Articles | Volume 18, issue 22
https://doi.org/10.5194/acp-18-16253-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-16253-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice
Jiayue Huang
Department of Atmospheric Sciences, University of Washington, Seattle,
WA, USA
Lyatt Jaeglé
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, University of Washington, Seattle,
WA, USA
Viral Shah
Department of Atmospheric Sciences, University of Washington, Seattle,
WA, USA
Related authors
Jiayue Huang and Lyatt Jaeglé
Atmos. Chem. Phys., 17, 3699–3712, https://doi.org/10.5194/acp-17-3699-2017, https://doi.org/10.5194/acp-17-3699-2017, 2017
Short summary
Short summary
The emissions and distribution of wintertime sea salt aerosol (SSA) are poorly constrained in polar regions, despite their potentially significant roles in halogen release, cloud formation and climate. We implement a blowing snow and a frost flower emission scheme in the model, and find that inclusion of blowing snow is necessary to simulate the observed winter and spring SSA levels. We estimate that inclusion of blowing snow increases submicron SSA emissions by factors of 2–3 in polar regions.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1541, https://doi.org/10.5194/egusphere-2024-1541, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud-slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in-situ aircraft observations and use our data to critique contemporary knowledge of tropospheric NOx as simulated with the GEOS-Chem model.
Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, and Jun Wang
Atmos. Chem. Phys., 23, 6271–6284, https://doi.org/10.5194/acp-23-6271-2023, https://doi.org/10.5194/acp-23-6271-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to better understand the magnitude and trend in free tropospheric NO2 over the contiguous US. Model underestimate of background NO2 is largely corrected by considering aerosol nitrate photolysis. Increase in aircraft emissions affects satellite retrievals by altering the NO2 shape factor, and this effect is expected to increase in future. We show the importance of properly accounting for the free tropospheric background in interpreting NO2 observations from space.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023, https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary
Short summary
A geostationary satellite can now provide hourly NO2 vertical columns, and obtaining the NO2 vertical columns from space relies on NO2 vertical distribution from the chemical transport model (CTM). In this work, we update the CTM to better represent the chemistry environment so that the CTM can accurately provide NO2 vertical distribution. We also find that the changes in NO2 vertical distribution driven by a change in mixing depth play an important role in the NO2 column's diurnal variation.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Ruochong Xu, Joel A. Thornton, Ben H. Lee, Yanxu Zhang, Lyatt Jaeglé, Felipe D. Lopez-Hilfiker, Pekka Rantala, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 5477–5494, https://doi.org/10.5194/acp-22-5477-2022, https://doi.org/10.5194/acp-22-5477-2022, 2022
Short summary
Short summary
Monoterpenes are emitted into the atmosphere by vegetation and by the use of certain consumer products. Reactions of monoterpenes in the atmosphere lead to low-volatility products that condense to grow particulate matter or participate in new particle formation and, thus, affect air quality and climate. We use a model of atmospheric chemistry and transport to evaluate the global-scale importance of recent updates to our understanding of monoterpene chemistry in particle formation and growth.
Viral Shah, Daniel J. Jacob, Jonathan M. Moch, Xuan Wang, and Shixian Zhai
Atmos. Chem. Phys., 20, 12223–12245, https://doi.org/10.5194/acp-20-12223-2020, https://doi.org/10.5194/acp-20-12223-2020, 2020
Short summary
Short summary
Cloud water pH affects atmospheric chemistry, and acid rain damages ecosystems. We use model simulations along with observations to present a global view of cloud water and precipitation pH. Sulfuric acid, nitric acid, and ammonia control the pH in the northern midlatitudes, but carboxylic acids and dust cations are important in the tropics and subtropics. The acid inputs to many nitrogen-saturated ecosystems are high enough to cause acidification, with ammonium as the main acidifying species.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Viral Shah, Daniel J. Jacob, Ke Li, Rachel F. Silvern, Shixian Zhai, Mengyao Liu, Jintai Lin, and Qiang Zhang
Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, https://doi.org/10.5194/acp-20-1483-2020, 2020
Short summary
Short summary
We analyze 15 years of satellite observations of nitrogen dioxide (NO2) and use an atmospheric chemistry model to understand the seasonal changes and trends in nitrogen oxides (NOx) over China. We show that the seasonal changes in NO2 occur due to changes in the NOx oxidation lifetime. We find that Chinese NOx emissions peaked in 2011 and had decreased by about 25 % by 2018. But the decrease in NO2 in winter was larger, likely because of a simultaneous decrease in the NOx oxidation lifetime.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Viral Shah and Lyatt Jaeglé
Atmos. Chem. Phys., 17, 8999–9017, https://doi.org/10.5194/acp-17-8999-2017, https://doi.org/10.5194/acp-17-8999-2017, 2017
Short summary
Short summary
We use a model of mercury chemistry and transport in the atmosphere, along with ground- and aircraft-based mercury observations, to learn that oxidized mercury chemically produced in the free troposphere descends in the subtropical anticyclones and makes up much of the mercury depositing to the Earth's surface. Our findings imply that mercury chemistry in the free troposphere and transport in the subtropics are important links between global emissions and surface deposition of mercury.
