Articles | Volume 18, issue 10
https://doi.org/10.5194/acp-18-7453-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-7453-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
Mikhail Y. Kulikov
CORRESPONDING AUTHOR
Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
Anton A. Nechaev
Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
Mikhail V. Belikovich
Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
Tatiana S. Ermakova
Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
Alexander M. Feigin
Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
Related authors
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 24, 10965–10983, https://doi.org/10.5194/acp-24-10965-2024, https://doi.org/10.5194/acp-24-10965-2024, 2024
Short summary
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys., 38, 815–822, https://doi.org/10.5194/angeo-38-815-2020, https://doi.org/10.5194/angeo-38-815-2020, 2020
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-154, https://doi.org/10.5194/angeo-2019-154, 2019
Manuscript not accepted for further review
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 24, 10965–10983, https://doi.org/10.5194/acp-24-10965-2024, https://doi.org/10.5194/acp-24-10965-2024, 2024
Short summary
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys., 38, 815–822, https://doi.org/10.5194/angeo-38-815-2020, https://doi.org/10.5194/angeo-38-815-2020, 2020
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-154, https://doi.org/10.5194/angeo-2019-154, 2019
Manuscript not accepted for further review
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: Nighttime OH and HO2 chemical equilibria in the mesosphere–lower thermosphere
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Reaction dynamics of P(4S) + O2(X3Σ−g) → O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Photochemistry on the bottom side of the mesospheric Na layer
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
A new model of meteoric calcium in the mesosphere and lower thermosphere
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009
Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation
Middle atmospheric changes caused by the January and March 2012 solar proton events
Implications of the O + OH reaction in hydroxyl nightglow modeling
Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005
Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?
Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 24, 10965–10983, https://doi.org/10.5194/acp-24-10965-2024, https://doi.org/10.5194/acp-24-10965-2024, 2024
Short summary
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023, https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ−) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
P. J. S. B. Caridade, J.-Z. J. Horta, and A. J. C. Varandas
Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, https://doi.org/10.5194/acp-13-1-2013, 2013
C. H. Jackman, D. R. Marsh, F. M. Vitt, R. G. Roble, C. E. Randall, P. F. Bernath, B. Funke, M. López-Puertas, S. Versick, G. P. Stiller, A. J. Tylka, and E. L. Fleming
Atmos. Chem. Phys., 11, 6153–6166, https://doi.org/10.5194/acp-11-6153-2011, https://doi.org/10.5194/acp-11-6153-2011, 2011
T. von Clarmann, F. Hase, B. Funke, M. López-Puertas, J. Orphal, M. Sinnhuber, G. P. Stiller, and H. Winkler
Atmos. Chem. Phys., 10, 9953–9964, https://doi.org/10.5194/acp-10-9953-2010, https://doi.org/10.5194/acp-10-9953-2010, 2010
J. Frydendall, J. Brandt, and J. H. Christensen
Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, https://doi.org/10.5194/acp-9-5475-2009, 2009
Cited articles
Avallone, L. M. and Toohey, D. W.: Tests of halogen photochemistry using in
situ measurements of ClO and BrO in the lower polar stratosphere, J.
Geophys. Res., 106, 10411–1042, https://doi.org/10.1029/2000JD900831, 2001.
Benton, A. K., Langridge, J. M., Ball, S. M., Bloss, W. J., Dall'Osto, M.,
Nemitz, E., Harrison, R. M., and Jones, R. L.: Night-time chemistry above
London: measurements of NO3 and N2O5 from the BT Tower, Atmos. Chem. Phys.,
10, 9781–9795, https://doi.org/10.5194/acp-10-9781-2010, 2010.
Berger, U.: Numerische Simulation klimatologischer Prozesse und thermische
Gezeiten in der mittleren Atmosphäre, Thesis, Univ. Cologne, Germany,
1994.
Berger, U. and von Zahn, U.: The two-level structure of the mesopause: A
model study, J. Geophys. Res., 104, 22083–22093, 1999.
Berthet, G., Ricaud, P., Lefevre, F., Le Flochmoen, E., Urban, J., Barret,
B., Lautie, N., Dupuy, E., De La Noe, J., and Murtagh, D.: Nighttime
chlorine monoxide observations by the Odin satellite and implications for
the ClO/Cl2O2 equilibrium, Geophys. Res. Lett., 32, L11812,
https://doi.org/10.1029/2005GL022649, 2005.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere, 644 pp.,
3rd edition, Springer, The Netherlands, 2005.
