Articles | Volume 17, issue 12
https://doi.org/10.5194/acp-17-7941-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-7941-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
Andreas Schneider
CORRESPONDING AUTHOR
Leibniz Institute of Atmospheric Physics at the University of Rostock (IAP), Kühlungsborn, Germany
now at: SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
Johannes Wagner
German Aerospace Center (DLR), Institute of Atmospheric Physics (IPA), Wessling, Germany
Jens Faber
Leibniz Institute of Atmospheric Physics at the University of Rostock (IAP), Kühlungsborn, Germany
Michael Gerding
Leibniz Institute of Atmospheric Physics at the University of Rostock (IAP), Kühlungsborn, Germany
Franz-Josef Lübken
Leibniz Institute of Atmospheric Physics at the University of Rostock (IAP), Kühlungsborn, Germany
Related authors
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Short summary
TROPOMI aboard Sentinel-5P satellite provides methane (CH4) measurements with exceptional temporal and spatial resolution. The study describes a series of improvements developed to retrieve CH4 from TROPOMI. The updated CH4 product features (among others) a more accurate a posteriori correction derived independently of any reference data. The validation of the improved data product shows good agreement with ground-based and satellite measurements, which highlights the quality of the TROPOMI CH4.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Jens Faber, Michael Gerding, Andreas Schneider, Andreas Dörnbrack, Henrike Wilms, Johannes Wagner, and Franz-Josef Lübken
Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, https://doi.org/10.5194/amt-12-4191-2019, 2019
Short summary
Short summary
Atmospheric measurements on rising balloons can be compromised by the balloon's wake. The aim of this study is to provide a tool for assessing the likelihood of encountering the balloon's wake at the position of the gondola. This includes an uncertainty analysis of the calculation and a retrieval of vertical winds. We find an average wake encounter probability of 28 % for a standard radiosonde. Additionally, we evaluate the influence of wake from smaller objects on turbulence measurements.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Haili Hu, and Jochen Landgraf
Atmos. Meas. Tech., 11, 3339–3350, https://doi.org/10.5194/amt-11-3339-2018, https://doi.org/10.5194/amt-11-3339-2018, 2018
Short summary
Short summary
A new data set of vertical column densities of the water vapour isotopologues H2O and HDO retrieved from short-wave infrared measurements (2339 nm to 2383 nm) by the SCIAMACHY satellite instrument for the whole of the mission period from 2003 to 2012 is presented. The data are validated against ground-based Fourier transform infrared measurements. High-altitude stations observe different air columns; thus in this case collocated scenes with clouds around station height are needed for agreement.
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209–1229, https://doi.org/10.5194/angeo-34-1209-2016, https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Short summary
Turbulence is an essential process in the atmosphere and ocean. Clear-air turbulence is a well-known threat for the safety of aviation. Using a powerful MST radar, we detected turbulence and compared it with the results from radiosondes. The correlation between turbulence and background conditions, e.g., Richardson number and wind shears, is determined. There is a nearly negative correlation between turbulence and Richardson number independent of the length scale over which it was calculated.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022, https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Short summary
TROPOMI aboard Sentinel-5P satellite provides methane (CH4) measurements with exceptional temporal and spatial resolution. The study describes a series of improvements developed to retrieve CH4 from TROPOMI. The updated CH4 product features (among others) a more accurate a posteriori correction derived independently of any reference data. The validation of the improved data product shows good agreement with ground-based and satellite measurements, which highlights the quality of the TROPOMI CH4.
Sonja Gisinger, Johannes Wagner, and Benjamin Witschas
Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, https://doi.org/10.5194/acp-20-10091-2020, 2020
Short summary
Short summary
Gravity waves are an important coupling mechanism in the atmosphere. Measurements by two research aircraft during a mountain wave event over Scandinavia in 2016 revealed changes of the horizontal scales in the vertical velocity field and of momentum fluxes in the vicinity of the tropopause inversion. Idealized simulations revealed the presence of interfacial waves. They are found downstream of the mountain peaks, meaning that they horizontally transport momentum/energy away from their source.
