Articles | Volume 19, issue 21
Atmos. Chem. Phys., 19, 13383–13407, 2019
https://doi.org/10.5194/acp-19-13383-2019
Atmos. Chem. Phys., 19, 13383–13407, 2019
https://doi.org/10.5194/acp-19-13383-2019

Research article 30 Oct 2019

Research article | 30 Oct 2019

Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model

Kyle Gorkowski et al.

Data sets

Binary Activity Coefficent Model K. Gorkowski, T. C. Preston, and A. Zuend https://github.com/Gorkowski/Binary_Activity_Thermodynamics_Model

Download
Short summary
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive reduced-complexity organic aerosol thermodynamics model. It can use bulk properties like O : C, molar mass, and RH to predict organic activity coefficients and water uptake behavior. We show applications in RH-dependent organic co-condensation, liquid–liquid phase separation, and Kohler curve predictions, and we validate the BAT model against laboratory measurements.
Altmetrics
Final-revised paper
Preprint