Brown, S. S., Stark, H., Ryerson, T. B., Williams, E. J., Nicks Jr., D. K.,
Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nitrogen oxides in
the nocturnal boundary layer: Simultaneous in situ measurements of NO3,
N2O5, NO2, NO, and O3, J. Geophys. Res., 108, ACH18-1–ACH18-11,
https://doi.org/10.1029/2002JD002917, 2003.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical
Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation
No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena,
available at: http://jpldataeval.jpl.nasa.gov (last access: 26 May 2018), 2015.
Butz, A., Bosch, H., Camy-Peyret, C., Dorf, M., Engel, A., Payan, S., and
Pfeilsticker, K.: Observational constraints on the kinetics of the ClO-BrO
and ClO-ClO ozone loss cycles in the Arcticwinter stratosphere, Geophys.
Res. Lett., 34, L05801, https://doi.org/10.1029/2006GL028718, 2007.
Cantrell, C. A., Mauldin, L., Zondlo, M., Eisele, F., Kosciuch, E., Shetter,
R., Lefer, B., Hall, S., Campos, T., Ridley, B., Walega, J., Fried, A.,
Wert, B., Flocke, F., Weinheimer, A., Hannigan, J., Coffey, M., Atlas, E.,
Stephens, S., Heikes, B., Snow, J., Blake, D., Blake, N., Katzenstein, A.,
Lopez, J., Browell, E. V., Dibb, J., Scheuer, E., Seid, G., and Talbot, R.:
Steady state free radical budgets and ozone photochemistry during TOPSE, J.
Geophys. Res., 108, TOP9-1–TOP9-22, https://doi.org/10.1029/2002JD002198, 2003.
Chameides, W.: Tropospheric odd nitrogen and the atmospheric water vapor
cycle, J. Geophys. Res., 84, 4989–4996, https://doi.org/10.1029/JC080i036p04989,
1975.
Chib, S. and Greenberg, E.: Understanding the Metropolis-Hastings
Algorithm, The American Statistician, 49, 327–335, https://doi.org/10.2307/2684568,
1995.
Crawford, J., Davis, D., Chen, G., Bradshaw, J., Sandholm, S., Gregory, G.,
Sachse, G., Anderson, B., Collins, J., Blake, D., Singh, H., Heikes, B.,
Talbot, R., and Rodriguez, J.: Photostationary state analysis of the NO2-NO
system based on airborne observations from the western and central North
Pacific, J. Geophys. Res., 101, 2053–2072, https://doi.org/10.1029/95JD02201, 1996.
Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H.,
Bonn, B., Bingemer, H., and Lelieveld, J.: Nocturnal nitrogen oxides at a
rural mountain-site in south-western Germany, Atmos. Chem. Phys., 10,
2795–2812, https://doi.org/10.5194/acp-10-2795-2010, 2010.
de Grandpre, J., Beagley, S. R., Fomichev, V. I., Griffioen, E., McConnell,
J. C., Medvedev, A. S., and Shepherd., T. G.: Ozone climatology using
interactive chemistry: Results from the Canadian Middle Atmosphere Model, J.
Geophys. Res.-Atmos., 105, 26475–26491, https://doi.org/10.1029/2000JD900427, 2000.
Djouad, R., Michelangeli, D. V., and Gong, W.: Numerical solution for
atmospheric multiphase models: Testing the validity of equilibrium
assumptions, J. Geophys. Res., 108, ACH1-1–ACH1-13, https://doi.org/10.1029/2002JD002969,
2003.
Douglass, A. R., Jackman, C. H., and Stolarski, R. S.: Comparison of model
results transporting the odd nitrogen family with results transporting
separate odd nitrogen species, J. Geophys. Res., 94, 9862–9872,
https://doi.org/10.1029/JD094iD07p09862, 1989.
Ebel, A., Berger, U., and Krueger, B. C.: Numerical simulations with COMMA,
a global model of the middle atmosphere, SIMPO Newsletter, 12, 22–32, 1995.
Evans, W. F. J. and Llewellyn, E. J.: Atomic hydrogen concentrations in the
mesosphere and the hydroxyl emissions, J. Geophys. Res., 78, 323–326,
https://doi.org/10.1029/JA078i001p00323, 1973.
Evans, W. F. J., McDade, I. C., Yuen, J., and Llewellyn, E. J.: A rocket
measurement of the O2 infrared atmospheric (0-0) band emission in the
dayglow and a determination of the mesospheric ozone and atomic oxygen
densities, Can. J. Phys., 66, 941–946, https://doi.org/10.1139/p88-151, 1988.
Feigin, A. M. and Konovalov, I. B.: On the possibility of complicated
dynamic behavior of atmospheric photochemical systems: Instability of the
Antarctic photochemistry during the ozone hole formation, J. Geophys. Res.,
101, 26023–26038, https://doi.org/10.1029/96JD02011, 1996.