Robert Menke, Nikola Vasiljević, Johannes Wagner, Steven P. Oncley, and Jakob Mann
Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020, https://doi.org/10.5194/wes-5-1059-2020, 2020
Short summary
Short summary
The estimation of wind resources in complex terrain is challenging as the wind conditions change significantly over short distances, different to flat terrain, where spatial changes are small. We demonstrate in this work that wind lidars can remotely map wind resources over large areas. This will have implications for the planning of wind energy projects and ultimately reduce uncertainties in wind resource estimations in complex terrain, making such areas more interesting for future development.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Irina Strelnikova, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 13, 479–499, https://doi.org/10.5194/amt-13-479-2020, https://doi.org/10.5194/amt-13-479-2020, 2020
Short summary
Short summary
One of the major problems of climate and weather modeling is atmospheric gravity waves. All measured meteorological parameters such as winds and temperature reveal superposition of large-scale background field and small-scale features created by waves. We developed an analysis technique that decomposes the measured winds and temperature into single waves, which allows for a detailed description of wave parameters. Application of this technique will improve understanding of atmospheric dynamics.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019, https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Short summary
Turbulence is the variation of wind velocity on short timescales. In this study we introduce a new method to measure turbulence in a two-dimensionial plane with lidar instruments. The method allows for the detection and quantification of subareas of distinct turbulence conditions in the observed plane. We compare the results to point and profile measurements with more established instruments. It is shown that turbulence below low-level jets and in wind turbine wakes can be investigated this way.
Johannes Wagner, Norman Wildmann, and Thomas Gerz
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-77, https://doi.org/10.5194/wes-2019-77, 2019
Preprint retracted
Short summary
Short summary
The impact of a forest parameterization on the simulation of boundary layer flows over complex terrain is investigated. Short- and long-term simulations are run for 12 hours and 1.5 months, respectively, with and without forest parameterization and the results are compared to lidar and meteorological tower observations. The test cases are based on the Perdigao 2017 campaign.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Jens Faber, Michael Gerding, Andreas Schneider, Andreas Dörnbrack, Henrike Wilms, Johannes Wagner, and Franz-Josef Lübken
Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, https://doi.org/10.5194/amt-12-4191-2019, 2019
Short summary
Short summary
Atmospheric measurements on rising balloons can be compromised by the balloon's wake. The aim of this study is to provide a tool for assessing the likelihood of encountering the balloon's wake at the position of the gondola. This includes an uncertainty analysis of the calculation and a retrieval of vertical winds. We find an average wake encounter probability of 28 % for a standard radiosonde. Additionally, we evaluate the influence of wake from smaller objects on turbulence measurements.
Jacob Zalach, Christian von Savigny, Arvid Langenbach, Gerd Baumgarten, Franz-Josef Lübken, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-267, https://doi.org/10.5194/amt-2019-267, 2019
Revised manuscript not accepted
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Short summary
Stratospheric aerosol backscatter ratios in the Arctic using Rayleigh, Mie and Raman backscattered signals were calculated. A backscatter ratio calculation during daytime was performed for the first time. Sharp aerosol layers thinner than 1 km over several days were observed. The seasonal cycle of stratospheric background aerosol in high latitudes including the summer months was calculated for the first time. Top altitude of the aerosol layer was found to reach up to 34 km, especially in summer.
Martin Eberhart, Stefan Löhle, Boris Strelnikov, Jonas Hedin, Mikhail Khaplanov, Stefanos Fasoulas, Jörg Gumbel, Franz-Josef Lübken, and Markus Rapp
Atmos. Meas. Tech., 12, 2445–2461, https://doi.org/10.5194/amt-12-2445-2019, https://doi.org/10.5194/amt-12-2445-2019, 2019
Short summary
Short summary
This paper describes the measurement of atomic oxygen in the upper atmosphere onboard sounding rockets using solid electrolyte sensors. Calibration of the sensors in the laboratory is explained in detail. Results from the WADIS-2 rocket campaign show profiles of atomic oxygen density with a high spatial resolution.
