Articles | Volume 17, issue 22
https://doi.org/10.5194/acp-17-14119-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-14119-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto
Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Samar G. Moussa
Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Yushan Su
Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, M9P 3V6, Canada
Tony Munoz
Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, M9P 3V6, Canada
Craig Stroud
Air Quality Modelling and Integration Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Junhua Zhang
Air Quality Modelling and Integration Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Michael D. Moran
Air Quality Modelling and Integration Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
Related authors
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-180, https://doi.org/10.5194/amt-2024-180, 2024
Preprint under review for AMT
Short summary
Short summary
Nitrogen dioxide (NO2) is a pollutant with a short lifetime and large variability, but there are limited measurements of its distribution in the lower atmosphere. We present a new dataset of three years of NO2 vertical profiles in Toronto, Canada, and evaluate it using NO2 from satellite and surface monitoring networks and simulations by an air quality forecast model. We quantify and explain the differences among the datasets to provide information that can be used to understand NO2 variability.
Taylor D. Edwards, Yee Ka Wong, Cheol-Jeon Heong, Jonathan M. Wang, Yushan Su, and Greg J. Evans
EGUsphere, https://doi.org/10.5194/egusphere-2024-2488, https://doi.org/10.5194/egusphere-2024-2488, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of air pollution that were emitted by a nearby pollutor from background pollution that was already in the air. The results show that machine learning and other statistical algorithms produced accurate estimates of this background pollution. These findings help scientists and regulators understand where pollution comes from, and to improve measurements of pollution from sources like traffic.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Shuzhan Ren and Craig A. Stroud
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-37, https://doi.org/10.5194/acp-2023-37, 2023
Revised manuscript not accepted
Short summary
Short summary
The atmospheric boundary layer height is involved in the turbulence parameterization scheme employed in numerical models. It affects the concentration of chemical species by changing the vertical diffusivity and the volume of tracer in the atmosphere. There exists large uncertainties in the boundary layer height. The impacts of the uncertainties on the model simulation of concentration of chemical species are examined. The results show different impacts in different parameterization scheme.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Xiao Lu, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana, and Arlyn Andrews
Atmos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, https://doi.org/10.5194/acp-22-395-2022, 2022
Short summary
Short summary
We evaluate methane emissions and trends for 2010–2017 in the gridded national emission inventories for the United States, Canada, and Mexico by inversion of in situ and satellite methane observations. We find that anthropogenic methane emissions for all three countries are underestimated in the national inventories, largely driven by oil emissions. Anthropogenic methane emissions in the US peak in 2014, in contrast to the report of a steadily decreasing trend over 2010–2017 from the US EPA.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021, https://doi.org/10.5194/acp-21-12291-2021, 2021
Short summary
Short summary
Vehicle pollutant emissions occur in an environment where upward transport can be enhanced due to the turbulence created by the vehicles as they move through the atmosphere. An approach for including these turbulence effects in regional air pollution forecast models has been derived from theoretical, observation, and higher-resolution modeling. The enhanced mixing, which occurs in the immediate vicinity of roadways, changes pollutant concentrations on the regional to continental scale.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys., 21, 10557–10587, https://doi.org/10.5194/acp-21-10557-2021, https://doi.org/10.5194/acp-21-10557-2021, 2021
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with and without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts and changed cloud behaviour and forest-fire pollutant amount and height.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Short summary
Increased interest in monitoring air quality near roadways, combined with traffic's often unclear contribution to elevated concentrations, has created a need for better interpretation of these data. Using 2 years of measurements collected during a near-road monitoring project in Canada, this paper contrasts three methods for estimating the fraction of roadside pollution resulting from on-road traffic. Robustness of these methods was compared with tandem measurements at background locations.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Jack Chen, Kerry Anderson, Radenko Pavlovic, Michael D. Moran, Peter Englefield, Dan K. Thompson, Rodrigo Munoz-Alpizar, and Hugo Landry
Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, https://doi.org/10.5194/gmd-12-3283-2019, 2019
Short summary
Short summary
Emissions from wildland fires can cause significant impacts on regional air quality. We introduce the Canadian Forest Fire Emissions Prediction System and demonstrate its integration with Canada's FireWork operational air quality forecast system with biomass burning emissions. The coupled system shows improved skill in providing short-term, 48 h forecasts of surface air pollutant concentrations (PM2.5, O3, and NO2) from the impacts of regional wildland fires across the North American domain.
