Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 21
Atmos. Chem. Phys., 19, 13383–13407, 2019
https://doi.org/10.5194/acp-19-13383-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 13383–13407, 2019
https://doi.org/10.5194/acp-19-13383-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Oct 2019

Research article | 30 Oct 2019

Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model

Kyle Gorkowski et al.

Viewed

Total article views: 1,024 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
702 301 21 1,024 51 17 27
  • HTML: 702
  • PDF: 301
  • XML: 21
  • Total: 1,024
  • Supplement: 51
  • BibTeX: 17
  • EndNote: 27
Views and downloads (calculated since 07 Jun 2019)
Cumulative views and downloads (calculated since 07 Jun 2019)

Viewed (geographical distribution)

Total article views: 975 (including HTML, PDF, and XML) Thereof 971 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 12 Aug 2020
Publications Copernicus
Download
Short summary
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive reduced-complexity organic aerosol thermodynamics model. It can use bulk properties like O : C, molar mass, and RH to predict organic activity coefficients and water uptake behavior. We show applications in RH-dependent organic co-condensation, liquid–liquid phase separation, and Kohler curve predictions, and we validate the BAT model against laboratory measurements.
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive...
Citation
Final-revised paper
Preprint