Uwe Berger, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 19, 4685–4702, https://doi.org/10.5194/acp-19-4685-2019, https://doi.org/10.5194/acp-19-4685-2019, 2019
Short summary
Short summary
In this paper we present a new description of statistical probability density functions (pdfs) of polar mesospheric clouds (PMC). We derive a new class of pdfs that describes successfully the probability statistic of ALOMAR lidar observations of different ice parameters. As a main advantage the new method allows us to connect different observational PMC distributions of lidar and satellite data, and also to compare with distributions from ice model studies.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Johannes Wagner, Thomas Gerz, Norman Wildmann, and Kira Gramitzky
Atmos. Chem. Phys., 19, 1129–1146, https://doi.org/10.5194/acp-19-1129-2019, https://doi.org/10.5194/acp-19-1129-2019, 2019
Short summary
Short summary
Long-term WRF-LES simulations were performed with a horizontal resolution of 200 m for a period of 49 days during the Perdigão campaign. Simulation results were used to characterize the meteorological conditions and to analyse characteristic flow patterns. It could be shown that thermally driven flows including low-level jets frequently occurred during the observation period. Model results were in very good agreement with observations in spite of the long simulation time.
Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, and Franz-Josef Lübken
Atmos. Chem. Phys., 19, 77–88, https://doi.org/10.5194/acp-19-77-2019, https://doi.org/10.5194/acp-19-77-2019, 2019
Short summary
Short summary
Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate the thermal structure of the mesopause region. Vertically and horizontally resolved in situ and remote measurements are in good agreement and show dominating long-term and large-scale waves with periods of 24 h and higher tidal harmonics. Only a few gravity waves with periods shorter than 6 h and small amplitudes are there.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Gabriel Giono, Boris Strelnikov, Heiner Asmus, Tristan Staszak, Nickolay Ivchenko, and Franz-Josef Lübken
Atmos. Meas. Tech., 11, 5299–5314, https://doi.org/10.5194/amt-11-5299-2018, https://doi.org/10.5194/amt-11-5299-2018, 2018
Short summary
Short summary
Energetic photons, such as ultraviolet light, are able to eject electrons from a material surface, thus creating an electrical current, also called a photocurrent. A proper estimation of this photocurrent can be crucial for space- or rocket-borne particle detectors, as it can dominate over the currents that are of scientific interest (induced by charged particles, for example). This article outlines the design for photocurrent modelling and for experimental confirmation in a laboratory.
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Haili Hu, and Jochen Landgraf
Atmos. Meas. Tech., 11, 3339–3350, https://doi.org/10.5194/amt-11-3339-2018, https://doi.org/10.5194/amt-11-3339-2018, 2018
Short summary
Short summary
A new data set of vertical column densities of the water vapour isotopologues H2O and HDO retrieved from short-wave infrared measurements (2339 nm to 2383 nm) by the SCIAMACHY satellite instrument for the whole of the mission period from 2003 to 2012 is presented. The data are validated against ground-based Fourier transform infrared measurements. High-altitude stations observe different air columns; thus in this case collocated scenes with clouds around station height are needed for agreement.
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Kathrin Baumgarten, Michael Gerding, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, https://doi.org/10.5194/acp-18-371-2018, 2018
Short summary
Short summary
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The temporal variation of these waves is studied using a record long 10-day continuous Rayleigh–Mie–Raman lidar sounding at midlatitudes. This data set shows a large variability of these waves on timescales of a few days and therefore provides new insights into wave intermittency phenomena, which can help to improve model simulations.
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017, https://doi.org/10.5194/acp-17-14853-2017, 2017
Jens Hildebrand, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, https://doi.org/10.5194/acp-17-13345-2017, 2017
Short summary
Short summary
We present altitude profiles of winds and temperatures in the Arctic strato- and mesosphere obtained during three Januaries. The data show large year-to-year variations. We compare the observations to model data. For monthly mean profiles we find good agreement below 55 km altitude but also differences of up to 20 K and 20 m s-1 above. The fluctuations during single nights indicate gravity waves. The kinetic energy of such waves is typically 5 to 10 times larger than their potential energy.