Xiaohong Xu, Tianchu Zhang, and Yushan Su
Atmos. Chem. Phys., 19, 7335–7345, https://doi.org/10.5194/acp-19-7335-2019, https://doi.org/10.5194/acp-19-7335-2019, 2019
Short summary
Short summary
This study investigates temporal variations and long-term trends in O3 (ozone) and its precursors in Windsor, Canada. During the 1996–2015 period, NOx (nitric oxides) and non-methane hydrocarbon concentrations decreased by 58 % and 61 %, respectively. Annual O3 concentrations increased by 33 % due to (1) decreased O3 titration owing to declining NOx concentrations, (2) reduced local photochemical production of O3 because of dwindling precursor emissions, and (3) increased background O3 level.
Matthew Russell, Amir Hakami, Paul A. Makar, Ayodeji Akingunola, Junhua Zhang, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 19, 4393–4417, https://doi.org/10.5194/acp-19-4393-2019, https://doi.org/10.5194/acp-19-4393-2019, 2019
Short summary
Short summary
High-resolution air-quality forecast modeling results are compared for two different grid spacings for the Environment and Climate Change Canada GEM-MACH model. While the higher-resolution simulations have worse formal error scores, we show that the higher-resolution model nevertheless has the ability to better resolve plume maxima and has better performance when the evaluation occurs using new scoring metrics which operate on an equal-representative-area basis.
Sumi N. Wren, John Liggio, Yuemei Han, Katherine Hayden, Gang Lu, Cris M. Mihele, Richard L. Mittermeier, Craig Stroud, Jeremy J. B. Wentzell, and Jeffrey R. Brook
Atmos. Chem. Phys., 18, 16979–17001, https://doi.org/10.5194/acp-18-16979-2018, https://doi.org/10.5194/acp-18-16979-2018, 2018
Short summary
Short summary
We made measurements from a mobile laboratory across a large urban area and determined fleet-average vehicle emission factors (EFs) for a suite of traffic-related air pollutants. We present the first real-world EFs for isocyanic acid (HNCO) and hydrogen cyanide (HCN) and insight into their on-road variability. We find that vehicles may represent an important source of these air toxics at an urban scale. This work has implications for understanding population exposure to these species.
Wanmin Gong, Stephen R. Beagley, Sophie Cousineau, Mourad Sassi, Rodrigo Munoz-Alpizar, Sylvain Ménard, Jacinthe Racine, Junhua Zhang, Jack Chen, Heather Morrison, Sangeeta Sharma, Lin Huang, Pascal Bellavance, Jim Ly, Paul Izdebski, Lynn Lyons, and Richard Holt
Atmos. Chem. Phys., 18, 16653–16687, https://doi.org/10.5194/acp-18-16653-2018, https://doi.org/10.5194/acp-18-16653-2018, 2018
Short summary
Short summary
The navigability of the Arctic Ocean is increasing with the warming in recent years. Using model simulations at a much finer resolution than previous pan-Arctic studies, the impact of marine shipping emissions on air pollution in the Canadian Arctic is assessed for present (2010) and projected levels in 2030. The study found that shipping emissions have a local-to-regional impact in the Arctic at the current level; the impact will increase significantly in a projected business-as-usual scenario.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Craig A. Stroud, Paul A. Makar, Junhua Zhang, Michael D. Moran, Ayodeji Akingunola, Shao-Meng Li, Amy Leithead, Katherine Hayden, and May Siu
Atmos. Chem. Phys., 18, 13531–13545, https://doi.org/10.5194/acp-18-13531-2018, https://doi.org/10.5194/acp-18-13531-2018, 2018
Short summary
Short summary
It is shown that using measurement-derived volatile organic compound (VOC) and organic aerosol (OA) emissions in the GEM-MACH air quality model provides better overall predictions compared to using bottom-up emission inventories. This work was done to better constrain the fugitive organic emissions from the Athabasca oil sands region, which are a challenge to estimate with bottom-up emission approaches. We use observations from the 2013 Joint Oil Sands Monitoring study.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Ayodeji Akingunola, Wanmin Gong, Sylvie Gravel, Michael D. Moran, Craig Stroud, Junhua Zhang, and Qiong Zheng
