+$mid
d(GE/RT )

dxorg

∣∣∣∣
mid

. (S27)15

Table S3. Coefficients used in the blending of the different BAT coefficient regions for a molecule with hydroxyl functionality.

Region Transition b1 b2 bML

low to mid. O : C 79.2606902 6.04293E-02 0.1899745

mid. to high O : C 75.0159268 9.47111E-04 -

2.4 BAT Functional Group Translation

4
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Figure S1.
:::::::
Example

::
of

::
the

:::::::
blending

::::::
weights

::::
used

::
to

:::::
merge

:::
the

::::
three

:::::
regions

::
in
:::
the

::::
BAT

:::::
model.

::::
The O : C

:
is

::::::
scanned

::::
with

:
a
::::
fixed

:::::
Morg ::

of

:::
200 g mol−1

:
to
::::
show

::::
how

::::
each

:::::
region

::::::
becomes

::::::::
dominant.

:

2.4
:::

BAT
::::::::::
Molecular

::::::::::::
Functionality

::::::::::
Translation

The translation approach concerns the conversion from different functional group classes
::::::::
molecular

::::::::::::
functionalities

:
to hydroxyl-

equivalent input parameters for use with the default, hydroxyl-group-based BAT model. These translations are for the whole

molecule, and not the individual functional groups. Thus, for multifunctional molecules, a distinct multifunctional translation

must be derived, as we did for the SOA oxidation products. If that is not possible, then the most dominant and representative5

functionality should be chosen. The O : C conversion is described by Eq. S28 and the molar mass translation is described

by Eq. S29. The corresponding coefficients for different oxygen-bearing functionalities of the whole molecule are listed in

Table S4.

ϑeqv.OH =
ϑ

1 + t3 exp(−t1ϑ)
(S28)

Meqv.OH =
M

1 + t4 exp(−t2M)
(S29)

5



Table S4. Functional group translation coefficients to convert a whole molecule to a hydroxyl-equivalent molecule for BAT model inputs.

tn Hydroxyl Carboxyl Hydroperoxide Hydroperoxide SOA PEG Ketone Ether Ester

t1 none none 8.1716E-06 1.4902E-04 5.4477E-03 4.5343E-03 2.4434E-05 -1.293246

t2 none none 4.5318E-07 4.7363E-03 3.864336 6.4845E-04 1.5832E-04 1.0813E-03

t3 none none 0.966090 0.869058 -0.267168 0.138144 0.284974 1.240514

t4 none none 0.459433 0.564783 0.255487 0.352454 0.229339 0.405354

3 Water Activity Separation Point

In the case of a liquid–liquid equilibrium, the relative phase preferences are described by qαj , the fractional liquid–liquid

partitioning of a component to phase α (qαj ≤ 1.0 in the two-liquid-phases case). Liquid–liquid phase separation
::::::
(LLPS)

:
in a

binary water–organic system at RH< 100% is reduced to a point and manifests itself by a jump discontinuity. The liquid phase5

is either a water-poor (β) or water-rich (α) phase, with a sharp transition between these two possible states at a specific water

activity (qαj = 1 or 0). To approximate the location and aw-width over which the liquid–liquid phase separation is prescribed

to occur, we first determine a designated reference point, the so-called water activity separation point (aw,sep). Liquid–liquid

phase separation connects two points on the Gibbs energy of mixing curve that have identical slopes and a tie-line that does not

cross the Gibbs energy curve (Fig. S2a). This tie-line represents the connection between the two stable phase compositions at10

equilibrium. Prior to phase separation occurring, a mixture can enter the composition space past these two points, which will

result in a metastable state and eventually an unstable state, which will lead to spontaneous, spinodal decomposition (if phase

separation did not occur within the metastable region). The binary mixture can enter and remain in the metastable region, but

the energy barrier for liquid–liquid phase separation is typically low at room temperature, such that phase separation is expected

to occur when the water content is increased. In most cases we will be interested in a case of increasing or decreasing water15

mole fraction at approximately constant temperature, so our aw,sep point in Fig. S2a will be p2, which has a corresponding

point p5 near/within the metastable composition range. If we solved for the tie-lines at high precision and included the standard

state chemical potentials of water and the organic, then points p1 and p2 would have identical activities. That however is not

the case, but we still want to ensure identical water activities at aw,sep. We achieve this by finding p2’s corresponding point

(p5) which has the same water activity as the aw,sep point, this ensures a realistic water-poor (β) to water-rich (α) transition.20

Here, we explain how to identify (to good approximation) the two stable composition points in liquid–liquid equilibrium

by only using the BAT-predicted activity curves (Fig. S2b). In a binary system, both component activities must be less than

one and have monotonic behavior. Any regions that show non-monotonic behavior result in a phase separation range and

are denoted by the dashed lines in Fig. S2b. By connecting the mole fraction extent of the organic and water activity-based

(minimum) phase separation regions identified, we can construct the tie-line that connects the two stable phases over the25

full extent of phase separation. This tie-line is then used in our above description to find the aw,sep point. We note that due

to omitting a computationally costly Gibbs energy minimization (with further including standard chemical potentials), the

identified miscibility gap is a (typically good) approximation of the true extent of phase separation.

6
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Figure S2. BAT simulation used to describe the identification of the aw,sep point. The simulation uses an organic compound with hydroxyl

functionalities, Morg of 100 g mol−1 and O : C of 0.225. The identified aw,sep value is here 0.9741 (black star). (a) The normalized ∆mixG

curve (black) with the tie-line in dashed red. The approximate stable phase-separation tie-line points and compositions are marked by p1 and

p2, with the extent of the corresponding metastable regions denoted by p3 and p4. The end point in the metastable region at the same water

activity as p2 is marked by p5. (b) The organic (green) and water (blue) mole-fraction-based activities for this binary system. The apparent

minimum regions of phase separation required by each component are indicated by dashed lines. The approximate mole fraction extent of the

actual phase separation region is identified by the extremes in composition, i.e. end points p1 and p2. The aw,sep point is the water activity

corresponding to the composition at p2, indicated by a black star.
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4 Organic Density Estimation

Organic density model from ?, Eqs. (S34 to S36). If H : C is not known then we use H : C = 2−ϑ.

MC = 12.010 g mol−1 (S30)

MN = 14.006 g mol−1 (S31)5

MO = 16.0 g mol−1 (S32)

MH = 1.008 g mol−1 (S33)

nc =
Morg

MC +MH H : C +MO ϑ+MH N : C
(S34)

ρ∗ =
Morg

5nc(2 + H : C + 2ϑ+ 2N : C)
(S35)

ρest. = ρ∗(1 + min(0.1ncϑ+ 0.1ncN : C, 0.3)) (S36)10

5
::::
BAT

::::::
Model

:::::::::
Validation

::::
and

:::::
Error

::::::::
Analysis

:::::
Given

:::
that

:::
the

:::::
BAT

:::::
model

::
is
::
a
::::::::::
multivariate

::::::::
function,

:
a
:::::::::
validation

::::
data

::
set

::
is
:::::

used
::
to

:::::
assess

:::
the

:::::::::
possibility

:::
of

::::::::
overfitting

:::
of

::
the

::::::
model

:::::::::
depending

:::
on

:::
the

:::::::
training

::::
data

:::
set.