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Jiayue Huang and Lyatt Jaeglé
Atmos. Chem. Phys., 17, 3699–3712, https://doi.org/10.5194/acp-17-3699-2017, https://doi.org/10.5194/acp-17-3699-2017, 2017
Short summary
Short summary
The emissions and distribution of wintertime sea salt aerosol (SSA) are poorly constrained in polar regions, despite their potentially significant roles in halogen release, cloud formation and climate. We implement a blowing snow and a frost flower emission scheme in the model, and find that inclusion of blowing snow is necessary to simulate the observed winter and spring SSA levels. We estimate that inclusion of blowing snow increases submicron SSA emissions by factors of 2–3 in polar regions.
V. Shah, L. Jaeglé, L. E. Gratz, J. L. Ambrose, D. A. Jaffe, N. E. Selin, S. Song, T. L. Campos, F. M. Flocke, M. Reeves, D. Stechman, M. Stell, J. Festa, J. Stutz, A. J. Weinheimer, D. J. Knapp, D. D. Montzka, G. S. Tyndall, E. C. Apel, R. S. Hornbrook, A. J. Hills, D. D. Riemer, N. J. Blake, C. A. Cantrell, and R. L. Mauldin III
Atmos. Chem. Phys., 16, 1511–1530, https://doi.org/10.5194/acp-16-1511-2016, https://doi.org/10.5194/acp-16-1511-2016, 2016
Short summary
Short summary
We present airborne observations of mercury over the southeastern USA during summer. Higher concentrations of oxidized mercury were observed in clean, dry air masses descending in the subtropical anti-cyclones. We used an atmospheric model to simulate the chemistry and transport of mercury. We found reasonable agreement with the observations when the modeled oxidation of elemental mercury was increased, suggesting fast cycling between elemental and oxidized mercury.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Assessing the Effectiveness of SO2, NOx, and NH3 Emission Reductions in Mitigating Winter PM2.5 in Taiwan Using CMAQ Model
Modelling of atmospheric concentrations of fungal spores: a two-year simulation over France using CHIMERE
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Global Spatial Variation in the PM2.5 to AOD Relationship Strongly Influenced by Aerosol Composition
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
The Co-benefits of a Low-Carbon Future on Air Quality in Europe
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Measurement report: Rapid oxidation of phenolic compounds by O3 and HO•: effects of air-water interface and mineral dust in tropospheric chemical processes
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Reactive organic carbon air emissions from mobile sources in the United States
Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model
Substantially positive contributions of new particle formation to cloud condensation nuclei under low supersaturation in China based on numerical model improvements
Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
How does tropospheric VOC chemistry affect climate? An investigation of preindustrial control simulations using the Community Earth System Model version 2
Anthropogenic amplification of biogenic secondary organic aerosol production
A dynamic parameterization of sulfuric acid–dimethylamine nucleation and its application in three-dimensional modeling
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1271, https://doi.org/10.5194/egusphere-2024-1271, 2024
Short summary
Short summary
Elongated open water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
EGUsphere, https://doi.org/10.5194/egusphere-2024-343, https://doi.org/10.5194/egusphere-2024-343, 2024
Short summary
Short summary
Models were used to study ways to reduce PM pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective in mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied Taiwan's environment.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
EGUsphere, https://doi.org/10.5194/egusphere-2024-698, https://doi.org/10.5194/egusphere-2024-698, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factor from a PMF for the evaluation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spore. Furthermore, we estimate that fungal spores can can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Haihui Zhu, Randall Martin, Aaron van Donkelaar, Melanie Hammer, Chi Li, Jun Meng, Christopher Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
EGUsphere, https://doi.org/10.5194/egusphere-2024-950, https://doi.org/10.5194/egusphere-2024-950, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths every year globally. Satellite remote sensing of aerosol optical depth (AOD) coupled with a simulated PM2.5 to AOD relationship (η) can provide global PM2.5 estimation. This study aims to understand the spatial pattern and driving factors of η to guide future measurement and model efforts. We quantified η globally and regionally and found its spatial variation is strongly influenced by the aerosol composition.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-755, https://doi.org/10.5194/egusphere-2024-755, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could lead to vastly improved air quality in Europe, however, only minimal benefits are seen following the current trajectory of climate mitigation. We use a model that allows us to see where the improvements are greatest (Central Europe) and analyse what sectors are most important for achieving these co-benefits (agriculture/power).