Feigin, A. M., Konovalov, I. B., and Molkov, Ya. I.: Towards understanding
nonlinear nature of atmospheric photochemistry: Essential dynamic model of
the mesospheric photochemical system, J. Geophys. Res., 103, 25447–25460,
https://doi.org/10.1029/98JD01569, 1998.
Funke, B., Lopez-Puertas, M., von Clarmann, T., Stiller, G. P., Fischer, H.,
Glatthor, N., Grabowski, U., Hopfner, M., Kellmann, S., Kiefer, M., Linden,
A., Mengistu Tsidu, G., Milz, M., Steck, T., and Wang, D. Y.: Retrieval of
stratospheric NOx from 5.3 and 6.2 mm nonlocal thermodynamic equilibrium
emissions measured by Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) on Envisat, J. Geophys. Res., 110, D09302,
https://doi.org/10.1029/2004JD005225, 2005.
Ghosh, S., Pyle, J. A., and Good, P.: Temperature dependence of the ClO
concentration near the stratopause, J. Geophys. Res., 102,
19207–19216, https://doi.org/10.1029/97JD01099, 1997.
Good, R. E.: Determination of atomic oxygen density from rocket borne
measurements of hydroxyl airglow, Planet. Space Sci., 24, 389–395,
doi.org/10.1016/0032-0633(76)90052-0, 1976.
Grygalashvyly, M.: Several notes on the OH* layer, Ann. Geophys., 33,
923–930, https://doi.org/10.5194/angeo-33-923-2015, 2015.
Grygalashvyly, M., Sonnemann, G. R., and Hartogh, P.: Long-term behavior of
the concentration of the minor constituents in the mesosphere – A model
study, Atmos. Chem. Phys., 9, 2779–2792, https://doi.org/10.5194/acp-9-2779-2009, 2009.
Grygalashvyly, M., Becker, E., and Sonnemann, G. R.: Wave mixing effects on
minor chemical constituents in the MLT region: Results from a global CTM
driven by high-resolution dynamics, J. Geophys. Res., 116, D18302,
https://doi.org/10.1029/2010JD015518, 2011.
Grygalashvyly, M., Becker, E., and Sonnemann, G. R.: Gravity wave mixing and
effective diffusivity for minor chemical constituents in the
mesosphere/lower thermosphere, Space Sci. Rev., 168, 333–362,
https://doi.org/10.1007/s11214-011-9857-x, 2012.
Grygalashvyly, M., Sonnemann, G. R., Lübken, F.-J., Hartogh, P., and
Berger, U.: Hydroxyl layer: Mean state and trends at midlatitudes, J.
Geophys. Res.-Atmos., 119, 12391–12419, https://doi.org/10.1002/2014JD022094, 2014.
Hartogh, P., Jarchow, C., Sonnemann, G. R., and Grygalashvyly, M.: On the
spatiotemporal behavior of ozone within the upper mesosphere/mesopause
region under nearly polar night conditions, J. Geophys. Res., 109, D18303,
https://doi.org/10.1029/2004JD004576, 2004.
Hartogh, P., Sonnemann, G. R., Grygalashvyly, M., and Jarchow, Ch.: Ozone
trends in mid-latitude stratopause region based on microwave measurements at
Lindau (51.66∘ N, 10.13∘ E), the ozone reference model,
and model calculations, Adv. Space Res., 47, 1937–1948,
https://doi.org/10.1016/j.asr.2011.01.010, 2011.
Hauchecorne, A., Bertaux, J. L., Dalaudier, F., Keckhut, P., Lemennais, P.,
Bekki, S., Marchand, M., Lebrun, J. C., Kyrölä, E., Tamminen, J.,
Sofieva, V., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G.,
Blanot, L., Fehr, T., and Saavedra de Miguel, L.: Response of tropical
stratospheric O3, NO2 and NO3 to the equatorial
Quasi-Biennial Oscillation and to temperature as seen from GOMOS/ENVISAT,
Atmos. Chem. Phys., 10, 8873–8879, https://doi.org/10.5194/acp-10-8873-2010, 2010.
Jackman, C. H., Marsh, D. R., Vitt, F. M., Roble, R. G., Randall, C. E.,
Bernath, P. F., Funke, B., López-Puertas, M., Versick, S., Stiller, G.
P., Tylka, A. J., and Fleming, E. L.: Northern Hemisphere atmospheric
influence of the solar proton events and ground level enhancement in January
2005, Atmos. Chem. Phys., 11, 6153–6166,
https://doi.org/10.5194/acp-11-6153-2011, 2011.
Jackman, C. H., Randall, C. E., Harvey, V. L., Wang, S., Fleming, E. L.,
López-Puertas, M., Funke, B., and Bernath, P. F.: Middle atmospheric
changes caused by the January and March 2012 solar proton events, Atmos.
Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, 2014.
Kawa, S. R., Fahey, D. W., Solomon, S., Brune, W. H., Proffitt, M. H.,
Toohey, D. W., Anderson Jr., D. E., Anderson, L. C., and Chan, K. R.:
Interpretation of aircraft measurements of NO, ClO, and O3 in the lower
stratosphere, J. Geophys. Res., 95, 18597–18609, https://doi.org/10.1029/JD095iD11p18597, 1990.
Kremp, C., Berger, U., Hoffmann, P., Keuer, D., and Sonnemann, G. R.:
Seasonal variation of middle latitude wind fields of the mesopause region –
a comparison between observation and model calculation, Geophys. Res. Lett.,
26, 1279–1282, 1999.
Kaye, J. A. and Rood, R. B.: Chemistry and transport in a three-dimensional
stratospheric model: Chlorine species during a simulated stratospheric
warming, J. Geophys. Res., 94, 1057–1083, https://doi.org/10.1029/JD094iD01p01057,
1989.
Ko, M., Hu, W., Rodriguez, J. M., Kondo, Y., Koike, M., Kita, K., Kawakami,
S., Blake, D., Liu, S., and Ogawa, T.: Photochemical ozone budget during the
BIBLE A and B campaigns, J. Geophys. Res., 107, BIB 8-1–BIB 8-16,
https://doi.org/10.1029/2001JD000800, 2002.
Koike, M., Kondo, Y., Kawakami, S., Singh, H. B., Ziereis, H., and Merrill,
J. T.: Ratios of reactive nitrogen species over the Pacific during PEM-West
A, J. Geophys. Res., 101, 1829–1851, https://doi.org/10.1029/95JD02728, 1996.
Konovalov, I. B. and Feigin, A. M.: Toward an understanding of the nonlinear
nature of atmospheric photochemistry: Origin of the complicated dynamic
behaviour of the mesospheric photochemical system, Nonlin. Processes
Geophys., 7, 87–104, https://doi.org/10.5194/npg-7-87-2000, 2000.
Konovalov, I. B., Feigin, A. M., and Mukhina, A. Y.: Toward understanding of the
nonlinear nature of atmospheric photochemistry: Multiple equilibrium states
in the high-latitude lower stratospheric photochemical system, J. Geophys.
Res., 104, 8669–8689, https://doi.org/10.1029/1998JD100037, 1999.
Körner, U. and Sonnemann, G. R.: Global 3D-modeling of water vapor
concentration of the mesosphere/mesopause region and implications with
respect to the NLC region, J. Geophys. Res.-Atmos., 106, 9639–9651,
https://doi.org/10.1029/2000JD900744, 2001.
Kowalewski, S., von Savigny, C., Palm, M., McDade, I. C., and Notholt, J.:
On the impact of the temporal variability of the collisional quenching
process on the mesospheric OH emission layer: a study based on SD-WACCM4 and
SABER, Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014,
2014.
Kremser, S., Schofield, R., Bodeker, G. E., Connor, B. J., Rex, M., Barret,
J., Mooney, T., Salawitch, R. J., Canty, T., Frieler, K., Chipperfield, M.
P., Langematz, U., and Feng, W.: Retrievals of chlorine chemistry kinetic
parameters from Antarctic ClO microwave radiometer measurements, Atmos.
Chem. Phys., 11, 5183–5193, https://doi.org/10.5194/acp-11-5183-2011, 2011.
Kulikov, M. Yu. and Feigin, A. M.: Automated construction of the basic
dynamic models of the atmospheric photochemical systems using the RADM2
chemical mechanism as an example, Radiophys. Quantum Electron., 57, 478–487,
https://doi.org/10.1007/s11141-014-9530-9, 2014.
Kulikov, M. Y., Feigin, A. M., and Sonnemann, G. R.: Retrieval of the
vertical distribution of chemical components in the mesosphere from
simultaneous measurements of ozone and hydroxyl distributions, Radiophys.
Quantum Electron., 49, 683–691, https://doi.org/10.1007/s11141-006-0103-4, 2006.
Kulikov, M. Yu., Feigin, A. M., and Sonnemann, G. R.: Retrieval of water
vapor profile in the mesosphere from satellite ozone and hydroxyl
measurements by the basic dynamic model of mesospheric photochemical system,
Atmos. Chem. Phys., 9, 8199–8210, https://doi.org/10.5194/acp-9-8199-2009,
2009a.
Kulikov, M. Y., Mukhin, D. N., and Feigin, A. M.: Bayesian strategy of
accuracy estimation for characteristics retrieved from experimental data
using base dynamic models of atmospheric photochemical systems, Radiophys.