::::
The

::::::
species

:::::
used

::
in

:::
the

:::::::
training

:::
and

:::::::::
validation

::::::
(Table

:::
S6)

::::
data

::::
sets

:::
are

:::::
listed

::
in

:::
the

:::::::
attached

:::
MS

::::::
Excel

:::
file,

:::
the

::::::::
summary

:::
of

:::
the

::::
error

::::::::
analyses

:::
are

::::::
shown

::
in

:::::
Table

:::
S5.

::::::
Figure

:::
S3

::::::::
compares

:::
the

:::::::::
calculated

::::
water

::::
and

:::::::
organic

:::::::
activities

::
at
:::

the
:::::

same
:::::::
organic

::::
mole

::::::::
fraction,

:::::
which

::
is
::::::
clearer

::::
than

:::::::
directly

:::::::::
comparing

:::::::
activity

::::::::::
coefficients15

::::
from

::::
each

::::::
model.

::::
For O : C

:::::
values

::::::
lower

::::
than

:::
0.2,

:::
the

::::::::
deviation

:::::
from

:::
the

:::
1:1

::::
line

::
is

::::
more

::::::::::
substantial

::::
than

:::
the

::::::::
deviation

:::
for

:::::
higher

:
O : C

:::::::::
compounds.

::::
This

::
is
::::::::
expected

::
as

::::
such

::::::::::
compounds

:::::
show

:
a
:::::::::
miscibility

:::
gap

::::
over

::
a
::::
wide

:::::
range

::
of

:::::::::::
composition

:::::
space

:::
and

:::::::::
associated

::::
high

::::::::
activities

:::::
when

::::::::
computed

:::
for

:::
the

::::::
initial,

:::::::::
well-mixed

:::::::::::
single-phase

:::::
case.

:::
For

:
a
::::::::::
quantitative

::::::::::
assessment

:::
we

::::::::
calculated

:::
the

::::
root

::::
mean

:::::::
squared

::::
error

:::::::
(RMSE)

::
of

:::
the

::::::::
activities

::::::::
predicted

::
by

:::
the

:::
two

:::::::
models

::::::::::
(AIOMFAC

::::
being

:::
the

:::::::::::
benchmark).

:
If
:::::
there

:::
was

:::::::::
substantial

::::::::::
overfitting,

::::
there

::::::
would

::
be

:
a
:::::
large

::::::::
difference

::
in
:::
the

::::::
RMSE

::::::::
between

:::
the

:::::::
training

::::
data

:::
and

:::
the

:::::::::
validation20

::::
data.

:::
For

:::
the

::::::
RMSE

::::::::::
calculation,

:::
we

::::::::
excluded

:::
the

:::::
points

::::::
where

:::
the

:::::::
activity

:::
was

::::::
greater

::::
than

::::
one,

:::
as

:::::
those

:::::::
represent

::::::::
unstable

:::::::
physical

:::::
states

:::
and

:::::
large

:::::::::
deviations

:::::
there

:::
can

::::::::::
overwhelm

:::
the

:::::::
RMSE.

:::::::::::
Model–model

:::::::::
deviations

:::
for

:::::
those

::::::::
unstable

:::::
cases

:::
are

::::::
largely

::::::::
irrelevant

::
in

:::::::
practise,

:::::::
because

:::::
what

::::::
matters

::
is

:::
the

::::::::::
comparison

::
of

:::
the

:::::::::
predictive

::::
skill

:::
for

:::
the

::::::::::
composition

::
of

:::
the

::::::
stable

:::::
phases

:::
(in

:::::
LLPS

:::
or

::::::::::
single-phase

::::::
case).

:::::
Table

::
S5

::::
lists

:::
the

::::::::
compiled

:::::
error

::::::::::
assessments

:::
for

:::
the

:::::::
training

::::
data

:::
and

:::
the

:::::::::
validation

::::
data.

:::
The

:::::::
similar

:::::
RMSE

::::::
values

:::::::
between

:::
the

::::::::
hydroxyl

:::::::
training

:::
and

:::::::::
validation

:::
data

:::::::
suggest

:::
the

:::::
model

::
is
:::
not

:::::::::
overfitting

::::
and

:::
has25

::::::
general

::::::::::
applicability

::::::
within

:::
the

::::::
training

:::::::
domain

::
of

:::
the

::::::::
parameter

:::::
space

:
(O : C

:::
and

:::::
molar

:::::
mass

:::::::
ranges).

::::
This

::::::::
agreement

:::::::
suggest

:::
that

::::::
model

:::::::
behavior

::
is
:::::::
realistic

::::
and

:::
our

::::::
excess

:::::
Gibbs

::::::::
function

::
is

::::::
smooth

:::::
with

::
no

:::::::::::::
discontinuities.

::::
The

::::::
smooth

::::::
excess

::::::
Gibbs

:::::::
function

::::
then

::::
leads

:::
to

::::::
smooth

:::::::
activity

:::::
curves

::::
and

::::::
activity

:::::::::::
coefficients.

::::::::::::
Discontinuities

::::
like

:::::::::::
liquid–liquid

:::::
phase

:::::::::
separation

:::
are

::::
only

::::::
derived

::::
from

:::::::
analysis

:::
of

:::
the

:::::
excess

::::::
Gibbs

:::::::
function

:::
(via

::::::::::::::
post-processing)

:::
and

:::
are

:::
not

:::::::
directly

::::
built

::::
into

:::
the

::::::::::
coefficients

::
of

::
the

:::::
BAT

::::::
model.
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Figure S3.
:::::::::

Comparisons
::
of

:::
the

::::
BAT

::::::::
predictions

::::
with

:::
the

:::::::::
AIOMFAC

:::::
model

::::::::
predictions

:::
for

:::
the

:::::::
validation

::::
data

::
set

::::::
(Table

:::
S6).

:::
An

::::::
activity

::::
value

:::::
above

:::
one

:::::::
represents

:::
an

::::::
unstable

::
or

::::::::
metastable

::::::
mixing

::::
state,

:::
and

::
in

::::::
practice

:::
the

::::::
mixture

::::
would

:::::
phase

::::::
separate

::::::
readily

::::
when

:::::
given

:::
that

::::
initial

::::::
mixture

::::::::::
composition.

:::
The

::::
color

:::
bar

::::::::
represents

::
the

:
O : C

::
of

::
the

:::::::::
compound,

:::
and

::::
each

::::::::::
organic–water

::::::
system

:
is
:::::
shown

:::
by

::
40

:::::::::
comparison

::::
points

:::::::
spanning

:::
the

:::::::::
composition

:::::
range

::::
from

::::
dilute

::
to
::::::::::
concentrated.

:::::
Water

::::::
activity

::::::::::::::::
(aw = γw(1−xorg))

::
is

:::::
shown

::
in

::
(a)

:::
and

::::::
organic

::::::
activity

:::::::::::::
(aorg = γorgxorg)

::
in
:::
(b).

::::
Both

::::::
models

:::
are

:::::::
compared

::
at

:::
the

::::
same

:::::
organic

:::::
mole

::::::
fraction,

::::
xorg .

:

:::
We

:::
did

:::
not

:::::::
generate

:::::::::
additional

::::::::
validation

::::
data

::::
sets

:::
for

:::
the

:::::::::
translation

:::::::::
coefficients

:::
for

::::
each

:::::::::
molecular

:::::::::::
functionality

::::
type

:::
for

:::
two

:::::::
reasons.