Geosci. Model Dev., 11, 2609–2632, https://doi.org/10.5194/gmd-11-2609-2018, https://doi.org/10.5194/gmd-11-2609-2018, 2018
Short summary
Short summary
We present a new, high-resolution, North American model of PAHs and benzene, which are toxic air pollutants that cause a variety of negative health impacts. Our simulation in a densely populated region of Canada and the U.S. shows that the model is improved over a previous model. The new model is particularly refined regarding the gas–particle partitioning of these pollutants, which has impacts on deposition and inhalation. The simulation was sensitive to the selection of vehicle emissions.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, https://doi.org/10.5194/acp-18-7361-2018, 2018
Short summary
Short summary
Methane emissions from major oil sands facilities in the Athabasca Oil Sands Region (AOSR) of Alberta were measured in the summer of 2013 using two related aircraft mass-balance approaches. Tailings ponds and fugitive emissions of methane from open pit mines were found to be the major sources of methane in the region. Total methane emissions in the AOSR were measured to be ~ 20 tonnes of CH4 per hour, which is 48 % higher than the Canadian Greenhouse Gas Reporting Program Emissions Inventory.
Stephanie C. Pugliese, Jennifer G. Murphy, Felix R. Vogel, Michael D. Moran, Junhua Zhang, Qiong Zheng, Craig A. Stroud, Shuzhan Ren, Douglas Worthy, and Gregoire Broquet
Atmos. Chem. Phys., 18, 3387–3401, https://doi.org/10.5194/acp-18-3387-2018, https://doi.org/10.5194/acp-18-3387-2018, 2018
Short summary
Short summary
We developed the Southern Ontario CO2 Emissions (SOCE) inventory, which identifies the spatial and temporal distribution (2.5 km and hourly, respectively) of CO2 emissions from seven source sectors. When the SOCE inventory was used with a chemistry transport model, we found strong agreement between modelled and measured mixing ratios. We were able to quantify that natural gas combustion contributes > 80 % of CO2 emissions at nighttime while on-road emissions contribute > 70 % during the day.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Roya Ghahreman, Ann-Lise Norman, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Julia Burkart, Ofelia Rempillo, Heiko Bozem, Daniel Kunkel, Jennie L. Thomas, Amir A. Aliabadi, Gregory R. Wentworth, Maurice Levasseur, Ralf M. Staebler, Sangeeta Sharma, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 8757–8770, https://doi.org/10.5194/acp-17-8757-2017, https://doi.org/10.5194/acp-17-8757-2017, 2017
Short summary
Short summary
We present spring and summertime vertical profile measurements of Arctic dimethyl sulfide (DMS), together with model simulations to consider what these profiles indicate about DMS sources and lifetimes in the Arctic. Our results highlight the role of local open water as the source of DMS(g) during July 2014 and the influence of long-range transport of DMS(g) from further afield in the Arctic during April 2015.
John Liggio, Samar G. Moussa, Jeremy Wentzell, Andrea Darlington, Peter Liu, Amy Leithead, Katherine Hayden, Jason O'Brien, Richard L. Mittermeier, Ralf Staebler, Mengistu Wolde, and Shao-Meng Li
Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, https://doi.org/10.5194/acp-17-8411-2017, 2017
Short summary
Short summary
The emission and formation of gaseous organic acids from the oil sands industry in Canada is explored through aircraft measurements directly over and downwind wind of industrial facilities. Results demonstrated that the formation of organic acids through atmospheric chemical reactions dominated over the direct emissions from mining activities but could not be explicitly modeled. The results highlight the need for improved understanding of photochemical mechanisms leading to these species.