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
EGUsphere, https://doi.org/10.5194/egusphere-2023-2856, https://doi.org/10.5194/egusphere-2023-2856, 2024
Short summary
Short summary
This work found that the A-W interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees comparing with gas phase, and bulk water. Some by-products are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in the O3/HO• + PhCs experiments at the A-W interface and in the mineral dust.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023, https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out 1-year aerosol simulations over the continental US. We show that such organic water impacts can increase dry PM1 levels by up to 2 μg m-3 when RH levels and PM1 concentrations are high.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023, https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary
Short summary
We developed and evaluated processes affecting within-day (diel) variability in PM2.5 concentrations in a chemical transport model over the contiguous US. Diel variability in PM2.5 for the contiguous US is driven by early-morning accumulation into a shallow mixed layer, decreases from mid-morning through afternoon with mixed-layer growth, increases from mid-afternoon through evening as the mixed-layer collapses, and decreases overnight as emissions decrease.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Noah A. Stanton and Neil F. Tandon
Atmos. Chem. Phys., 23, 9191–9216, https://doi.org/10.5194/acp-23-9191-2023, https://doi.org/10.5194/acp-23-9191-2023, 2023
Short summary
Short summary
Chemistry in Earth’s atmosphere has a potentially strong but very uncertain impact on climate. Past attempts to fully model chemistry in Earth’s troposphere (the lowest layer of the atmosphere) typically simplified the representation of Earth’s surface, which in turn limited the ability to simulate changes in climate. The cutting-edge model that we use in this study does not require such simplification, and we use it to examine the climate effects of chemical interactions in the troposphere.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 8789–8804, https://doi.org/10.5194/acp-23-8789-2023, https://doi.org/10.5194/acp-23-8789-2023, 2023
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid–dimethylamine (SA–DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
Cited articles
Abram, N. J., Wolff, E. W., and Curran, M. A. J.: A review of sea ice proxy
information from polar ice cores, Quaternary Sci. Rev., 79, 168–183,
https://doi.org/10.1016/j.quascirev.2013.01.011, 2013.
Alvarez-Aviles, L., Simpson, W. R., Douglas, T. A., Sturm, M., Perovich, D.,
and Domine, F.: Frost flower chemical composition during growth and its
implications for aerosol production and bromine activation, J. Geophys.
Res., 113, D21304, https://doi.org/10.1029/2008JD010277, 2008.
Barber, D. G., Reddan, S. P., and Ledrew, E. F.: Statistical
Characterization of the Geophysical and Electrical-Properties of Snow on
Landfast First-Year Sea-Ice, J. Geophys. Res.-Oceans, 100, 2673–2686,
https://doi.org/10.1029/94jc02200, 1995.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A.
M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling
of tropospheric chemistry with assimilated meteorology: Model description and
evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001jd000807, 2001 (data available at:
http://acmg.seas.harvard.edu/geos/, last access: 8 September 2015).
Blanchard-Wrigglesworth, E., Farrell, S. L., Newman, T., and Bitz, C. M.:
Snow cover on Arctic sea ice in observations and an Earth System Model,
Geophys. Res. Lett., 42, 10342–10348, https://doi.org/10.1002/2015GL066049, 2015.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006gb002840, 2007.
de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E.
R., O'Dowd, C., Schulz, M., and Schwartz, S. E.: Production flux of
sea-spray aerosol, Rev. Geophys., 49, RG2001, https://doi.org/10.1029/2010RG000349,
2011.