Quantum Electron., 52, 618–626, https://doi.org/10.1007/s11141-010-9171-6, 2009b.
Kulikov, M. Yu., Vadimova, O. L., Ignatov, S. K., and Feigin, A. M.: The
mechanism of non-linear photochemical oscillations in the mesopause region,
Nonlin. Processes Geophys., 19, 501–512,
https://doi.org/10.5194/npg-19-501-2012, 2012.
Kulikov, M. Y., Belikovich, M. V., Grygalashvyly, M., Sonnemann, G. R.,
Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.: Daytime ozone loss term
in the mesopause region, Ann. Geophys., 35, 677–682,
https://doi.org/10.5194/angeo-35-677-2017, 2017.
Livesey, N. J., Read, W. G., Wagner, P. A., Frovideaux, L., Lambert, A.,
Manney, G. L., Millan, L. F., Pumphrey, H. C., Santee, M. L., Schwartz, M.
J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Martinez, E.:
Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2
Level 2 data quality and description document, JPL D-33509, JPL publication,
USA, 2017.
Llewellyn, E. J. and McDade, I. C.: A reference model for atomic oxygen in
the terrestrial atmosphere, Adv. Space Res., 18, 209–226,
https://doi.org/10.1016/0273-1177(96)00059-2, 1996.
Llewellyn, E. J., McDade, I. C., Moorhouse, P., and Lockerbie, M. D.:
Possible reference models for atomic oxygen in the terrestrial atmosphere,
Adv. Space Res., 13, 135–144, https://doi.org/10.1016/0273-1177(93)90013-2, 1993.
Lübken, F. J.: Seasonal variation of turbulent energy dissipation rates
at high latitudes as determined by in situ measurements of neutral density
fluctuations, J. Geophys. Res., 102, 13441–13456, 1997.
Marchand, M., Bekki, S., Lefevre, F., and Hauchecorne, A.: Temperature
retrieval from stratospheric O3 and NO3 GOMOS data, Geophys. Res. Lett., 34,
L24809, https://doi.org/10.1029/2007GL030280, 2007.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell III, J. M.: SABER
observations of the OH Meinel airglow variability near the mesopause, J.
Geophys. Res., 111, A10S05, https://doi.org/10.1029/2005JA011451, 2006.
Martinez, M., Perner, D., Hackenthal, E.-M., Kulzer, S., and Schultz, L.:
NO3 at Helgoland during the NORDEX campaign in October 1996, J.
Geophys. Res., 105, 22685–22695, https://doi.org/10.1029/2000JD900255, 2000.
Massie, S. T. and Hunten, D. M.: Stratospheric eddy diffusion coefficients
from tracer data, J. Geophys. Res., 86, 9859–9868,
https://doi.org/10.1029/JC086iC10p09859, 1981.
McDade, I. C. and Llewellyn, E. J.: Mesospheric oxygen atom densities
inferred from night-time OH Meinel band emission rates, Planet. Space Sci.,
36, 897–905, https://doi.org/10.1016/0032-0633(88)90097-9, 1988.
McDade, I. C., Llewellyn, E. J., and Harris, F. R.: Atomic oxygen
concentrations in the lower auroral thermosphere, Adv. Space Res., 5,
229–232, https://doi.org/10.1016/0273-1177(85)90379-5, 1985.
McLaren, R., Wojtal, P., Majonis, D., McCourt, J., Halla, J. D., and Brook,
J.: NO3 radical measurements in a polluted marine environment: links to
ozone formation, Atmos. Chem. Phys., 10, 4187–4206,
https://doi.org/10.5194/acp-10-4187-2010, 2010.
Millán, L., Wang, S., Livesey, N., Kinnison, D., Sagawa, H., and Kasai,
Y.: Stratospheric and mesospheric HO2 observations from the Aura
Microwave Limb Sounder, Atmos. Chem. Phys., 15, 2889–2902,
https://doi.org/10.5194/acp-15-2889-2015, 2015.
Mlynczak, M. G. and Solomon, S.: Middle atmosphere heating by exothermic
chemical reactions involving odd-hydrogen species, Geophys. Res. Lett., 18,
37–40, https://doi.org/10.1029/90GL02672, 1991.
Mlynczak, M. G. and Solomon, S.: A detailed evaluation of the heating
efficiency in the middle atmosphere, J. Geophys. Res., 98, 10517–10541,
https://doi.org/10.1029/93JD00315, 1993.
Mlynczak, M. G., Marshall, B. T., Martin-Torres, F. J., Russell III, J. M.,
Thompson, R. E., Remsberg, E. E., and Gordley, L. L.: Sounding of the
Atmosphere using Broadband Emission Radiometry observations of daytime
mesospheric O2(1D) 1.27 µm emission and derivation of ozone, atomic
oxygen, and solar and chemical energy deposition rates, J. Geophys. Res.,
112, D15306, https://doi.org/10.1029/2006JD008355, 2007.
Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J.
M., Smith, A. K., Siskind, D. E., Yee, J.-H., Mertens, C. J., Martin-Torres,
F. J., Thompson, R. E., Drob, D. P., and Gordley, L. L.: Atomic oxygen in
the mesosphere and lower thermosphere derived from SABER: Algorithm
theoretical basis and measurement uncertainty, J. Geophys. Res., 118,
5724–5735, https://doi.org/10.1002/jgrd.50401, 2013a.
Mlynczak, M. G., Hunt, L. H., Mertens, C. J., Marshall, B. T., Russell III,
J. M., López-Puertas, M., Smith, A. K., Siskind, D. E., Mast, J. C.,
Thompson, R. E., and Gordley, L. L.: Radiative and energetic constraints on
the global annual mean atomic oxygen concentration in the mesopause region,
J. Geophys. Res.-Atmos., 118, 5796–5802, https://doi.org/10.1002/jgrd.50400, 2013b.
Mlynczak, M. G., Hunt, L. A., Marshall, B. T., Mertens, C. J., Marsh, D. R.,
Smith, A. K., Russell, J. M., Siskind, D. E., and Gordley, L. L.: Atomic
hydrogen in the mesopause region derived from SABER: Algorithm theoretical
basis, measurement uncertainty, and results, J. Geophys. Res., 119,
3516–3526, https://doi.org/10.1002/2013JD021263, 2014.
Morton, K. W. and Mayers, D. F.: Numerical Solution of Partial Differential
Equations, Cambridge University Press, 1994.
Nechaev, A. A., Ermakova, T. S., and Kulikov, M. Y.: Determination of the
Trace-Gas Concentrations at the Altitudes of the Lower and Middle Mesosphere
from the Time Series of Ozone Concentration, Radiophys. Quantum Electron.,
59, 546–559, https://doi.org/10.1007/s11141-016-9722-6, 2016.
Nikoukar, R., Swenson, G. R., Liu, A. Z., and Kamalabadi, F.: On the
variability of mesospheric OH emission profiles, J. Geophys. Res., 112,
D19109, https://doi.org/10.1029/2007JD008601, 2007.
Pendleton, W. R., Baker, K. D., and Howlett, L. C.: Rocket-based
investigations of O(3P), O2(a1Δg) and OH*(ν=1,2) during the solar eclipse of 26 February1979, J. Atmos. Terr.
Phys., 45, 479–491, https://doi.org/10.1016/S0021-9169(83)81108-8, 1983.
Penkett, S. A., Monks, P. S., Carpenter, L. J., Clemitshaw, K. C., Ayers, G.
P., Gillett, R. W., Galbally, I. E., and Meyer, C. P.: Relationships between
ozone photolysis rates and peroxy radical concentrations in clean marine air
over the Southern Ocean, J. Geophys. Res., 102, 12805–12817,
https://doi.org/10.1029/97JD00765, 1997.
Penkett, S. A., Reeves, C. E., Bandy, B. J., Kent, J. M., and Richer, H. R.:
Comparison of calculated and measured peroxide data collected in marine air
to investigate prominent features of the annual cycle of ozone in the
troposphere, J. Geophys. Res., 103, 13377–13388,
https://doi.org/10.1029/97JD02852, 1998.
Platt, U., Perner, D., and Pätz, H. W.: Simultaneous measurement of
atmospheric CH2O, O3, and NO2 by differential optical absorption, J.
Geophys. Res., 84, 6329–6335, 10.1029/JC084iC10p06329, 1979.
Pyle, J. A. and Zavody, A. M.: The derivation of hydrogen containing
radical concentrations from satellite data sets, Q. J. Roy. Meteorol. Soc.,
111, 993–1012, https://doi.org/10.1002/qj.49711147005, 1985.
Pyle, J. A., Zavody, A. M., Harries, J. E., and Moffat, P. H.: Derivation of
OH concentration from satellite infrared measurements of NO2 and
HNO3, Nature, 305, 690–692, https://doi.org/10.1038/305690a0, 1983.
Pickett, H. M. and Peterson, D. B.: Comparison of measured stratospheric OH
with prediction, J. Geophys. Res., 101, 16789–16796, https://doi.org/10.1029/96JD01168, 1996.
