the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Increasing boreal wetland emissions inferred from reductions in atmospheric CH4 seasonal cycle
J. M. Barlow
P. I. Palmer
L. M. Bruhwiler
Abstract. Observed variations of the atmospheric greenhouse gas methane (CH4) over the past two decades remain the subject of debate. These variations reflect changes in emission, uptake, and atmospheric chemistry and transport. We isolate changes in the seasonal cycle of atmospheric CH4 using a wavelet transform. We report a previously undocumented persistent decrease in the peak-to-peak amplitude of the seasonal cycle of atmospheric CH4 at six out of seven high northern latitude sites over the past two to three decades. The observed amplitude changes are statistically significant for sites at Barrow, Alaska and Ocean Station M, Norway, which we find are the most sensitive of our sites to high northern latitude wetland emissions. We find using a series of numerical experiments using the TM5 atmospheric chemistry transport model that increasing wetland emissions and/or decreasing fossil fuel emissions can explain these observed changes, but no significant role for trends in meteorology and tropical wetlands. We also find no evidence in past studies to support a significant role for variations in the hydroxyl radical sink of atmospheric CH4. Using the TM5 model we find that changes in fossil fuel emissions of CH4, described by a conservative state-of-the-science bottom-up emission inventory, are not sufficient to reconcile observed changes in atmospheric CH4 at these sites. The remainder of the observed trend in amplitude, by process of elimination, must be due to an increase in high northern latitude wetland emissions, corresponding to an annual increase of at least 0.7 %/yr (equivalent to 5 Tg CH4/yr over 30 years).
- Preprint
(3629 KB) - Metadata XML
- BibTeX
- EndNote
J. M. Barlow et al.


-
RC1: 'Interesting idea, but poorly presented', Anonymous Referee #1, 23 Sep 2016
-
RC2: 'Referee comments', Anonymous Referee #2, 04 Oct 2016


-
RC1: 'Interesting idea, but poorly presented', Anonymous Referee #1, 23 Sep 2016
-
RC2: 'Referee comments', Anonymous Referee #2, 04 Oct 2016
J. M. Barlow et al.
J. M. Barlow et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,505 | 384 | 78 | 1,967 | 75 | 76 |
- HTML: 1,505
- PDF: 384
- XML: 78
- Total: 1,967
- BibTeX: 75
- EndNote: 76
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
Cited
2 citations as recorded by crossref.
- Seasonal variations of atmospheric CH4 at Jingdezhen station in Central China: Understanding the regional transport and its correlation with CO2 and CO L. Xia et al. 10.1016/j.atmosres.2020.104982
- Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO2 T. Kariyathan et al. 10.5194/amt-16-3299-2023