Di Pierro, M., Jaeglé, L., Eloranta, E. W., and Sharma, S.: Spatial and
seasonal distribution of Arctic aerosols observed by the CALIOP satellite
instrument (2006–2012), Atmos. Chem. Phys., 13, 7075–7095,
https://doi.org/10.5194/acp-13-7075-2013, 2013.
Domine, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea
salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys., 4,
2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Domine, F., Taillandier, A. S., Simpson, W. R., and Severin, K.: Specific
surface area, density and microstructure of frost flowers, Geophys. Res.
Lett., 32, L13502, https://doi.org/10.1029/2005GL023245, 2005.
Fischer, H., Siggaard-Andersen, M.L., Ruth, U., Röthlisberger, R., and
Wolff, E.: Glacial/interglacial changes in mineral dust and sea-salt records
in polar ice cores: Sources, transport, and deposition, Rev. Geophys., 45,
RG1002, https://doi.org/10.1029/2005rg000192, 2007.
Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan
Miller, C., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J.,
Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., St. Clair, J.
M., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L.,
Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake, D.
R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson,
T. B., Wisthaler, A., and Mikoviny, T.: Organic nitrate chemistry and its
implications for nitrogen budgets in an isoprene- and monoterpene-rich
atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS)
observations in the Southeast US, Atmos. Chem. Phys., 16, 5969–5991,
https://doi.org/10.5194/acp-16-5969-2016, 2016.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
aerosols, Atmos. Chem. Phys., 7, 4639–4659,
https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fowler, C., Emery, W. J., and Maslanik, J.: Satellite-derived evolution of
Arctic sea ice age: October 1978 to March 2003, IEEE Geosci Remote Sens. Soc.
Lett. 1, 71–74, https://doi.org/10.1109/LGRS.2004.824741, 2004.
Geldsetzer, T., Langlois, A., and Yackel, J.: Dielectric properties of
brine-wetted snow on first-year sea ice, Cold Reg. Sci. Technol., 58, 47–56,
https://doi.org/10.1016/j.coldregions.2009.03.009, 2009.
Gilman, J. B., Burkhart, J. F., Lerner, B. M., Williams, E. J., Kuster, W.
C., Goldan, P. D., Murphy, P. C., Warneke, C., Fowler, C., Montzka, S. A.,
Miller, B. R., Miller, L., Oltmans, S. J., Ryerson, T. B., Cooper, O. R.,
Stohl, A., and de Gouw, J. A.: Ozone variability and halogen oxidation within
the Arctic and sub-Arctic springtime boundary layer, Atmos. Chem. Phys., 10,
10223–10236, https://doi.org/10.5194/acp-10-10223-2010, 2010.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hara, K., Osada, K., Yabuki, M., and Yamanouchi, T.: Seasonal variation of
fractionated sea-salt particles on the Antarctic coast, Geophys. Res. Lett.,
39, L18801, https://doi.org/10.1029/2012GL052761, 2012.
Hara, K., Matoba, S., Hirabayashi, M., and Yamasaki, T.: Frost flowers and
sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland
during winter–spring, Atmos. Chem. Phys., 17, 8577–8598,
https://doi.org/10.5194/acp-17-8577-2017, 2017.
Huang, J. and Jaeglé, L.: Wintertime enhancements of sea salt aerosol in
polar regions consistent with a sea ice source from blowing snow, Atmos.
Chem. Phys., 17, 3699–3712, https://doi.org/10.5194/acp-17-3699-2017, 2017.
Jacobi, H. W., Voisin, D., Jaffrezo, J. L., Cozic, J., and Douglas, T. A.:
Chemical composition of the snowpack during the 30 OASIS spring campaign
2009 at Barrow, Alaska, J. Geophys. Res., 117, D00R13,
https://doi.org/10.1029/2011jd016654, 2012.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.:
Global distribution of sea salt aerosols: new constraints from in situ and
remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157,
https://doi.org/10.5194/acp-11-3137-2011, 2011.
Jourdain, B., Preunkert, S., Cerri, O., Castebrunet, H., Udisti, R., and
Legrand, M.: Year-round record of size segregated aerosol composition in
central Antarctica (Concordia station): Implications for the degree of
fractionation of sea-salt particles, J. Geophys. Res., 113, D14308,
https://doi.org/10.1029/2007JD009584, 2008.