Yuemei Han, Craig A. Stroud, John Liggio, and Shao-Meng Li
Atmos. Chem. Phys., 16, 13929–13944, https://doi.org/10.5194/acp-16-13929-2016, https://doi.org/10.5194/acp-16-13929-2016, 2016
Short summary
Short summary
This study investigates the acidity effect on the yield and chemical composition of α-pinene secondary organic aerosol based on a series of laboratory experiments performed using a photochemical reaction chamber under high- and low-NOx conditions. We have found that the acidity effect largely depends on NOx level and the inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7899–7916, https://doi.org/10.5194/acp-16-7899-2016, https://doi.org/10.5194/acp-16-7899-2016, 2016
Short summary
Short summary
For the first time, ship emissions of an ice-breaker, the Amundsen, is characterized while breaking ice in the Canadian Arctic using the plume intercepts by the Polar 6 aircraft. The study is novel, estimating lower plume expansion rates over the stable Arctic marine boundary layer and different emissions factors for oxides of nitrogen, black carbon, and carbon monoxide, compared to plume intercept studies in mid latitudes. These results can inform policy making and emission inventory datasets.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
Y. Liu, J. Liggio, R. Staebler, and S.-M. Li
Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, https://doi.org/10.5194/acp-15-13569-2015, 2015
Short summary
Short summary
This work for the first time demonstrated that organonitrogen compounds (NOC) can be formed efficiently via the uptake of ammonia by newly formed secondary organic aerosol using a smog chamber equipped with a HR-ToF-AMS. Based on the measured kinetics, this study suggests that light absorption by NOC in atmospheric particles may be important in regions where the BC contribution is minimal and NOC from ammonia should be considered with respect to overall deposition of nitrogen to ecosystems.
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Short summary
Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made during a summer intensive field campaign in 2013. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples. Uncertainty of the emission rates estimated with TERRA is estimated as less than 30%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
A. A. Aliabadi, R. M. Staebler, and S. Sharma
Atmos. Chem. Phys., 15, 2651–2673, https://doi.org/10.5194/acp-15-2651-2015, https://doi.org/10.5194/acp-15-2651-2015, 2015
Short summary
Short summary
In an effort to characterize the effect of shipping on Arctic air quality during the 2013 shipping season, air-quality monitoring stations were installed in Cape Dorset and Resolute, Nunavut, Canada, to measure NOx, SO2, PM2.5, O3, and BC. Results indicate that on the order of 5--25% of local cumulative exposure to these pollutants is due to ship emissions. This approach is complementary to pollution measurements at the source and has wider applications for the impact of traffic on air quality.
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
L. Huang, S. L. Gong, M. Gordon, J. Liggio, R. Staebler, C. A. Stroud, G. Lu, C. Mihele, J. R. Brook, and C. Q. Jia
Atmos. Chem. Phys., 14, 12631–12648, https://doi.org/10.5194/acp-14-12631-2014, https://doi.org/10.5194/acp-14-12631-2014, 2014
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
P. A. Makar, R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-7-1001-2014, https://doi.org/10.5194/gmd-7-1001-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
K. Toyota, J. C. McConnell, R. M. Staebler, and A. P. Dastoor
Atmos. Chem. Phys., 14, 4101–4133, https://doi.org/10.5194/acp-14-4101-2014, https://doi.org/10.5194/acp-14-4101-2014, 2014
E. Galarneau, P. A. Makar, Q. Zheng, J. Narayan, J. Zhang, M. D. Moran, M. A. Bari, S. Pathela, A. Chen, and R. Chlumsky
Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, https://doi.org/10.5194/acp-14-4065-2014, 2014
N. A. Saliba, S. G. Moussa, and G. El Tayyar
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-4827-2014, https://doi.org/10.5194/acpd-14-4827-2014, 2014
Revised manuscript not accepted
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
J. A. Seabrook, J. A. Whiteway, L. H. Gray, R. Staebler, and A. Herber
Atmos. Chem. Phys., 13, 6023–6029, https://doi.org/10.5194/acp-13-6023-2013, https://doi.org/10.5194/acp-13-6023-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1204, https://doi.org/10.5194/egusphere-2024-1204, 2024
Short summary
Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Cited articles
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.
Akagi, S. K., Burling, I. R., Mendoza, A., Johnson, T. J., Cameron, M., Griffith, D. W. T., Paton-Walsh, C., Weise, D. R., Reardon, J., and Yokelson, R. J.: Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system, Atmos. Chem. Phys., 14, 199–215, https://doi.org/10.5194/acp-14-199-2014, 2014.