:::::
First,

:::
our

:::::::::
translation

:::
has

:::::
only

:::
four

::::::::::
coefficients

::::
and

:::
will

:::
be

::::
well

::::::::::
constrained

::
by

:::::
100+

::::
data

::::::
points

::::
used

::
in

:::
the

:::
fit.

::::::
Second,

::::
our

::::::::
translation

::::::::
function

:::::::::
constitutes

:
a
::::::
smooth

:::::
map;

::::
thus,

:::
no

:::::::
artifacts

:::
due

::
to

::::::::
potential

::::::::
overfitting

:::
are

::::::::
expected.

:

::
In

:::::::
addition

::
to

:::
the

:::::::::::::
thermodynamic

::::::::
activities,

:::
we

::::
can

:::
also

::::::::
compare

::::
how

::::
well

:::
we

:::::
detect

:::
and

:::::::
predict

:::
the

:::::
aw,sep:::::

point.
::::
For

:::
the5

::::::
organic

::::::::::
compounds

::
in

:::
the

::::::
binary

::::::
aquous

:::::::
systems

:::
that

:::::::::
underwent

::::::
phase

:::::::::
separation,

:::
the

::::::
RMSE

::
of

:::::
BAT

::
vs.

::::::::::
AIOMFAC

::::::
aw,sep

:::::::::
predictions

:::
are

:::::
listed

::
in

:::::
Table

:::
S5.

::::::
Overall

:::
the

::::
BAT

::::::
aw,sep:::::::::

prediction
:::
was

::::::::
<±0.01,

:::
the

:::
aw:::::::::

prediction
:::
was

::::::::
<±0.09

::
(9

::
%

:::::
RH),

:::
and

:::
the

::::
aorg:::::::::

prediction
:::
was

::::::::
<±0.15

::::::::
compared

::
to

::::::::::
AIOMFAC.

:

5.1
::::

CCN
:::::::::::::
Hygroscopicity

::::::::::
Parameter

:::::::::
Validation

:::
We

::::::::
compare,

::
in

::::
Fig.

:::
S4,

::::::::::::::::::
measurement-derived

::::::
κCCN ::::

data
::::::
against

:::
the

:::::
BAT

:::
and

::::::::::
AIOMFAC

::::::
model

:::::::::
predictions

:::
of

::::::
κCCN.10

:::
The

:::::::::
validation

::::::
dataset

:::::::::
contained

:::
16

::::::::::::
supersaturated

:::::::
growth

::::::::::::
measurements

:::
on

::::::
known

::::::::
chemical

:::::::
species,

:::::
listed

:::
in

:::::
Table

:::
S6

::::::::::::
(???????????)

:
.
::::
The

::::::
average

:::::
error

::
in

:::
the

::::::::::::
measurements

::
is
::::::
shown

::
as

:::
the

:::::::
shaded

::::
gray

::::::
region

:::
and

::
is

:::
the

:::::::
average

::
of

:::
the

::::::
κCCN

::::
range

:::::::::
observed.

::::
The

::::::::
validation

::::
data

::::::
shows

::::::
similar

:::::::::
agreement

:::::::
between

:::
the

::::
two

::::::
models

:::::
with

:
a
:::::::::::
measurement

:::
vs.

:::::
BAT

::::::
RMSE

9



Table S5.
:::
BAT

:::::
model

::::
data

::::
point

:::::::
numbers

:::
for

:::::
model

::
fit

:::
and

::::::::
validation

::
as

::::
well

::
as

:::
root

:::::
mean

::::::
squared

:::::
errors

:::::::
(RMSE)

::
for

:::
the

:::::::
training

:::
and

:::::::
validation

::::::::
databases,

:::::
which

::::
were

:::::::
generated

::
by

:::
the

:::::::::
AIOFMAC

:::::
model.

:::::::
Hydroxyl

:::::::
(training)

:::::::
Hydroxyl

::::::::
(validation)

:::::::
Carboxyl

:::::::::::
Hydro-peroxide

:::::::::::
Hydro-peroxide

::::
SOA

:::
PEG

: :::::
Ketone

: ::::
Ether

::::
Ester

:::::
Points

::::::::
for

:::::
activity

::::::::
comparison

:::::
(a < 1)

:

::::
5511

:::
607

:::
451

:::
573

:::
910

:::
120

:::
421

:::
557

:::
488

:::::
RMSE

::
of

::
aw: :::::

0.0580
:::::
0.0667

:::::
0.0408

:::::
0.0690

:::::
0.0711

:::::
0.0335

:::::
0.0845

:::::
0.0730

:::::
0.0820

:::::
RMSE

::
of

::::
aorg :::::

0.0901
:::::
0.0964

:::::
0.0771

:::::
0.0950

:::::
0.0982

:::::
0.0520

:::::
0.1320

:::::
0.0970

:::::
0.1450

:::::
Points

::
for

::::::
LLPS

::::::::
comparison

:

::
52

:
4

:
5

:
9

:
5

:::
none

::
10

:
9

::
21

:::::
RMSE

::
of

:::::
aw,sep :::::

0.0066
:::::
0.0127

:::::
0.0031

:::::
0.0039

:::::
0.0061

:::
none

:::::
0.0075

:::::
0.0032

:::::
0.0024

::
of

:::::
0.061

::::
and

:::::::::::
measurement

:::
vs.

::::::::::
AIOMFAC

::::::
RMSE

::
of

::::::
0.059.

::::
The

:::::::::
AIOMFAC

::::::
κCCN::::::::::

predictions
:::
are

:::::
better

::
in

:::
the

::::::::::
miscibility

::::::::
transition

:::::
region

::::
than

:::::
those

::::
from

:::
the

::::
BAT

::::::
model,

:::
but

::::::
overall

::::
both

:::::::
models

::::
show

::::::
similar

::::::::::
predictions.

:

10
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Figure S4.
:::::::::
Comparison

::
of

::::::::::::::
single-component

::::::
organics

:::::
κCCN:::::::::::

measurements
:::::
against

:::::
those

:::::::
predicted

::
by

::::
BAT

:::::
(black

::::::
circles)

:::
and

:::::::::
AIOMFAC

:::::
(white

:::::
circles)

:::::
model

:::::::::
simulations

::
of

::::
CCN

::::::::
activation.

:::
The

::::
blue,

:::::
dashed

::::
lines

::::::
connect

::
the

::::
BAT

:::
and

:::::::::
AIOMFAC

::::::::
predictions

::
for

:::
the

::::
same

::::::
species

::::
when

::::
there

::
is

:
a
::::
large

::::::::
difference.

:::::
Gray

::::::
shading

:::::::
represents

:::::::
± 42 %

::::::
average

::::::::
uncertainty

::
in
:::
the

:::::::
measured

::::::
κCCN.

:::
The

:::::
black

:::::
dashed

:::
line

::
is

:::
the

:::
BAT

:::::
model

:::::
linear

::
fit

:::
with

:
a
::::
zero

:::::::
intercept,

::::::::::::::::::::::::::::::::::
κCCN,BAT = κCCN,measured × 0.78 [± 0.078]

::::
with

:
a
::::::::
Pearson’s

::::::::
R2 = 0.48.

:::
The

:::::
black

:::::
dotted

:::
line

:
is
:::
the

::::::::
AIOMFAC

:::::
model

:::::
linear

::
fit

::::
with

:
a
:::
zero

::::::::
intercept,

::::::::::::::::::::::::::::::::::::::
κCCN,AIOMFAC = κCCN,measured × 0.75 [± 0.066]

::::
with

:
a
:::::::::
R2 = 0.57.