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J.,
Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H.-W.:
Frost flowers on sea ice as a source of sea salt and their influence on
tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114,
https://doi.org/10.1029/2004GL020655, 2004.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P.,
Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of
particulate matter including black carbon, Atmos. Chem. Phys., 17,
8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Krnavek, L., Simpson, W. R., Carlson, D., Dominé, F., Douglas, T. A.,
and Sturm, M.: The chemical composition of surface snow in the Arctic:
examining marine, terrestrial, and atmospheric influence, Atmos. Environ.,
50, 349–359, https://doi.org/10.1016/j.atmosenv.2011.11.033, 2012.
Kwok, R. and Rothrock, D.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501,
https://doi.org/10.1029/2009GL039035, 2009.
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and
volume from CryoSat-2, Phil. Trans. R. Soc. A, 373, 20140157,
https://doi.org/10.1098/rsta.2014.0157, 2015.
Lewis, E. R. and Schwartz, S. E.: Sea Salt Aerosol Production: Mechanisms,
Methods, Measurements, and Models: A Critical Review, American Geophysical
Union, Washington, DC, 2004.
Lewis, E. R. and Schwartz, S. E.: Comment on “size distribution of sea-salt
emissions as a function of relative humidity”, Atmos. Environ., 40,
588–590, 2006.
Li, C., Hsu, N. C., Sayer, A. M., Krotkov, N. A., Fu, J. S., Lamsal, L. N.,
Lee, J., and Tsay, S.-C.: Satellite observation of pollutant emissions from
gas flaring activities near the Arctic, Atmos. Environ., 133, 1–11,
https://doi.org/10.1016/j.atmosenv.2016.03.019, 2016.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T.,
Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H.,
Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
anthropogenic emission inventory under the international collaboration
framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963,
https://doi.org/10.5194/acp-17-935-2017, 2017.
Lin, J.-T. and McElroy, M. B.: Detection from space of a reduction in
anthropogenic emissions of nitrogen oxides during the Chinese economic
downturn, Atmos. Chem. Phys., 11, 8171–8188,
https://doi.org/10.5194/acp-11-8171-2011, 2011.
Lin, S.-J. and Rood, R. B.: Multidimensinal flux-form semi-Lagrangian
transport schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT> 2.0.CO;2, 1996.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from
210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological
fields, J. Geophys. Res., 106, 12109–12128, https://doi.org/10.1029/2000JD900839, 2001.
Liu, Z. Y., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R.,
Omar, A., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSO Lidar Cloud
and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of
Performance, J. Atmos. Ocean. Tech., 26, 1198–1213,
https://doi.org/10.1175/2009JTECHA1229.1, 2009.
Mann, G. W., Anderson, P. S., and Mobbs, S. D.: Profile measurements of
blowing snow at Halley, Antarctica, J. Geophys. Res., 105, 24491–24508,
2000.
Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H.,
Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P.
O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G.,
Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H.,
McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R.
M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HOx)
in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823–5838,
https://doi.org/10.5194/acp-10-5823-2010, 2010.
Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the
atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13,
509–519, https://doi.org/10.5194/acp-13-509-2013, 2013.
Martin, S.: A field study of brine drainage and oil entrapment in first-year
sea ice, J. Glaciol., 22, 473–502, 1979.
Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.:
Global and regional decreases in oxidants from photochemical effects of
aerosols, J. Geophys. Res., 108, 4097, https://doi.org/10.1029/2002JD002622, 2003.
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, H. J., Yi, D.,
and Emery, W. J.: A younger, thinner ice cover: increased potential for
rapid, extensive ice loss, Geophys. Res. Lett., 34, L24501,
https://doi.org/10.1029/2007GL032043, 2007.
Massom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R.,
Sturm, M., Worby, A. P., Wu, X., Lytle, V. I., Ushio, S., Morris, K., Reid,
P. A., Warren, S. G., and Alli- son, I.: Snow on Antarctic sea ice, Rev.
Geophys., 39, 413–445, https://doi.org/10.1029/2000RG000085, 2001.
May, N. W., Quinn, P. K., McNamara, S. M., and Pratt, K. A.: Multiyear study
of the dependence of sea salt aerosol on wind speed and sea ice conditions in
the coastal Arctic, J. Geophys. Res.-Atmos., 121, 9208–9219,
https://doi.org/10.1002/2016JD025273, 2016.