Pickett, H. M., Drouin, B. J., Canty, T., Salawitch, R. J., Fuller, R. A.,
Perun, V. S., Livesey, N. J., Waters, J. W., Stachnik, R. A., Sander, S. P.,
Traub, W. A., Jucks, K. W., and Minschwaner, K.: Validation of Aura
Microwave Limb Sounder OH and HO2 measurements, J. Geophys. Res., 113,
D16S30, https://doi.org/10.1029/2007JD008775, 2008.
Rasch, P. J., Boville, B. A., and Brasseur, G. P.: A three-dimensional
general circulation model with coupled chemistry for the middle atmosphere,
J. Geophys. Res., 100, 9041–9071, https://doi.org/10.1029/95JD00019, 1995.
Russell, J. P. and Lowe, R. P.: Atomic oxygen profiles (80–94 km) derived
from Wind Imaging Interferometer/Upper Atmospheric Research Satellite
measurements of the hydroxyl airglow: 1. Validation of technique, J.
Geophys. Res., 108, ACH5-1–ACH5-8, https://doi.org/10.1029/2003JD003454, 2003.
Schwartz, M., Froidevaux, L., Livesey, N., and Read, W.: MLS/Aura Level 2
Ozone (O3) Mixing Ratio V004, Greenbelt, MD, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/AURA/MLS/DATA2017, 2015.
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.: The
CCCma third generation AGCM and its extension into the middle atmosphere,
Atmos. Chem. Phys., 8, 7055–7074, https://doi.org/10.5194/acp-8-7055-2008, 2008.
Shimazaki, T.: Minor Constituents in the Middle Atmosphere, D. Reidel,
Norwell, Mass., USA, 444 pp., 1985.
Siskind, D. E., Marsh, D. R., Mlynczak, M. G., Martin-Torres, F. J., and
Russell III, J. M.: Decreases in atomic hydrogen over the summer pole:
Evidence for dehydration from polar mesospheric clouds?, Geophys. Res.
Lett., 35, L13809, https://doi.org/10.1029/2008GL033742, 2008.
Siskind, D. E., Mlynczak, M. G., Marshall, T., Friedrich, M., and Gumbel, J.:
Implications of odd oxygen observations by the TIMED/SABER instrument for
lower D region ionospheric modeling, J. Atmos. Sol. Terr. Phys., 124,
63–70, https://doi.org/10.1016/j.jastp.2015.01.014, 2015.
Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.: Temporal
variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys.
Res., 115, D18309, https://doi.org/10.1029/2009JD013434, 2010.
Sobanski, N., Tang, M. J., Thieser, J., Schuster, G., Pöhler, D.,
Fischer, H., Song, W., Sauvage, C., Williams, J., Fachinger, J., Berkes, F.,
Hoor, P., Platt, U., Lelieveld, J., and Crowley, J. N.: Chemical and
meteorological influences on the lifetime of NO3 at a semi-rural mountain
site during PARADE, Atmos. Chem. Phys., 16, 4867–4883,
https://doi.org/10.5194/acp-16-4867-2016, 2016.
Solomon, P., Connor, B., Barrett, J., Mooney, T., Lee, A., and Parrish, A.:
Measurements of stratospheric ClO over Antarctica in 1996–2000 and
implications for ClO dimer chemistry, Geophys. Res. Lett., 29,
3-1–3-4,
https://doi.org/10.1029/2002GL015232, 2002.
Solomon, S., Rusch, D. W., Gerard, J.-C., Reid, G. C., and Crutzen, P. J.:
The effect of particle precipitation events on the neutral and ion chemistry
of the middle atmosphere. 2. Odd hydrogen, Planet. Space Sci., 29, 885–892,
1981.
Sonnemann, G., Kremp, C., Ebel, A., and Berger, U.: A three-dimensional
dynamic model of minor constituents of the mesosphere, Atmos. Environ., 32,
3157–3172, https://doi.org/10.1016/S1352-2310(98)00113-7, 1998.
Sonnemann, G. R., Grygalashvyly, M., Hartogh, P., and Jarchow, C.: Behavior
of mesospheric ozone under nearly polar night conditions, Adv. Space Res.,
38, 2402–2407, https://doi.org/10.1016/j.asr.2006.09.011, 2006.
Sonnemann, G. R., Hartogh, P., Jarchow, C., Grygalashvyly, M., and Berger,
U.: On the winter anomaly of the night-to-day ratio of ozone in the middle
to upper mesosphere in middle to high latitudes, Adv. Space Res., 40,
846–854, https://doi.org/10.1016/j.asr.2007.01.039, 2007.
Sonnemann, G. R., Hartogh, P., Berger, U., and Grygalashvyly, M.: Hydroxyl
layer: trend of number density and intra-annual variability, Ann. Geophys.,
33, 749–767, https://doi.org/10.5194/angeo-33-749-2015, 2015.