:::
The

::::::
RMSE

::::::
between

:::
the

:::::::::::
measurements

:::
and

:::::::::
predictions

::::
were

::::
0.061

:::
for

::::
BAT

:::
and

:::::
0.059

:::
for

:::::::::
AIOMFAC.

:::
The

:::::::::
simulations

:::::::
assumed

:
a
::::

100 nm
:::::::
diameter

:::::::
equivalent

::::::
volume

::
of

::::::
organic

:::::
matter

::
at

::
the

:::::
CCN

:::::::
activation

::::
point

:::
and

:::
the

:::::
droplet

::::::
surface

::::::
tension

:::
was

::::::::
calculated

::
as

:
a
:::::::::::::
volume-weighted

:::::
mean.

:
A
:::
list

::
of

:::
the

::
16

:::::::
validation

:::::
points

::
is

::::
given

::
in

:::::
Table

::
S6

Table S6:
::::::::
Chemical

::::::
species

::::
used

::
in

:::
the

:::::
κCCN:::::::::::

measurement
:::::::::::
comparison,

:::::
which

:::::::
contains

:::
the

::::::
subset

::
of

::
16

:::::::
species

::::
used

:::
for

::::
BAT

:::::
model

::::::::::
validation.

Start of Table S6

::::::::
Chemical

::::::::
Validation

::::
Data

::::
BAT

::::::::::
functionality

O : C H : C
::::
Morg

::::::::
(g mol−1)

::::
BAT

:::::
κCCN

:::::::::
AIOMFAC

:::::
κCCN

::::::::
Measured

:::::
κCCN

:::::::::::
Measurement

::::::::
Reference

::::
Cetyl

::::::
alcohol

:::
yes

:::::::
hydroxyl

::::
0.06

::::
2.00

::::::
242.50

:::::::
1.93E-06

: :::::
0.053

:::::::
2.00E-05

: :::::
Petter

:::::
(2016)

:

::::
Oleic

::::
acid

: ::
no

: :::::::
carboxyl

::::
0.11

::::
1.78

::::::
282.47

:::::::
4.03E-06

: :::::
0.128

:::::::
1.00E-05

: :::::
Petters

::::::
(2009)

:
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Continuation of Table S6

::::::::
Chemical

::::::::
Validation

::::
Data

::::
BAT

::::::::::
functionality

O : C H : C
::::
Morg

::::::::
(g mol−1)

::::
BAT

:::::
κCCN

:::::::::
AIOMFAC

:::::
κCCN

::::::::
Measured

:::::
κCCN

:::::::::::
Measurement

::::::::
Reference

::::::
Stearic

:::
acid

: ::
no

: :::::::
carboxyl

::::
0.11

::::
2.00

::::::
284.48

:::::::
3.97E-06

: :::::::
1.00E-05

: :::::
Petters

::::::
(2009)

:

:::::::
Palmitic

:::
acid

:

::
no

: :::::::
carboxyl

::::
0.13

::::
2.00

::::::
256.43

:::::::
4.66E-06

: :::::::
1.00E-05

: :::::
Petters

::::::
(2009)

:

:::::::
Myristic

:::
acid

:

:::
yes

:::::::
carboxyl

::::
0.14

::::
2.00

::::::
228.37

:::::::
5.37E-06

: :::::
0.053

:::::::
1.00E-05

: :::::
Petters

::::::
(2009)

:

::::::::::::
Peroxide-ether

::
no

: ::::::::::::
hydroper-oxide

::::
0.21

::::
2.14

::::::
246.40

:::::::
3.09E-06

: :::::::
3.70E-03

: ::::
Suda

::::::
(2014)

::::::::::::
Peroxide-ether

::::
with

:::::::
aldehyde

::
no

: ::::::::::::
hydroper-oxide

::::
0.29

::::
2.00

::::::
260.00

:::::::
4.10E-06

: :::::::
9.20E-04

: ::::
Suda

::::::
(2014)

:::::::::
Cis-Pinonic

:::
acid

:

:::
yes

:::::::
carboxyl

::::
0.30

::::
1.60

::::::
184.24

:::::
0.054

:::::
0.106

:::::
0.005

:::::
Petters

::::::
(2016)

:

::::::
Pinonic

::::
acid

:::
yes

:::::::
carboxyl

::::
0.30

::::
1.60

::::::
184.24

:::::
0.054

:::::
0.106

:::::
0.106

::::::::
Raymond

:::::
(2003)

:::::::::
and

:::::
Petters

::::::
(2007)

:

::::::::::::
Peroxide-ether

::::
with

:::
acid

:

::
no

: ::::::::::::
hydroper-oxide

::::
0.36

::::
2.00

::::::
276.40

:::::
0.000

:::::
0.020

::::
Suda

::::::
(2014)

:::::::::::::::
Diperoxide-diether

::
no

: ::::::::::::
hydroper-oxide

::::
0.43

::::
2.14

::::::
294.40

:::::
0.000

:::::
0.011

::::
Suda

::::::
(2014)

::::::
Azelaic

::::
acid

:::
yes

:::::::
carboxyl

::::
0.44

::::
1.78

::::::
188.22

:::::
0.109

:::::
0.031

:::::
0.023

:::::
Petters

::::::
(2009)

:

:::::::::::
Homophthalic

:::
acid

:

:::
yes

:::::::
carboxyl

::::
0.44

::::
0.89

::::::
180.16

:::::
0.136

:::::
0.050

:::::
0.094

::::
Huff

::::::::::
Hartz

:::::
(2006)

:::::::::
and

:::::
Petters

::::::
(2007)

:

::::
Pinic

::::
acid

::
no

: :::::::
carboxyl

::::
0.44

::::
1.56

::::::
187.21

:::::
0.114

:::::
0.248

::::::::
Raymond

:::::
(2003)

:::::::::
and

:::::
Petters

::::::
(2007)

:

:::::::
Norpinic

:::
acid

:

::
no

: :::::::
carboxyl

::::
0.50

::::
1.50

::::::
172.18

:::::
0.129

:::::
0.179

:::::
0.182

::::::::
Raymond

:::::
(2003)

:::::::::
and

:::::
Petters

::::::
(2007)

:
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Continuation of Table S6

::::::::
Chemical

::::::::
Validation

::::
Data

::::
BAT

::::::::::
functionality

O : C H : C
::::
Morg

::::::::
(g mol−1)

::::
BAT

:::::
κCCN

:::::::::
AIOMFAC

:::::
κCCN

::::::::
Measured

:::::
κCCN

:::::::::::
Measurement

::::::::
Reference

:::::::
Phthalic

:::
acid

:

:::
yes

:::::::
carboxyl

::::
0.50

::::
0.75

::::::
166.14

:::::
0.155

:::::
0.051

:::::
0.051

::::
Huff

::::::::::
Hartz

:::::
(2006)

:::::::::
and

:::::
Petters

::::::
(2007)

:

::::::
Pimelic

::::
acid

:::
yes

:::::::
carboxyl

::::
0.57

::::
1.71

::::::
160.17

:::::
0.137

:::::
0.133

:::::
0.150

:::::
Frosch

::::::
(2010)

:

:::::
Adipic

::::
acid

: ::
no

: :::::::
carboxyl

::::
0.67

::::
1.67

::::::
146.14

:::::
0.156

:::::
0.096

::::::::::
Broekhuizen

:::::
(2004)