Mundy, C. J., Barber, D. G., and Michel, C.: Variability of snow and ice
thermal, physical and optical properties pertinent to sea ice algae biomass
during spring, J. Mar. Syst., 58, 107–120,
https://doi.org/10.1016/j.jmarsys.2005.07.003, 2005.
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S.,
King, J., Ricker, R., and Else, B.: Effect of Snow Salinity on CryoSat-2
Arctic First-Year Sea Ice Freeboard Measurements, Geophys. Res. Lett., 44,
10419–10426, https://doi.org/10.1002/2017GL074506, 2017.
Nakawo, M. and Sinha, N. K.: Growth rate and salinity profile of first-year
sea ice in the high Arctic, J. Glaciol., 27, 315–330,
https://doi.org/10.1017/S0022143000015409, 1981.
Nilsson, E. D., Rannik, U., Swietlicki, E., Leck, C., Aalto, P. P., Zhou,
J., and Norman, M.: Turbulent aerosol fluxes over the Arc- tic Ocean 2,
Wind-driven sources from the sea, J. Geophys. Res., 106, 32111–32124, 2001.
Rankin, A. M., Auld, V., and Wolff, E. W.: Frost flowers as a source of
fractionated sea salt aerosol in the polar regions, Geophys. Res. Lett., 27,
3469–3472, https://doi.org/10.1029/2000GL011771, 2000.
Renner, A. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen, E.,
Nicolaus, M., and Goodwin, H.: Evidence of Arctic sea ice thinning from
direct observations, Geophys. Res. Lett., 41, 5029–5036,
https://doi.org/10.1002/2014GL060369, 2014.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
improved in situ and satellite SST analysis for climate, J. Climate, 15,
1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Junye, C., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's modern-era retrospective analysis for
research and applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Roscoe, H. K., Brooks, B., Jackson, A. V., Smith, M. H., Walker, S. J.,
Obbard, R. W., and Wolff, E. W.: Frost flowers in the laboratory: Growth,
characteristics, aerosol, and the underlying sea ice, J. Geophys. Res., 116,
D12301, https://doi.org/10.1029/2010JD015144, 2011.
Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A.,
Schneeberger, D. R., and Berg, T.: Arctic springtime depletion of mercury,
Nature, 394, 331–332, https://doi.org/10.1038/28530, 1998.
Seguin, A. M., Norman, A. L., and Barrie, L.: Evidence of sea ice source in
aerosol sulfate loading and size distribution in the Canadian High Arctic
from isotopic analysis, J. Geophys. Res.-Atmos., 119, 1087–1096,
https://doi.org/10.1002/2013JD020461, 2014.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a
Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4,
51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Shaw, P. M., Russell, L. M., Jefferson, A., and Quinn, P. K.: Arctic organic
aerosol measurements show particles from mixed combustion in spring haze and
from frost flowers in winter, Geophys. Res. Lett., 37, L10803,
https://doi.org/10.1029/2010GL042831, 2010.
Simpson, W. R., Carlson, D., Hönninger, G., Douglas, T. A., Sturm, M.,
Perovich, D., and Platt, U.: First-year sea-ice contact predicts bromine
monoxide (BrO) levels at Barrow, Alaska better than potential frost flower
contact, Atmos. Chem. Phys., 7, 621–627,
https://doi.org/10.5194/acp-7-621-2007, 2007.
Slinn, S. A. and Slinn, W. G. N.: Predictions for particle deposition on
natural waters, Atmos. Environ., 14, 1013–1016,
https://doi.org/10.1016/0004-6981(80)90032-3, 1980.
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys. Res.
Lett., 39, L06501, https://doi.org/10.1029/2012GL050874, 2012.
Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T.,
Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A.,
Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D.,
Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis
of atmospheric mercury depletion event chemistry in the atmosphere and snow,
Atmos. Chem. Phys., 8, 1445–1482, https://doi.org/10.5194/acp-8-1445-2008,
2008.
Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian
particle dispersion model FLEXPART against large scale tracer experiment
data, Atmos. Environ., 32, 4245–4264, https://doi.org/10.1016/S1352-2310(98)00184-8,
1998.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical
note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos.
Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Tesche, M., Zieger, P., Rastak, N., Charlson, R. J., Glantz, P., Tunved, P.,
and Hansson, H.-C.: Reconciling aerosol light extinction measurements from
spaceborne lidar observations and in situ measurements in the Arctic, Atmos.