Heiner Asmus, Tristan Staszak, Boris Strelnikov, Franz-Josef Lübken, Martin Friedrich, and Markus Rapp
Ann. Geophys., 35, 979–998, https://doi.org/10.5194/angeo-35-979-2017, https://doi.org/10.5194/angeo-35-979-2017, 2017
Short summary
Short summary
This work sheds new light on the size distribution of dust grains of meteoric origin in the mesosphere and lower thermosphere region using rocket-borne instrumentation. We found that a large number of very small (~ 0.5 nm) particles are charged and therefore have a significant influence on the charge balance of the lower ionosphere.
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017, https://doi.org/10.5194/acp-17-4031-2017, 2017
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209–1229, https://doi.org/10.5194/angeo-34-1209-2016, https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Short summary
Turbulence is an essential process in the atmosphere and ocean. Clear-air turbulence is a well-known threat for the safety of aviation. Using a powerful MST radar, we detected turbulence and compared it with the results from radiosondes. The correlation between turbulence and background conditions, e.g., Richardson number and wind shears, is determined. There is a nearly negative correlation between turbulence and Richardson number independent of the length scale over which it was calculated.
Franz-Josef Lübken, Gerd Baumgarten, Jens Hildebrand, and Francis J. Schmidlin
Atmos. Meas. Tech., 9, 3911–3919, https://doi.org/10.5194/amt-9-3911-2016, https://doi.org/10.5194/amt-9-3911-2016, 2016
Short summary
Short summary
Wind measurements in the middle atmosphere (MA) are crucial to our understanding of atmospheric processes. We have recently developed a new laser-based method to measure winds called DoRIS (Doppler Rayleigh Iodine Spectrometer) which is the only technique to monitor winds in the middle atmosphere quasi-continuously. We
compare our measurements with rocket-borne measurements and find excellent
agreement above 30 km. DoRIS can now be considered as a validated method to measure winds in the MA.
Michael Gerding, Maren Kopp, Josef Höffner, Kathrin Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 9, 3707–3715, https://doi.org/10.5194/amt-9-3707-2016, https://doi.org/10.5194/amt-9-3707-2016, 2016
Short summary
Short summary
Temperature soundings by lidar are an important tool for the understanding of the middle atmosphere, including gravity waves and tides. Though, mesospheric lidar soundings at daytime are rare. We describe a daylight-capable RMR lidar with optical bandwidths in the range of the Doppler broadened laser backscatter. We account for the systematic temperature error induced by the optical filter, and present examples of daylight-independent temperature sounding as well as tidal analysis.
J. Kiliani, G. Baumgarten, F.-J. Lübken, and U. Berger
Atmos. Chem. Phys., 15, 12897–12907, https://doi.org/10.5194/acp-15-12897-2015, https://doi.org/10.5194/acp-15-12897-2015, 2015
Short summary
Short summary
For the first time the shape of noctilucent cloud particles is analyzed with a 3-D Lagrangian model. Three-color lidar measurements are compared directly to optical modeling of NLC simulations with non-spherical shapes: a mix of elongated and flattened cylindrical ice particles consistent with measurements. Comparison is best if flattened particles form a majority, with mean axis ratio around 2.8. NLCs from cylindrical particles are slightly brighter and consist of fewer but larger ice particle.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
N. Kaifler, G. Baumgarten, J. Fiedler, and F.-J. Lübken
Atmos. Chem. Phys., 13, 11757–11768, https://doi.org/10.5194/acp-13-11757-2013, https://doi.org/10.5194/acp-13-11757-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Gravity waves excited during a minor sudden stratospheric warming
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Age and gravitational separation of the stratospheric air over Indonesia
Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
A comparison of Loon balloon observations and stratospheric reanalysis products
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Comparing turbulent parameters obtained from LITOS and radiosonde measurements
Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends
On the structural changes in the Brewer-Dobson circulation after 2000
Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E)