Andreas, E. L.: Uncertainty in a path-averaged measurement of the friction velocity u∗, J. Appl. Meteorol., 31, 1312–1321, 1992.
Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., Blake, D. R., and Sherwood Rowland, F.: Measurements of nonmethane hydrocarbons in 28 United States cities, Atmos. Environ., 42, 170–182, https://doi.org/10.1016/j.atmosenv.2007.09.007, 2008.
Baldauf, R., Thoma, E., Hays, M., Shores, R., Kinsey, J., Gullett, B., Kimbrough, S., Isakov, V., Long, T., Snow, R., Khlystov, A., Weinstein, J., Chen, F.-L., Seila, R., Olson, D., Gilmour, I., Cho, S.-H., Watkins, N., Rowley, P., and Bang, J.: Traffic and meteorological impacts on near-road air quality: Summary of methods and trends from the Raleigh near-road study, J. Air Waste Manage., 58, 865–878, https://doi.org/10.3155/1047-3289.58.7.865, 2008.
Banerjee, K. K., Bishayee, A., and Marimuthu, P.: Evaluation of cyanide exposure and its effect on thyroid function of workers in a cable industry, J. Occup. Environ. Med., 39, 258–260, https://doi.org/10.1097/00043764-199703000-00016, 1997.
Baum, M. M., Moss, J. A., Pastel, S. H., and Poskrebyshev, G. A.: Hydrogen cyanide exhaust emissions from in-use motor vehicles, Environ. Sci. Technol., 41, 857–862, https://doi.org/10.1021/es061402v, 2007.
Beckerman, B., Jerrett, M., Brook, J. R., Verma, D. K., Arain, M. A., and Finkelstein, M. M.: Correlation of nitrogen dioxide with other traffic pollutants near a major expressway, Atmos. Environ., 42, 275–290, https://doi.org/10.1016/j.atmosenv.2007.09.042, 2008.
Beckerman, B. S., Jerrett, M., Finkelstein, M., Kanaroglou, P., Brook, J. R., Arain, M. A., Sears, M. R., Stieb, D., Balmes, J., and Chapman, K.: The association between chronic exposure to traffic-related air pollution and ischemic heart disease, J. Toxicol. Env. Heal. A, 75, 402–411, https://doi.org/10.1080/15287394.2012.670899, 2012.
Behera, S. N. and Sharma, M.: Transformation of atmospheric ammonia and acid gases into components of PM2.5: An environmental chamber study, Environ. Sci. Pollut. R., 19, 1187–1197, https://doi.org/10.1007/s11356-011-0635-9, 2012.
Bishop, G. A., McLaren, S. E., Stedman, D. H., Pierson, W. R., Zweidinger, R. B. and Ray, W. D.: Method comparisons of vehicle emissions measurements in the Fort McHenry and Tuscarora Mountain Tunnels, Atmos. Environ., 30, 2307–2316, https://doi.org/10.1016/1352-2310(95)00005-4, 1996.
Blanc, P., Hogan, M., Mallin, K., Hryhorczuk, D., Hessl, S., and Bernard, B.: Cyanide intoxication among silver-reclaiming workers, J. Amer. Med. Assoc., 253, 367–371, https://doi.org/10.1001/jama.253.3.367, 1985.
Brachtl, M. V., Durant, J. L., Perez, C. P., Oviedo, J., Sempertegui, F., Naumova, E. N., and Griffiths, J. K.: Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador, Environ. Pollut., 157, 528–536, https://doi.org/10.1016/j.envpol.2008.09.041, 2009.
Bradley, K. S., Brooks, K. B., Hubbard, L. K., Popp, P. J., and Stedman, D. H.: Motor vehicle fleet emissions by OP-FTIR, Environ. Sci. Technol., 34, 897–899, https://doi.org/10.1021/es9909226, 2000.
Bradow, R. L. and Stump, F. D.: Unregulated emissions from three-way catalyst cars, International Automotive Engineering Congress and Exposition, 28 February–4 March 1977, Detroit, MI, USA, SAE Tech. Pap., 770369, https://doi.org/10.4271/770369, 1977.
Brook, R. D.: Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults, Circulation, 105, 1534–1536, https://doi.org/10.1161/01.cir.0000013838.94747.64, 2002.