:::::::::
and

:::::
Petters

:::::
2007

:::::::::
Polyacrylic

:::
acid

:

::
no

: :::::::
carboxyl

::::
0.67

::::
1.33

:::::::
2000.00

:::::
0.017

:::::
0.054

::::::
Brooks

::::::::
(2004),

:::
and

:::::::::::
Petters

:::::
(2009)

:

:::::::::
Polyacrylic

:::
acid

:

::
no

: :::::::
carboxyl

::::
0.67

::::
1.33

:::::::
2000.00

:::::
0.017

:::::
0.051

:::::
Petters

:::::::::
(2006,

:::::
2007)

:::::::
Glutaric

:::
acid

:

::
no

: :::::::
carboxyl

::::
0.80

::::
1.80

::::::
147.13

:::::
0.157

:::::
0.133

:::::
0.106

:::::
Petters

::::::
(2009)

:

:::::::::::
Levoglucosan

:::
yes

:::::::
hydroxyl

::::
0.83

::::
1.67

::::::
162.14

:::::
0.147

:::::
0.140

:::::
0.208

:::::::::::
Svenningsson

:::::
(2006)

:::::::::
and

:::::
Petters

::::::
(2007)

:

:::::::::
Maltotriose

::::::
hydrate

:::
yes

:::::::
hydroxyl

::::
0.89

::::
1.78

::::::
504.44

:::::
0.050

:::::
0.028

:::::
0.055

:::::
Petters

::::::
(2009)

:

::::::
Sucrose

: :::
yes

:::::::
hydroxyl

::::
0.92

::::
1.83

::::::
342.30

:::::
0.071

:::::
0.061

:::::
0.095

:::::
Petters

::::::
(2009)

:

:::::::::::::::
alpha-Ketoglutaric

:::
acid

:

:::
yes

:::::::
carboxyl

::::
1.00

::::
1.20

::::::
146.11

:::::
0.181

:::::
0.179

:::::
0.310

:::::
Petters

::::::
(2016)

:

::::::::
Erythritol

:::
yes

:::::::
hydroxyl

::::
1.00

::::
2.50

::::::
122.12

:::::
0.181

:::::
0.180

:::::
0.140

:::::
Petters

::::::
(2009)

:

:::::::
Glucose

:::
yes

:::::::
hydroxyl

::::
1.00

::::
2.00

::::::
180.16

:::::
0.131

:::::
0.128

:::::
0.170

:::::
Petters

::::::
(2009)

:

::::::
Maleic

:::
acid

: :::
yes

:::::::
carboxyl

::::
1.00

::::
1.00

::::::
116.10

:::::
0.235

:::::
0.234

:::::
0.330

:::::
Petters

::::::
(2016)

:

:::::::
Succinic

:::
acid

:

:::
yes

:::::::
carboxyl

::::
1.00

::::
1.50

::::::
118.09

:::::
0.214

:::::
0.212

:::::
0.235

:::::
Petters

::::::
(2009)

:
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Continuation of Table S6

::::::::
Chemical

::::::::
Validation

::::
Data

::::
BAT

::::::::::
functionality

O : C H : C
::::
Morg

::::::::
(g mol−1)

::::
BAT

:::::
κCCN

:::::::::
AIOMFAC

:::::
κCCN

::::::::
Measured

:::::
κCCN

:::::::::::
Measurement

::::::::
Reference

:::::::
Malonic

:::
acid

:

::
no

: :::::::
carboxyl

::::
1.33

::::
1.33

::::::
104.06

:::::
0.261

:::::
0.234

:::::
0.227

::::::
Pradeep

::::::::
Kumar

:::::
(2003)

:::::::::
and

:::::
Petters

::::::
(2007)

:

End of Table
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6
:::::::::
Additional

::::::
Water

:::::::
Activity

::::::::
Isopleths

:::
The

::::::::
non-ideal

::::::::
behavior

::
of

::::::::::::
water–organic

:::::::
mixtures

::
is
::::
here

::::::::
explored

::
at

:::::::
different

:::::::::
molecular

::::::
masses

::
of

:::
the

:::::::
organic,

:::::::::
analogous

::
to

:::
Fig.

::
2
::
of

::::
the

::::
main

::::
text.

:::::
This

::
is

::::
used

::
to

:::::
probe

::::
for

:::
any

:::::::::
functional

:::::::::::
irregularities

:::
and

::::
was

::::
used

:::
to

:::::
place

::::::
bounds

:::
on

:::::::
realistic

::::
BAT

:::::
model

::::::::
behavior.

::
In

::::
Fig.

:::
S5

:::
the

:::::::
isopleths

:::
for

:::
75,

::::
100,

::::
150,

::::
and

:::
200

:
g mol−1

::
of

::::::
organic

:::::
molar

:::::
mass

:::
are

::::::
shown.

::::
The

:::::
black5

:::::
region

::
in

:::::
Figs.

::
S5

::
–

::
S7

::::::::
represent

::::::
regions

:::
of

:::::
phase

::::::::
separation

::::
due

::
to

:::::
water

::::::
activity

::::::::
(aw > 1)

:::
and

::::
light

::::
gray

:::::
those

:::
due

::
to

:::::::
organic

:::::::
activities

::::::::::
(aorg > 1).

::
In

:::
the

:::
75 g mol−1

:::
case

::::
(Fig.

:::::
S5a),

::::
one

:::
can

::::
start

::
to

::::
see

:::::::
irregular

::::::::
behavior

::
in

:::
the

:::::
black

:::::
phase

:::::::::
separation

:::::
region

::
as

::
it
:::
has

::
a
:::::
bump

::
at O : C

:::::
=0.25.

::::
The

:::::
lower

::::
limit

:::
for

:::::::::
reasonable

::::::::
behavior

::
is

::::
then

::::::::::::
approximately

::
75

:
g mol−1

:::
due

::
to

::::
that

:::::::::
irregularity

::
–

::
at

::::
least

:::
for

::::::::::
O : C< 0.3,

:::::
while

:::::::::
physically

:::::::::
reasonable

::::::::
behavior

::
is

:::::
shown

:::
for

::::::
higher

:
O : C

:::::
ratios.

:::::
LLPS

::
is

::::::
clearly

:::::
larger

::::
than

:::
the

::::
dark

::::
gray

::::::
shaded

:::::
areas

::
as

:::
the

:::
0.9

:::
aw:::::::

contour
:::
has

:::::::
identical

::::::::
activities

:::
for

::::
two

:::::::
different

:::::
mole

:::::::
fractions

::
of

::::::
water,10

:::::
which

::
is

::::::::
indicative

:::::
LLPS.

::::::
Figure

:::
S6

:::::
shows

:::
the

::::::::::
aw-isopleths

:::
as

::::::::
molecular

::::
mass

:::::::::
increases:

:::
for

:::
300,

::::
500,

::::
800,

::::
and

::::
1000 g mol−1

:
.

:::::
Above

::::
500 g mol−1

::
the

::::::
model

::
is

::::::::::::
unconstrained

::
by

:::::::
training

::::
data

::::
and

:
it
::
is
::
at
:::::
these

::::::
higher

::::::::
molecular

:::::::
masses

:::
that

:::
the

::::::::
contours

::::::
indicate

:::::::
artifacts

::::
due

::
to

::::::::
transition

::::::
effects

::::::
among

:::
the

:::::::
distinct

:
O : C

:::::
ranges

::
of

:::
the

:::::
three

::::
BAT

::::::
model

::::::::
domains.