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024, https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology, developed in recent years, that can capture atmospheric fine-structure information via three-stage (rising, flat-floating, and falling) detection. Based on the RTISS, we developed a method to quantify stratospheric atmospheric disturbance information; this method shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Satoshi Sugawara, Shigeyuki Ishidoya, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Sakae Toyoda, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, Daisuke Goto, and Fanny A. Putri
Atmos. Chem. Phys., 18, 1819–1833, https://doi.org/10.5194/acp-18-1819-2018, https://doi.org/10.5194/acp-18-1819-2018, 2018
Short summary
Short summary
This is the first research that shows concrete evidence of gravitational separation in the tropical stratosphere. This implies that gravitational separation occurs within the entire stratosphere, which gives us new insight into atmospheric dynamics.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Fabrice Chane Ming, Damien Vignelles, Fabrice Jegou, Gwenael Berthet, Jean-Baptiste Renard, François Gheusi, and Yuriy Kuleshov
Atmos. Chem. Phys., 16, 8023–8042, https://doi.org/10.5194/acp-16-8023-2016, https://doi.org/10.5194/acp-16-8023-2016, 2016
Short summary
Short summary
Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological GPS sondes, ozonesondes, and GPS radio occultation data are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
Fuqing Zhang, Junhong Wei, Meng Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy
Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015, https://doi.org/10.5194/acp-15-7667-2015, 2015
Short summary
Short summary
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations, this study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS) region. The focus is on the second research flight (RF02), which was dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
M. Kozubek, P. Krizan, and J. Lastovicka
Atmos. Chem. Phys., 15, 2203–2213, https://doi.org/10.5194/acp-15-2203-2015, https://doi.org/10.5194/acp-15-2203-2015, 2015
Short summary
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
H. Bönisch, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, https://doi.org/10.5194/acp-11-3937-2011, 2011
N. Bègue, H. Bencherif, V. Sivakumar, G. Kirgis, N. Mze, and J. Leclair de Bellevue
Atmos. Chem. Phys., 10, 8563–8574, https://doi.org/10.5194/acp-10-8563-2010, https://doi.org/10.5194/acp-10-8563-2010, 2010
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009, https://doi.org/10.5194/acp-9-9349-2009, 2009
J. M. Castanheira, J. A. Añel, C. A. F. Marques, J. C. Antuña, M. L. R. Liberato, L. de la Torre, and L. Gimeno
Atmos. Chem. Phys., 9, 9143–9153, https://doi.org/10.5194/acp-9-9143-2009, https://doi.org/10.5194/acp-9-9143-2009, 2009
Cited articles
Achatz, U.: On the role of optimal perturbations in the instability of monochromatic gravity waves, Phys. Fluids, 17, 094107, https://doi.org/10.1063/1.2046709, 2005.
Andreassen, O., Wasberg, C. E., Fritts, D. C., and Isler, J. R.: Gravity wave breaking in two and three dimensions: 1. Model description and comparison of two-dimensional evolutions, J. Geophys. Res., 99, 8095–8108, https://doi.org/10.1029/93JD03435, 1994.
Balsley, B. B., Svensson, G., and Tjernström, M.: On the Scale-dependence of the Gradient Richardson Number in the Residual Layer, Bound.-Lay. Meteorol., 127, 57–72, https://doi.org/10.1007/s10546-007-9251-0, 2008.
Barat, J.: Some characteristics of clear-air turbulence in the middle stratosphere, J. Atmos. Sci., 39, 2553–2564, https://doi.org/10.1175/1520-0469(1982)039<2553:SCOCAT>2.0.CO;2, 1982.
Barat, J., Cot, C., and Sidi, C.: On the measurement of turbulence dissipation rate from rising balloons, J. Atmos. Ocean. Tech., 1, 270–275, 1984.
Birner, T.: Fine-scale structure of the extratropical tropopause region, J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301, 2006.
Birner, T., Dörnbrack, A., and Schumann, U.: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 45-1–45-4, https://doi.org/10.1029/2002GL015142, 2002.
Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, 2nd Edn., Atmospheric sciences library, Reidel, Dordrecht, 1986.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State-NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W., and Thornhill, K. L.: Characterizations of tropospheric turbulence and stability layers from aircraft observations, J. Geophys. Res., 108, 8784, https://doi.org/10.1029/2002JD002820, 2003.
Chou, M. D. and Suarez, M. J.: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo., 104606, 85 pp., 1994.
Clayson, C. A. and Kantha, L.: On Turbulence and Mixing in the Free Atmosphere Inferred from High-Resolution Soundings, J. Atmos. Ocean. Tech., 25, 833–852, https://doi.org/10.1175/2007JTECHA992.1, 2008.