Brugge, D., Durant, J. L., and Rioux, C.: Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks, Environ. Health, 6, https://doi.org/10.1186/1476-069X-6-23, 2007.
Buckeridge, D. L., Glazier, R., Harvey, B. J., Escobar, M., Amrhein, C., and Frank, J.: Effect of motor vehicle emissions on respiratory health in an urban area, Environ. Health Persp., 110, 293–300, 2002.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States, Atmos. Chem. Phys., 10, 11115–11130, https://doi.org/10.5194/acp-10-11115-2010, 2010.
Cadle, S. H., Nebel, G. J., and Williams, R. L.: Measurements of unregulated emissions from general motors' light-duty vehicles, International Automotive Engineering Congress and Exposition, Detroit, MI, USA, 26 February–2 March 1979, SAE Tech. Pap., 790694, https://doi.org/10.4271/790694, 1979.
Carslaw, D. C.: The openair manual – open-source tools for analysing air pollution data. Manual for version 1.1–4, King's College London, available at: http://www.openair-project.org (last access: 23 November 2017), 2015.
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality data analysis, Environ. Modell. Softw., 27–28, 52–61, https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Chaney, L. W.: The remote measurement of traffic generated carbon monoxide, J. Air Pollut. Control Assoc., 33, 220–222, https://doi.org/10.1080/00022470.1983.10465568, 1983.
Chen, H., Goldberg, M. S., Burnett, R. T., Jerrett, M., Wheeler, A. J., and Villeneuve, P. J.: Long-term exposure to traffic-related air pollution and cardiovascular mortality, Epidemiology, 24, 35–43, https://doi.org/10.1097/EDE.0b013e318276c005, 2013.
Chen, H., Kwong, J. C., Copes, R., Tu, K., Villeneuve, P. J., van Donkelaar, A., Hystad, P., Martin, R. V., Murray, B. J., Jessiman, B., Wilton, A. S., Kopp, A., and Burnett, R. T.: Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: A population-based cohort study, Lancet, 389, 718–726, https://doi.org/10.1016/S0140-6736(16)32399-6, 2017.
Coates, J., Mar, K. A., Ojha, N., and Butler, T. M.: The influence of temperature on ozone production under varying NOx conditions – a modelling study, Atmos. Chem. Phys., 16, 11601–11615, https://doi.org/10.5194/acp-16-11601-2016, 2016.
Coleman, M. D., Render, S., Dimopoulos, C., Lilley, A., Robinson, R. A., Smith, T. O. M., Camm, R., and Standring, R.: Testing equivalency of an alternative method based on portable FTIR to the European Standard Reference Methods for monitoring emissions to air of CO, NOx, SO2, HCl, and H2O, J. Air Waste Manage., 65, 1011–1019, https://doi.org/10.1080/10962247.2015.1058868, 2015.
Côté, J., Desmarais, J. G., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM) model. Part II: Results, Mon. Weather Rev., 126, 1397–1418, 1998a.
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Weather Rev., 126, 1373–1395, 1998b.
Durant, J. L., Ash, C. A., Wood, E. C., Herndon, S. C., Jayne, J. T., Knighton, W. B., Canagaratna, M. R., Trull, J. B., Brugge, D., Zamore, W., and Kolb, C. E.: Short-term variation in near-highway air pollutant gradients on a winter morning, Atmos. Chem. Phys., 10, 8341–8352, https://doi.org/10.5194/acp-10-8341-2010, 2010.
Durbin, T. D., Wilson, R. D., Norbeck, J. M., Miller, J. W., Huai, T., and Rhee, S. H.: Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles, Atmos. Environ., 36, 1475–1482, https://doi.org/10.1016/S1352-2310(01)00583-0, 2002.
El Ghawabi, S. H., Gaafar, M. A., El-Saharti, A. A., Ahmed, S. H., Malash, K. K., and Fares, R.: Chronic cyanide exposure: a clinical, radioisotope and laboratory study, Brit. J. Ind. Med., 32, 215–219, 1975.
Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions, J. Appl. Meteorol., 34, 1320–1332, 1995.
Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R. R.: Deducing ground-to-air emissions from observed trace gas concentrations: A field trial, J. Appl. Meteorol., 43, 487–502, 2004.