:::
The

::::
dips

:::
in

:::
the

::::::::::
aw-contours

::
at

::
an

:
O : C

:
of

:::::
about

:::
0.1

::::
and

:::
0.4

::
in

::::::
Fig.S6c

::
&
::
d
:::
are

:::::::::::
non-physical.

:::::
Such

::::::::::
non-physical

:::::::
domain

::::::::
transition

::::::
effects

:::
are

:::::
further

:::::::::
enhanced

:::
for

::::
high

:::::
molar

:::::
mass

:::::::::
compounds

:::::
when

:::
the

::::::
x-axis

:::::
shows

:::
the

:::::
mole

:::::::
fraction

::
of

:::::
water.

:::
To

:::
get

::
a

::::::
clearer

::::::
picture15

::
of

:::
this

::::::::
behavior

::
at

::::
high

::::::::
molecular

:::::::
masses,

:::
we

::::::::
generated

::::::::
isopleths

:::::
graphs

:::
for

::::
500,

::::
800,

:::::
1000,

::::
and

::::
2000

:
g mol−1

::::
(Fig.

::::
S7).

:::
We

:::::::
changed

:::
the

:::::
x-axis

::
to

::
a
::::
mass

:::::::
fraction

:::::
scale

::
to

:::::
better

::::::::
visualize

:::
the

:::::
water

::::::
uptake

::
by

:::::
these

:::::
large

:::::::::
molecules.

::
In

:::::::
Fig.S7b,

:::
we

::::
can

:::
start

::
to
:::
see

::::::::
irregular

:::::
phase

::::::::
separation

::::::::
behavior

::::::::
indicated

::
by

::
an

::::::::
apparent

:::::
region

::
of

:::::::::
miscibility

::
at
:::::::::::::::::
0.1<O : C< 0.15,

::::
with

:::::
phase

::::::::
separation

::
at
:::::::
slightly

::::::
higher

:::
and

:::::
lower

:
O : C

:
.
::
It

::
is

:::::
likely

:
a
:::::::::::
non-physical

:::::::
artifact

::::
with

:
a
::::::::
miscible

:::::
region

::::::::::
sandwiched

::::::::
between

::
the

:::::
black

:::::::
regions;

::
it
::::::
should

::::
very

:::::
likely

:::
be

:::
one

::::::::::
contiguous

:::::
phase

:::::::::
separation

::::::
region.

::::
This

::::::::
irregular

:::::::
behavior

::::
then

:::::::::
continues

::
to20

::::::
expand

::
as

:::
the

:::::::::
molecular

::::::
weight

::::::::
increases

::
in
:::::::

Fig.S7c
:::

&
::
d.

::::::::
However,

:::
we

:::::::::
emphasize

::::
here

::::
that

:::
the

:::::
gray

::::
areas

:::::
only

:::::
show

:::
the

::::::::
minimum

:::::
extent

:::
of

::
an

:::::
LLPS

:::::::
region,

:::::
while

:
a
:::::::::::
liquid–liquid

::::::::::
equilibrium

:::::::::::
computation

:::
(as

::::
done

:::::
with

::::
VBS

::
+

:::::
BAT)

:::::
needs

::
to

:::
be

::::
done

::
to

:::::::::
determine

:::
the

::::::::::::::::
thermodynamically

:::::::
favoured

:::::::::
parameter

:::::
space

::::::::
exhibiting

::::::
LLPS.

::
If

:::
one

::
is
:::::::::
interested

::
in

:::::
phase

:::::::::
separation

:::::::::
predictions

:::
and

:::::
BAT

::::::::::
calculations

:::
for

:::::::
organics

::
of

::::::::::::
O : C< 0.45,

::::
then

:::
the

::::
BAT

:::::
model

::
is
::::::
limited

:::
to

:::
the

:::::
molar

::::
mass

:::::
range

::::::
below

:::
750 g mol−1

:
.
:
If
::::
one

::
is

::::
only

::::::::
interested

::
in

:::
the

:::::
O : C

:::::
region

:::::
above

::::
0.5,

::::
then

:::
the

::::
BAT

:::::
model

::::::
should

:::
be

:::::::::
applicable,

::::
with

:::::::::
reasonable25

:::::::
behavior

::::::::
exhibited

::
up

::
to
::
at
:::::
least

::::
2000

:
g mol−1

:
.

15



0 0.5 1
Water mole fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)
0 0.5 1

Water mole fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

0 0.5 1
Water mole fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

0 0.5 1
Water mole fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

�����������������

������������������������

�
��
��
��
�
��
���

���

������������������������
�
��
��
��
�
��
���

���

�������������� ���������������

������������������������

�
��
��
��
�
��
���

���

������������������������

�
��
��
��
�
��
���

���

��������������� ���������������

� �
� ��

�� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

Figure S5.
::::::
Predicted

:::::
water

::::::
activity

:::::::
contours

:::::::
generated

:::
by

:::
the

:::
BAT

::::::
model

::
for

:::::
binary

:::::::
aqueous

:::::::
mixtures

::
of

::::::
generic

::::::
organic

:::::::::
compounds

::
of

::::::
constant

:::::
molar

::::
mass

::
yet

:::::::
variable O : C

:
at

:::::::::
T = 298.15 K.

::::
The

::::::
contours

:::
link

:::::
water

::::
mole

::::::
fraction

:::
and

:::
the

::::::
organic O : C

:
to

:::
the

::::::
resulting

:::::
water

:::::
activity

::
in

:
a
:::::
binary

:::::::::::
water–organic

:::::::
mixture.

:::
The

:::::::
combined

::::::
shaded

::::::
regions

:
in
::::
dark

:::::::
(aw > 1)

:::
and

::::
light

:::
gray

:::::::::
(aorg > 1)

:::::::
represent

::
the

::::::::
minimum

::::
extent

::
of
::::::::::

liquid–liquid
:::::

phase
::::::::
separation

:::
for

:
a
::::::
certain O : C

:
.
:::
The

::::::
bumps

::
in

::
the

:::::::
contours

::
at

:
O : C

::
of

:::
0.1

:::
and

:::
0.3

::::
stem

::::
from

:::
the

::::::::
transitions

::::::
between

:::
the

::::
BAT

::::::
model’s

:::::
low-,

:::::::
medium-,

:::
and

:::::
high-O : C

::::::::::::
parameterization

:::::::
domains.

:::
The

:::::
Morg::::

used
::
is

::
as

:::::::
follows:

::
(a)

:::
75 g mol−1,

:::
(b)

:::
100 g mol−1

:
,
::
(c)

:::
150

:
g mol−1

:
,
:::
and

::
(d)

:::
200

:
g mol−1.

:
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Figure S6.
::::::
Predicted

:::::
water

::::::
activity

:::::::
contours

:::::::
generated

:::
by

:::
the

:::
BAT

::::::
model

::
for

:::::
binary

:::::::
aqueous

:::::::
mixtures

::
of

::::::
generic

::::::
organic

:::::::::
compounds

::
of

::::::
constant

:::::
molar

::::
mass

::
yet

:::::::
variable O : C

:
at

:::::::::
T = 298.15 K.

::::
The

::::::
contours

:::
link

:::::
water

::::
mole

::::::
fraction

:::
and

:::
the

::::::
organic O : C

:
to

:::
the

::::::
resulting

:::::
water

:::::
activity

::
in

:
a
:::::
binary

:::::::::::
water–organic

:::::::
mixture.