Cot, C. and Barat, J.: Wave-turbulence interaction in the stratosphere: A case study, J. Geophys. Res., 91, 2749–2756, https://doi.org/10.1029/JD091iD02p02749, 1986.
Dalaudier, F., Sidi, C., Crochet, M., and Vernin, J.: Direct Evidence of “Sheets” in the Atmospheric Temperature Field, J. Atmos. Sci., 51, 237–248, https://doi.org/10.1175/1520-0469(1994)051<0237:DEOITA>2.0.CO;2, 1994.
Ehard, B., Achtert, P., Dörnbrack, A., Gisinger, S., Gumbel, J., Khaplanov, M., Rapp, M., and Wagner, J. S.: Combination of lidar and model data for studying deep gravity wave propagation, Mon. Weather Rev., 144, 77–98, https://doi.org/10.1175/MWR-D-14-00405.1, 2016.
Franke, P. M. and Collins, R. L.: Evidence of gravity wave breaking in lidar data from the mesopause region, Geophys. Res. Lett., 30, https://doi.org/10.1029/2001GL014477, 1155, 2003.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C. and Wang, L.: Gravity Wave–Fine Structure Interactions, Part II: Energy Dissipation Evolutions, Statistics, and Implications, J. Atmos. Sci., 70, 3735–3755, https://doi.org/10.1175/JAS-D-13-059.1, 2013.
Fritts, D. C., Wang, L., Geller, M. A., Lawrence, D. A., Werne, J., and Balsley, B. B.: Numerical Modeling of Multiscale Dynamics at a High Reynolds Number: Instabilities, Turbulence, and an Assessment of Ozmidov and Thorpe Scales, J. Atmos. Sci., 73, 555–578, https://doi.org/10.1175/JAS-D-14-0343.1, 2016.
Galperin, B., Sukoriansky, S., and Anderson, P. S.: On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 65–69, https://doi.org/10.1002/asl.153, 2007.
Gavrilov, N. M.: Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations, Atmos. Chem. Phys., 13, 12107–12116, https://doi.org/10.5194/acp-13-12107-2013, 2013.
Haack, A., Gerding, M., and Lübken, F.-J.: Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number, J. Geophys. Res., 119, 10605–10618, https://doi.org/10.1002/2013JD021008, 2014.
Hauf, T.: Aircraft Observation of Convection Waves over Southern Germany – A Case Study, Mon. Weather Rev., 121, 3282–3290, https://doi.org/10.1175/1520-0493(1993)121<3282:AOOCWO>2.0.CO;2, 1993.
Heisenberg, W.: Zur statistischen Theorie der Turbulenz, Z. Phys., 124, 628–657, https://doi.org/10.1007/BF01668899, 1948.
Hines, C. O.: Generation of Turbulence by Atmospheric Gravity Waves, J. Atmos. Sci., 45, 1269–1278, https://doi.org/10.1175/1520-0469(1988)045<1269:GOTBAG>2.0.CO;2, 1988.
Hines, C. O.: The Saturation of Gravity Waves in the Middle Atmosphere, Part I: Critique of Linear-Instability Theory, J. Atmos. Sci., 48, 1348–1360, https://doi.org/10.1175/1520-0469(1991)048<1348:TSOGWI>2.0.CO;2, 1991.
Hocking, W. K.: A review of Mesosphere–Stratosphere–Troposphere (MST) radar developments and studies, circa 1997–2008, J. Atmos. Sol.-Terr. Phy., 73, 848–882, https://doi.org/10.1016/j.jastp.2010.12.009, 2011.
Hodges, R. R.: Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res., 72, 3455–3458, https://doi.org/10.1029/JZ072i013p03455, 1967.
Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class microphysics scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
Howard, L. N.: Note on a paper of John W. Miles, J. Fluid Mech., 10, 509–512, https://doi.org/10.1017/S0022112061000317, 1961.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization, J. Atmos. Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990.
Klemp, J. B., Dudhia, J., and Hassiotis, A. D.: An Upper Gravity-Wave Absorbing Layer for NWP Applications, Mon. Weather Rev., 136, 3987–4004, https://doi.org/10.1175/2008MWR2596.1, 2008.