Swenson, G. R. and Gardner, C. S.: Analytical models for the responses of
the mesospheric OH* and Na layers to atmospheric gravity waves, J. Geophys.
Res., 103, 6271–6294, https://doi.org/10.1029/97JD02985, 1998.
Stedman, D. H., Chameides, W., and Jackson, J. O.: Comparison of
experimental and computed values for J(NO2), Geophys. Res. Lett., 2,
22–25, https://doi.org/10.1029/GL002i001p00022, 1975.
Stimpfle, R. M., Wilmouth, D. M., Salawitch, R. J., and Anderson, J. G.:
First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and
ClO in the Arctic polar vortex, J. Geophys. Res., 109, D03301,
https://doi.org/10.1029/2003JD003811, 2004.
Sumińska-Ebersoldt, O., Lehmann, R., Wegner, T., Grooß, J.-U.,
Hösen, E., Weigel, R., Frey, W., Griessbach, S., Mitev, V., Emde, C.,
Volk, C. M., Borrmann, S., Rex, M., Stroh, F., and von Hobe, M.: ClOOCl
photolysis at high solar zenith angles: analysis of the RECONCILE self-match
flight, Atmos. Chem. Phys., 12, 1353–1365, https://doi.org/10.5194/acp-12-1353-2012,
2012.
Thomas, R. J.: Atomic hydrogen and atomic oxygen density in the mesosphere
region: Global and seasonal variations deduced from Solar Mesosphere
Explorer near-infrared emissions, J. Geophys. Res., 95, 16457–16476,
https://doi.org/10.1029/JD095iD10p16457, 1990.
Tulet, P., Grini, A., Griffin, R. J., and Petitcol, S.: ORILAM-SOA: A
computationally efficient model for predicting secondary organic aerosols in
three-dimensional atmospheric models, J. Geophys. Res., 111, D23208,
https://doi.org/10.1029/2006JD007152, 2006.
von Hobe, M., Grooß, J.-U., Müller, R., Hrechanyy, S., Winkler, U.,
and Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium constant based
on stratospheric in-situ observations, Atmos. Chem. Phys., 5, 693–702,
https://doi.org/10.5194/acp-5-693-2005, 2005.
von Hobe, M., Salawitch, R. J., Canty, T., Keller-Rudek, H., Moortgat, G.
K., Grooß, J.-U., Müller, R., and Stroh, F.: Understanding the
kinetics of the ClO dimer cycle, Atmos. Chem. Phys., 7, 3055–3069,
https://doi.org/10.5194/acp-7-3055-2007, 2007.
Walcek, C. J.: Minor flux adjustment near mixing ratio extremes for
simplified yet highly accurate monotonic calculation of tracer advection, J.
Geophys. Res., 105, 9335–9348, 2000.
Walcek, C. J. and Aleksic, N. M.: A simple but accurate mass conservative,
peak preserving, mixing ratio bounded advection algorithm with Fortran code,
Atmos. Environ., 32, 3863–3880, 1998.
Wang, S., Pickett, H., Livesey, N., and Read, W.: MLS/Aura Level 2
Hydroperoxy (HO2) Mixing Ratio V004, Greenbelt, MD, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/AURA/MLS/DATA2013, 2015a.
Wang, S., Livesey, N., and Read, W.: MLS/Aura Level 2 Hydroxyl (OH) Mixing
Ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information
Services Center (GES DISC),
https://doi.org/10.5067/AURA/MLS/DATA2018, 2015b.
Webster, C. R., May, R. D., Toumi, R., and Pyle, J. A.: Active nitrogen
partitioning and the nighttime formation of N2O5 in the stratosphere:
Simultaneous in situ measurements of NO, NO2, HNO3, O3, and
N2O using the BLISS diode laser spectrometer, J. Geophys. Res., 95,
13851–13866, https://doi.org/10.1029/JD095iD09p13851, 1990.
Wetzel, G., Oelhaf, H., Kirner, O., Friedl-Vallon, F., Ruhnke, R.,
Ebersoldt, A., Kleinert, A., Maucher, G., Nordmeyer, H., and Orphal, J.:
Diurnal variations of reactive chlorine and nitrogen oxides observed by
MIPAS-B inside the January 2010 Arctic vortex, Atmos. Chem. Phys., 12,
6581–6592, https://doi.org/10.5194/acp-12-6581-2012, 2012.
Xu, J., Smith, A. K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M. G., and
Russell III, J. M.: Strong longitudinal variations in the OH nightglow,
Geophys. Res. Lett., 37, L21801, https://doi.org/10.1029/2010GL043972, 2010.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow
observations to investigate hydroxyl emission mechanisms in the mesopause
region, J. Geophys. Res., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Altmetrics
Final-revised paper
Preprint