Chem. Phys., 14, 7869–7882, https://doi.org/10.5194/acp-14-7869-2014, 2014.
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu,
L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A.
M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C.,
Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M.,
Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models
overestimate surface ozone in the Southeast United States?, Atmos. Chem.
Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.
Turner, J., Comiso, J. C., Marshall, G. J., Lachlan-Cope, T. A., Bracegirdle,
T., Maksym, T., Meredith, M. P., Wang, Z., and Orr, A.: Non-annular
atmospheric circulation change induced by stratospheric ozone depletion and
its role in the recent increase of Antarctic sea ice extent, Geophys. Res.
Lett., 36, L08502, https://doi.org/10.1029/2009GL037524, 2009.
Obbard, R. W., Roscoe, H. K., Wolff, E. W., and Atkinson, H. M.: Frost flower
surface area and chemistry as a function of salinity and temperature, J.
Geophys. Res., 114, D20305, https://doi.org/10.1029/2009JD012481, 2009.
Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and
sinks, in: The Climate System, edited by: Berdowski, J., Guicherit, R., and
Heij, B. J., A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse,
the Netherlands, 33–78, 2001.
Omar, A. H, Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z. Y., Hu, Y.
X., Trepte, C. R., Rogers, R. R., Ferrare, R. A., Lee, K. P., Kuehn, R. E.,
and Hostetler, C. A.: The CALIPSO automated aerosol classification and lidar
ratio se- lection algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Palm, S. P., Yang, Y. K., Spinhirne, J. D., and Marshak, A.: Satellite
remote sensing of blowing snow proper- ties over Antarctica, J. Geophys.
Res.-Atmos., 116, 1–16, https://doi.org/10.1029/2011jd015828, 2011.
Palm, S. P., Kayetha, V., Yang, Y., and Pauly, R.: Blowing snow sublimation
and transport over Antarctica from 11 years of CALIPSO observations, The
Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, 2017.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and
trends, 1979–2010, The Cryosphere, 6, 871–880,
https://doi.org/10.5194/tc-6-871-2012, 2012.
Perovich, D. K. and Richter-Menge, J. A.: Surface characteristics of lead
ice, J. Geophys. Res., 99, 16341–16350, https://doi.org/10.1029/94JC01194, 1994.
Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K.,
and Seinfeld, J. H.: Effect of changes in cli- mate and emissions on future
sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys.
Res., 114, D01205, https://doi.org/10.1029/2008JD010701, 2009.
Udisti, R., Dayan, U., Becagli, S., Busetto, M., Frosini, D., Legrand, M.,
Lucarelli, F., Preunkert, S., Severi, M., Traversi, R., and Vitale, V.: Sea
spray aerosol in central Antarctica. Present atmospheric behaviour and
implications for paleoclimatic reconstructions, Atmos. Environ., 52,
109–120, https://doi.org/10.1016/j.atmosenv.2011.10.018, 2012.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Donkelaar, A., Martin, R. V., Leaitch, W. R., Macdonald, A. M., Walker,
T. W., Streets, D. G., Zhang, Q., Dunlea, E. J., Jimenez, J. L., Dibb, J. E.,
Huey, L. G., Weber, R., and Andreae, M. O.: Analysis of aircraft and
satellite measurements from the Intercontinental Chemical Transport
Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to
Canada, Atmos. Chem. Phys., 8, 2999–3014,
https://doi.org/10.5194/acp-8-2999-2008, 2008.
Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M.,
Hall, J. S., and Wolff, E. W.: Sea-salt aerosol in coastal Antarctic regions,
J. Geophys. Res., 103, 10961–10974, https://doi.org/10.1029/97JD01804, 1998.
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric
O3-NOx-hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res.,
103, 10713–10726, https://doi.org/10.1029/98JD00158, 1998.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M.,
Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and
Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon
in the Arctic in winter-spring: implications for radiative forcing, Atmos.
Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011,
2011.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., Aleksandrov, Ye. I., and Colony, R.: Snow depth on Arctic sea ice, J.
Climate, 12, 1814–1829, 1999.
Weeks, W. F. and Ackley, S. F.: The growth, structure and properties of sea
ice, 9–164, Plenum Press, New York, 1986.
Weeks, W. F. and Lee O. S.: Observations on the physical properties of
sea-ice at Hopedale, Labrador, Arctic, 11, 135–155, https://doi.org/10.14430/arctic3740,
1958.