:::
The

:::::::
combined

::::::
shaded

::::::
regions

:
in
::::
dark

:::::::
(aw > 1)

:::
and

::::
light

:::
gray

:::::::::
(aorg > 1)

:::::::
represent

::
the

::::::::
minimum

::::
extent

::
of
::::::::::

liquid–liquid
:::::
phase

::::::::
separation

:::
for

:
a
:::::
certain

:
O : C.

::::
The

:::::
bumps

::
in

:::
the

:::::::
contours

:
at
:

O : C
:
of

:::
0.1

:::
and

::::
0.45

::::
stem

::::
from

:::
the

::::::::
transitions

::::::
between

:::
the

::::
BAT

::::::
model’s

::::
low-,

::::::::
medium-,

:::
and

::::
high-O : C

::::::::::::
parameterization

:::::::
domains.

::::
The

:::::
Morg :::

used
::

is
::
as
:::::::

follows:
::
(a)

::::
300 g mol−1,

:::
(b)

:::
500 g mol−1

:
,
::
(c)

:::
800

:
g mol−1

:
,
:::
and

::
(d)

::::
1000

:
g mol−1

17



0 0.5 1
Water mass fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

0 0.5 1
Water mass fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

0 0.5 1
Water mass fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

0 0.5 1
Water mass fraction

0

0.5

1

1.5

2

O
:C

 (h
yd

ro
xy

l)

�
��
��
��
�
��
���

���

�������������������
�
��
��
��
�
��
���

���

��������������� ���������������

�������������������

�
��
��
��
�
��
���

���

�������������������

�
��
��
��
�
��
���

���

���������������� ����������������

�����������������

��������������������

��� ��� ���

�� �
��
���
�

Figure S7.
::::::
Predicted

:::::
water

::::::
activity

:::::::
contours

:::::::
generated

:::
by

:::
the

:::
BAT

::::::
model

::
for

:::::
binary

:::::::
aqueous

:::::::
mixtures

::
of

::::::
generic

::::::
organic

:::::::::
compounds

::
of

::::::
constant

:::::
molar

::::
mass

::
yet

:::::::
variable O : C

:
at

:::::::::
T = 298.15

:
K.

:::::
Note

::
the

::::::
change

::
to

::
a

::::
mass

::::::
fraction

:::::
scale.

:::
The

:::::::
contours

:::
link

:::::
water

::::
mass

::::::
fraction

:::
and

::
the

::::::
organic

:
O : C

::
to

::
the

:::::::
resulting

:::::
water

:::::
activity

::
in
::
a

:::::
binary

::::::::::
water–organic

:::::::
mixture.

:::
The

::::::::
combined

:::::
shaded

::::::
regions

::
in

::::
dark

:::::::
(aw > 1)

:::
and

:::
light

::::
gray

::::::::
(aorg > 1)

:::::::
represent

:::
the

:::::::
minimum

:::::
extent

::
of

::::::::::
liquid–liquid

::::
phase

::::::::
separation

::
for

::
a
:::::
certain O : C.

:::
The

:::::
bumps

::
in
:::
the

::::::
contours

::
at
:
O : C

:
of
:::

0.1
:::
and

::::
0.45

::::
stem

::::
from

:::
the

::::::::
transitions

:::::::
between

::
the

::::
BAT

::::::
model’s

:::::
low-,

:::::::
medium-,

:::
and

:::::
high-O : C

:::::::::::::
parameterization

:::::::
domains.

:::
The

:::::
Morg

:::
used

::
is

::
as

::::::
follows:

:::
(a)

:::
500 g mol−1

:
,
::
(b)

::::
800 g mol−1

:
,
::
(c)

::::
1000

:
g mol−1,

:::
and

:::
(d)

::::
2000 g mol−1
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7 SOA Mixtures

The model comparison focuses on the predictions of bulk liquid aerosol mass concentration, and we used the AIOMFAC-

based equilibrium gas–particle partitioning predictions as a benchmark. The AIOMFAC-equil. calculations include considera-

tion of liquid–liquid phase separation and consider relatively high-fidelity input, as the AIOMFAC model uses functional group5

information and accounts for non-ideal interactions among all species. In contrast, the VBS + BAT approach only includes non-

ideal water↔ organic interactions (implicitly assuming ideal organic↔ organic mixing) and rather limited molecular structure

information (O : C and Morg). The full extent of the percentage difference in organic aerosol mass between the VBS + BAT

approach and AIOMFAC-equil. is shown in Fig. S8.

For our simulated aerosol systems, we use surrogate systems representing α-pinene SOA (Table S7) and isoprene SOA10

(Table S8) products based on predictions from the Master Chemical Mechanism, as was detailed in ? and ?, respectively.

The α-pinene SOA system used here contains 10 organic species as surrogates of the SOA, and the isoprene SOA system

is comprised of 21 organic surrogate species.
:::
The

:::::
input

:
O : C

:::
and

:::::
Morg::::

used
:::
for

::::
BAT

::::
are

::::
listed

:::
in

:::::
Tables

:::
S7

::
&
:::

S8
::::
and

:::
the

::::::::
molecular

:::::::::::
functionality

:::::::::
translations

::
to
:
OH

::::::::::
-equivalents

:::::
(done

::::::::
internally

::
in

:::
the

::::::
model)

:::
are

:::::
listed

::
in

::::::
square

:::::::
brackets.

:
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Figure S8. Percent difference in organic aerosol mass between the VBS + BAT approach and AIOMFAC-equil. as a function of equilibrium

relative humidity for a bulk solution (= aw) at 298.15 K. Simulations for isoprene SOA are shown in blue and those for α-pinene SOA in

green. The benchmark AIOMFAC equilibrium predictions are shown for the salt-free cases (circles). The thick curves show the VBS + BAT

prediction with different organic components, while the thin curve shows a simulation assuming an average molecule calculated from the

dry mass, i.e., average O : C, H : C, Morg , and we kept the individual molecule’s effective Csat
dry . The thin dashed line shows the percent

difference in the standard VBS simulation with no water uptake (dry).

Table S7: Properties of the α-pinene SOA organic mixture used.
:::
The

:::::::
brackets

:::::::
denote

:::
the

::::
BAT

:::::::
model’s

:::::::
internal

:::::::::
molecular

::::::::::
functionality

::::::::::
translation.

Start of Table S7

MCM Name SMILES BAT func-

tionality

O : C [
:::
OH

:::
eqv.] H : C Morg

(g mol−1)

[
:::
OH

:::
eqv.]

Cg+Σπ

(µg m−3)

eff. Csatdry

(µg m−3)

C107OOH O=CCC1CC(OO)(

C(=O)C)C1(C)C

hydroper-

oxideSOA

0.40 [
:::
0.22] 1.60 200.17

[
:::::
164.22]

8.7918E+00 5.7429E+03

C97OOH OCC1CC(OO)(

C(=O)C)C1(C)C

hydroper-

oxideSOA

0.44 [
:::
0.24] 1.78 188.17

[
:::::
152.78]

3.9840E+00 3.2741E+02
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Continuation of Table S7

MCM Name SMILES BAT func-

tionality

O : C [
:::
OH

:::
eqv.] H : C Morg

(g mol−1)

[
:::
OH

:::
eqv.]

