Articles | Volume 18, issue 24
Atmos. Chem. Phys., 18, 17895–17907, 2018
https://doi.org/10.5194/acp-18-17895-2018

Special issue: Greenhouse gAs Uk and Global Emissions (GAUGE) project (ACP/AMT...

Atmos. Chem. Phys., 18, 17895–17907, 2018
https://doi.org/10.5194/acp-18-17895-2018
Research article
17 Dec 2018
Research article | 17 Dec 2018

Detecting changes in Arctic methane emissions: limitations of the inter-polar difference of atmospheric mole fractions

Oscar B. Dimdore-Miles et al.

Related authors

What determines peat swamp vegetation type in the Central Congo Basin?
Selena Georgiou, Edward T. A. Mitchard, Bart Crezee, Paul I. Palmer, Greta C. Dargie, Sofie Sjögersten, Corneille E. N. Ewango, Ovide B. Emba, Joseph T. Kanyama, Pierre Bola, Jean-Bosco N. Ndjango, Nicholas T. Girkin, Yannick E. Bocko, Suspense A. Ifo, and Simon L. Lewis
EGUsphere, https://doi.org/10.5194/egusphere-2022-580,https://doi.org/10.5194/egusphere-2022-580, 2022
Short summary
Estimating Emissions of Methane Consistent with Atmospheric Measurements of Methane and δ13C of Methane
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John Bharat Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana Vanni Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-317,https://doi.org/10.5194/acp-2022-317, 2022
Preprint under review for ACP
Short summary
Methane emissions responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Boesch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-425,https://doi.org/10.5194/acp-2022-425, 2022
Preprint under review for ACP
Short summary
Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022,https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022,https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A renewed rise in global HCFC-141b emissions between 2017–2021
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022,https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
A model for simultaneous evaluation of NO2, O3, and PM10 pollution in urban and rural areas: handling incomplete data sets with multivariate curve resolution analysis
Eva Gorrochategui, Isabel Hernandez, and Romà Tauler
Atmos. Chem. Phys., 22, 9111–9127, https://doi.org/10.5194/acp-22-9111-2022,https://doi.org/10.5194/acp-22-9111-2022, 2022
Short summary
Technical note: Entrainment-limited kinetics of bimolecular reactions in clouds
Christopher D. Holmes
Atmos. Chem. Phys., 22, 9011–9015, https://doi.org/10.5194/acp-22-9011-2022,https://doi.org/10.5194/acp-22-9011-2022, 2022
Short summary
Improving NOx emission estimates in Beijing using network observations and a perturbed emissions ensemble
Le Yuan, Olalekan A. M. Popoola, Christina Hood, David Carruthers, Roderic L. Jones, Haitong Zhe Sun, Huan Liu, Qiang Zhang, and Alexander T. Archibald
Atmos. Chem. Phys., 22, 8617–8637, https://doi.org/10.5194/acp-22-8617-2022,https://doi.org/10.5194/acp-22-8617-2022, 2022
Short summary
Observation-based analysis of ozone production sensitivity for two persistent ozone episodes in Guangdong, China
Kaixiang Song, Run Liu, Yu Wang, Tao Liu, Liyan Wei, Yanxing Wu, Junyu Zheng, Boguang Wang, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 8403–8416, https://doi.org/10.5194/acp-22-8403-2022,https://doi.org/10.5194/acp-22-8403-2022, 2022
Short summary

Cited articles

AMAP: AMAP Assessment 2015: Methane as an Arctic climate forcer, Tech. rep., Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2015. a, b
Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., and Dlugokencky, E. J.: Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos. Chem. Phys., 5, 2431–2460, https://doi.org/10.5194/acp-5-2431-2005, 2005. a
Bruhwiler, L.: NOAA, TM5 model runs in support of Dimdore-Miles et al., 2018, available at: ftp://aftp.cmdl.noaa.gov/user/lori/oscar/ipd, last access: 14 December 2018. 
Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.: CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014. a, b
Christensen, T. R., Johansson, T., Åkerman, J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett., 31, L04501, https://doi.org/10.1029/2003GL018680, 2004. a
Download
Short summary
The Arctic is experiencing warming trends higher than the global mean. Arctic ecosystems are a large store of carbon. As the soil organic carbon thaws and decomposes, some fraction of this store will eventually be released to the atmosphere as methane. We show that a previously used measurement-based metric to identify changes in Arctic methane emissions does not reliably quantify these changes because it neglects the effect of atmospheric transport. A better metric will combine data and models.
Altmetrics
Final-revised paper
Preprint