Weller, R., Woltjen, J., Piel, C., Resenberg, R., Wagenbach, D.,
Konig-Langlo, G., and Kriews, M.: Seasonal variability of crustal and marine
trace elements in the aerosol at Neumayer station, Antarctica, Tellus, 60,
742–752, https://doi.org/10.1111/j.1600-0889.2008.00372.x, 2008.
Wesely, M. L.: Parameterization of surface resistance to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Winker, D.: CALIPSO LID L2 Standard HDF File-Version 4.10, NASA Langley
Research Center Atmospheric Science Data Center DAAC,
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmAPro-Standard-V4-10, 2016.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., and Powell, J. A.: Overview
of the CALIPSO Mission and CALIOP Data Processing Algorithms, J. Atmos.
Ocean. Tech., 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and
Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as
characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361,
https://doi.org/10.5194/acp-13-3345-2013, 2013.
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C.,
Mulvaney, R., Rothlisberger, R., de Angelis, M., Boutron, C. F., Hansson,
M., Jonsell, U., Hutterli, M. A., Bigler, M., Lambeck, K., Kaufmann, P.,
Stauffer, B., Stocker, T. F., Steffensen, J. P., Siggaard-Andersen, M. L.,
Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D.,
Barbante, C., Gabrielli, P., and Gaspari, V.: Southern Ocean sea-ice extent,
productivity and iron flux over the past eight glacial cycles, Nature, 440,
491–496, https://doi.org/10.1038/nature04614, 2006.
Worby, A. P., Massom, R. A., Allison, I., Lytle, V. I., and Heil, P.: East
Antarctic sea ice: A review of its structure, properties and drift, Antarctic
sea ice: physical processes, interactions and variability, 41–67, 1998.
Xu, L., Russell, L. M., Somerville, R. C. J., and Quinn, P. K.: Frost flower
aerosol effects on Arctic wintertime longwave cloud radiative forcing, J.
Geophys. Res.-Atmos., 118, 13282–13291, https://doi.org/10.1002/2013JD020554, 2013.
Xu, J.-W., Martin, R. V., Morrow, A., Sharma, S., Huang, L., Leaitch, W. R.,
Burkart, J., Schulz, H., Zanatta, M., Willis, M. D., Henze, D. K., Lee, C.
J., Herber, A. B., and Abbatt, J. P. D.: Source attribution of Arctic black
carbon constrained by aircraft and surface measurements, Atmos. Chem. Phys.,
17, 11971–11989, https://doi.org/10.5194/acp-17-11971-2017, 2017.
Yang, X., Pyle, J. A., and Cox, R. A.: Sea salt aerosol production and
bromine release: Role of snow on sea ice, Geophys. Res. Lett., 35, L16815,
https://doi.org/10.1029/2008GL034536, 2008.
Yang, X., Pyle, J. A., Cox, R. A., Theys, N., and Van Roozendael, M.:
Snow-sourced bromine and its implications for polar tropospheric ozone,
Atmos. Chem. Phys., 10, 7763–7773, https://doi.org/10.5194/acp-10-7763-2010,
2010.
Yang, X., Nedela, V., Runštuk, J., Ondrušková, G., Krausko, J.,
Vetráková, L., and Heger, D.: Evaporating brine from frost flowers
with electron microscopy and implications for atmospheric chemistry and
sea-salt aerosol formation, Atmos. Chem. Phys., 17, 6291–6303,
https://doi.org/10.5194/acp-17-6291-2017, 2017.
Zender, C. S.: Mineral Dust Entrainment and Deposition (DEAD) model:
Description and 1990s dust climatology, J. Geophys. Res., 108, 4416,
https://doi.org/10.1029/2002JD002775, 2003.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle
dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35,
549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Short summary
The contribution of blowing snow and frost flower as sources of sea salt aerosols (SSA) over polar regions remains uncertain, despite its potentially important role in polar climate and chemistry. Using chemical transport models and satellite observations, we find that blowing snow emissions are the dominant source of SSA over sea ice during the cold season. We infer a monthly snow salinity on first-year sea ice that decreases from fall–spring, minimizing the model discrepancy to within 10 %.
The contribution of blowing snow and frost flower as sources of sea salt aerosols (SSA) over...
Altmetrics
Final-revised paper
Preprint