Cg+Σπ

(µg m−3)

eff. Csatdry

(µg m−3)

C108OOH O=CCC(CC(=O)C(

=O)C)C(C)(C)OO

hydroper-

oxideSOA

0.50 [
:::
0.27] 1.60 216.13

[
:::::
216.13]

1.1344E+00 1.6671E+02

PINIC OC(=O)CC1CC(

C(=O)C)C1(C)C

carboxyl 0.44 [
:::
0.44] 1.56 186.17

[
:::::
186.17]

6.2815E-01 1.4953E+01

C921OOH OCC(=O)C1(OO)

CC(CO)C1(C)C

hydroper-

oxideSOA

0.56 [
:::
0.30] 1.78 204.18

[
:::::
168.09]

9.1858E-01 2.1280E+00

C812OOH OCC1CC(OO)(

C(=O)O)C1(C)C

hydroper-

oxideSOA

0.86 [
:::
0.46] 1.75 195.17

[
:::::
159.44]

7.6636E-01 7.1911E-01

C811OH OCC1CC(C

(=O)O)C1(C)C

hydroper-

oxideSOA

0.38 [
:::
0.20] 1.75 158.17

[
:::::
124.84]

3.9949E-01 1.1569E+03

C813OOH OCC(CC(=O)C(=O)

O)C(C)(C)OO

hydroper-

oxideSOA

0.75 [
:::
0.40] 1.75 206.14

[
:::::
169.98]

3.1319E-01 3.0180E-02

ALDOL-

dimer

CC(=O)C(=O)CC(C

(C=O)=CCC1CC(C

(O)=O)C1(C)C)C(C)

(C)OO

hydroper-

oxideSOA

0.37 [
:::
0.20] 1.47 368.30

[
:::::
335.21]

4.0696E+00 2.7866E-06

ESTER-

dimer

CC1(C)C(CC1C(O)=

O)CC(=O)OCC(=O)

C2CC(CC(O)=O)

C2(C)C

ester 0.37 [
:::
0.12] 1.56 368.31

[
:::::
289.50]

1.0174E+00 3.6370E-06

End of Table

Table S8: Properties of the isoprene SOA organic mixture used.
:::
The

:::::::
brackets

::::::
denote

::::
the

::::
BAT

:::::::
model’s

:::::::
internal

:::::::::
molecular

::::::::::
functionality

::::::::::
translation.

Start of Table S8

MCM Name SMILES BAT func-

tionality

O : C [
:::
OH

:::
eqv.] H : C Morg

(g mol−1)

[
:::
OH

:::
eqv.]

Cg+Σπ

(µg m−3)

eff. Csatdry

(µg m−3)

21



Continuation of Table S8

MCM Name SMILES BAT func-

tionality

O : C [
:::
OH

:::
eqv.] H : C Morg

(g mol−1)

[
:::
OH

:::
eqv.]

Cg+Σπ

(µg m−3)

eff. Csatdry

(µg m−3)

IEB1OOH OCC(O)C(C)

(OO)C=O

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.00 150.11

[
:::::
117.51]

3.2124E+00 5.0688E+01

IEB2OOH OOC(C=O)C(C)

(O)CO

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.40 150.11

[
:::::
117.51]

2.4919E-01 2.3180E+02

C59OOH OCC(=O)C(C)

(CO)OO

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.00 150.09

[
:::::
117.50]

4.2176E+00 2.2954E+01

IEC1OOH OCC(=O)C(C)

(CO)OO

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.00 150.09

[
:::::
117.50]

1.4709E+00 2.2954E+01

C58OOH O=CC(O)C(C)

(CO)OO

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.00 150.11

[
:::::
117.51]

3.3475E-01 5.0688E+01

IEPOXA CC(O)(CO)

C1CO1

hydroxyl 0.60 2.00 118.13 8.6354E-11 3.5120E+13

C57OOH OCC(O)C(C)

(OO)C=O

hydroper-

oxideSOA

1.00 [
:::
0.54] 2.00 150.11

[
:::::
117.51]

2.7170E-01 5.0688E+01

IEPOXC CC1(CO1)C

(O)CO

hydroxyl 0.60 [
:::
0.60] 2.00 118.13

[
:::::
118.13]

2.7879E-09 5.2036E+04

HIEB1OOH OCC(O)C(CO)

(OO)C=O

hydroper-

oxideSOA

1.20 [
:::
.64] 2.00 166.11

[
:::::
132.13]

2.8903E-01 1.0370E-01

INDOOH OCC(ON(=O)=

O)C(C)(CO)OO

hydroper-

oxideSOA

1.40 [
:::
0.75] 2.20 197.14

[
:::::
161.32]

2.5037E-01 4.5117E-01

IEACO3H CC(O)(C1CO1)

C(=O)OO

hydroper-

oxideSOA

1.00 [
:::
0.54] 1.60 148.10

[
:::::
115.69]

5.3463E-08 5.6321E+04

C525OOH OCC(=O)C(CO)

(CO)OO

hydroper-

oxideSOA

1.20 [
:::
0.64] 2.00 166.09

[
:::::
132.12]

2.1592E-01 3.9838E-02

HIEB2OOH OOC(C=O)C(O)

(CO)CO

hydroper-

oxideSOA

1.20 [
:::
0.64] 2.00 166.11

[
:::::
132.13]

1.4203E-01 7.0484E-01

IEC2OOH OCC(=O)C(C)

(OO)C=O

hydroper-

oxideSOA

1.00 [
:::
0.54] 1.60 148.06

[
:::::
115.66]

2.0876E-06 4.2944E+03

INAOOH OCC(C)(OO)

C(O)CON(=O)=O

hydroper-

oxideSOA

1.40 [
:::
0.75] 2.20 197.14

[
:::::
161.32]

1.3898E-01 1.7351E+00
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Continuation of Table S8

MCM Name SMILES BAT func-

tionality

O : C [
:::
OH

:::
eqv.] H : C Morg

(g mol−1)

[
:::
OH

:::
eqv.]

Cg+Σπ

(µg m−3)

eff. Csatdry

(µg m−3)

C510OOH O=CC(O)C(C)(OO)

CON(=O)=O

hydroper-

oxideSOA

1.40 [
:::
0.75] 1.8 195.10

[
:::::
159.38]

4.1752E-03 2.6990E+02

INB1OOH OCC(OO)C(C)

(CO)ON(=O)=O

hydroper-

oxideSOA

1.40 [
:::
0.75] 2.20 197.14

[
:::::
161.32]

7.1561E-02 4.2126E-01

IECCO3H CC1(CO1)C(O)

C(=O)OO

hydroper-

oxideSOA

1.00 [
:::
0.54] 1.60 148.11

[
:::::
115.71]

7.5983E-07 1.8033E+04

INCOOH OCC(OO)C(C)(O)

CON(=O)=O

hydroper-

oxideSOA

1.40 [
:::
0.75] 2.20 197.14

[
:::::
161.32]

3.0754E-02 7.3141E+00

INB2OOH OOCC(O)C(C)

(CO)ON(=O)=O

hydroper-

oxideSOA

1.40 [
:::
0.75] 2.20 197.14

[
:::::
161.32]

3.4893E-02 1.4651E+00

2-

Methyltetrol-

dimer

CC(O)(CO)C(O)

COC(C)(CO)C

(O)CO

hydroxyl 0.70 [
:::
0.70] 2.30 254.28

[
:::::
254.28]

7.2215E+00 2.5788E-06

End of Table
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