Lilly, D. K., Waco, D. E., and Adelfang, S. I.: Stratospheric Mixing Estimated from High-Altitude Turbulence Measurements, J. Appl. Meteor., 13, 488–493, https://doi.org/10.1175/1520-0450(1974)013<0488:SMEFHA>2.0.CO;2, 1974.
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707, 1981.
Lübken, F.-J. and Hillert, W.: Measurements of turbulent energy dissipation rates applying spectral models, in: Coupling Processes in the Lower and Middle Atmosphere, NATO Advanced Research Workshop, Kluwer Press, Loen, Norway, 345–351, 1992.
Luce, H., Fukao, S., Dalaudier, F., and Crochet, M.: Strong Mixing Events Observed near the Tropopause with the MU Radar and High-Resolution Balloon Techniques, J. Atmos. Sci., 59, 2885–2896, https://doi.org/10.1175/1520-0469(2002)059<2885:SMEONT>2.0.CO;2, 2002.
Miles, J. W.: On the stability of heterogeneous shear flows, J. Fluid Mech., 10, 496–508, https://doi.org/10.1017/S0022112061000305, 1961.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer, J. Meteor. Soc. Japan, 87, 895–912, http://ci.nii.ac.jp/naid/110007465760/en/, 2009.
Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, International Geophysics Series, Academic Press, San Diego, Vol. 85, 2002.
Osman, M., Hocking, W., and Tarasick, D.: Parameterization of large-scale turbulent diffusion in the presence of both well-mixed and weakly mixed patchy layers, J. Atmos. Sol.-Terr. Phy., 143–144, 14–36, https://doi.org/10.1016/j.jastp.2016.02.025, 2016.
Paoli, R., Thouron, O., Escobar, J., Picot, J., and Cariolle, D.: High-resolution large-eddy simulations of stably stratified flows: application to subkilometer-scale turbulence in the upper troposphere–lower stratosphere, Atmos. Chem. Phys., 14, 5037–5055, https://doi.org/10.5194/acp-14-5037-2014, 2014.
Pavelin, E., Whiteway, J. A., and Vaughan, G.: Observation of gravity wave generation and breaking in the lowermost stratosphere, J. Geophys. Res., 106, 5173–5179, https://doi.org/10.1029/2000JD900480, 2001.
Pope, S. B.: Turbulent Flows, Cambridge University Press, Cambridge, 2000.
Schneider, A., Gerding, M., and Lübken, F.-J.: Comparing turbulent parameters obtained from LITOS and radiosonde measurements, Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, 2015.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 3, NCAR technical note, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA, http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf, 2008.
Tatarskii, V. I.: The effects of the turbulent atmosphere on wave propagation, Israel Program for Scientific Translations, Jerusalem, translated from Russian, 1971.
Theuerkauf, A., Gerding, M., and Lübken, F.-J.: LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere, Atmos. Meas. Tech., 4, 55–66, https://doi.org/10.5194/amt-4-55-2011, 2011.
Wilson, R.: Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: a review, Ann. Geophys., 22, 3869–3887, https://doi.org/10.5194/angeo-22-3869-2004, 2004.
Wilson, R., Luce, H., Hashiguchi, H., Nishi, N., and Yabuki, Y.: Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data, J. Atmos. Sol.-Terr. Phy., 118, 78–89, https://doi.org/10.1016/j.jastp.2014.01.005, 2014.
Worthington, R. M.: Tropopausal turbulence caused by the breaking of mountain waves, J. Atmos. Sol.-Terr. Phys., 60, 1543–1547, https://doi.org/10.1016/S1364-6826(98)00105-9, 1998.
Yamanaka, M. D., Tanaka, H., Hirosawa, H., Matsuzaka, Y., Yamagami, T., and Nishimura, J.: Measurement of Stratospheric Turbulence by Balloon-Borne “Glow-Discharge” Anemometer, J. Meteor. Soc. Japan Ser. II, 63, 483–489, https://www.jstage.jst.go.jp/article/jmsj1965/63/3/63_3_483/_article, 1985.
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Wave breaking is studied with a combination of high-resolution turbulence observations with the...
Altmetrics
Final-revised paper
Preprint