Fraser, M. P. and Cass, G. R.: Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control, Environ. Sci. Technol., 32, 1053–1057, https://doi.org/10.1021/es970382h, 1998.
Frey, H. C., Unal, A., Rouphail, N. M., and Colyar, J. D.: On-road measurement of vehicle tailpipe emissions using a portable instrument, J. Air Waste Manage., 53, 992–1002, https://doi.org/10.1080/10473289.2003.10466245, 2003.
Fujita, E. M., Stockwell, W. R., Campbell, D. E., Keislar, R. E., and Lawson, D. R.: Evolution of the magnitude and spatial extent of the weekend ozone effect in California's South Coast Air Basin, 1981–2000, J. Air Waste Manage., 53, 802–815, https://doi.org/10.1080/10473289.2003.10466225, 2003.
Galarneau, E., Wang, D., Dabek-Zlotorzynska, E., Siu, M., Celo, V., Tardif, M., Harnish, D., and Jiang, Y.: Air toxics in Canada measured by the National Air Pollution Surveillance (NAPS) program and their relation to ambient air quality guidelines, J. Air Waste Manage., 66, 184–200, https://doi.org/10.1080/10962247.2015.1096863, 2016.
Gentner, D. R., Harley, R. A., Miller, A. M., and Goldstein, A. H.: Diurnal and seasonal variability of gasoline-related volatile organic compound emissions in Riverside, California, Environ. Sci. Technol., 43, 4247–4252, https://doi.org/10.1021/es9006228, 2009.
Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions, P. Natl. Acad. Sci. USA, 109, 18318–18323, https://doi.org/10.1073/pnas.1212272109, 2012.
Gentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R., Wood, E. C., Herndon, S. C., Goldstein, A. H., and Harley, R. A.: Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production, Environ. Sci. Technol., 47, 11837–11848, https://doi.org/10.1021/es401470e, 2013.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., De Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., and Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol., 51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017.
Gong, W., Makar, P. A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K. L., Macdonald, A. M., and Leaitch, W. R.: Modelling aerosol-cloud-meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH), Atmos. Environ., 115, 695–715, https://doi.org/10.1016/j.atmosenv.2015.05.062, 2015.
Goode, J. G., Yokelson, R. J., Susott, R. A., and Ward, D. E.: Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy: Fires in grass and surface fuels, J. Geophys. Res.-Atmos., 104, 21237–21245, 1999.
Griffith, D. W. T.: Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra, Appl. Spectrosc., 50, 59–70, 1996.
Griffith, D. W. T. and Galle, B.: Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux-gradient technique, Atmos. Environ., 34, 1087–1098, https://doi.org/10.1016/S1352-2310(99)00368-4, 2000.
Griffith, D. W. T. and Jamie, I. M.: FTIR Spectrometry in atmospheric and trace gas analysis in Encyclopedia of Analytical Chemistry – Applications, Theory and Instrumentation, John Wiley and Sons, Ltd, Chichester, UK, 2000.
Griffith, D. W. T., Mankin, W. G., Coffey, M. T., Ward, D. E., and RieBau, A.: FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3, and N2O, Global biomass burning: atmospheric, alimate, and biospheric implications, MIT Press, Cambridge, MA, USA, 1991.
Grosjean, D., Grosjean, E., and Gertler, A. W.: On-road emissions of carbonyls from light-duty and heavy-duty vehicles, Environ. Sci. Technol., 35, 45–53, https://doi.org/10.1021/es001326a, 2001.
Grutter, M., Flores, E., Basaldud, R., and Ruiz-Suárez, L.G.: Open-path FTIR spectroscopic studies of the trace gases over Mexico City, Atmos. Ocean. Opt., 16, 232–236, 2003.
Grutter, M., Flores, E., Andraca-Ayala, G., and Báez, A.: Formaldehyde levels in downtown Mexico City during 2003, Atmos. Environ., 39, 1027–1034, https://doi.org/10.1016/j.atmosenv.2004.10.031, 2005.
Harley, R. A., Marr, L. C., Lehner, J. K., and Giddings, S. N.: Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition, Environ. Sci. Technol., 39, 5356–5362, https://doi.org/10.1021/es048172+, 2005.
Hassler, B., McDonald, B. C., Frost, G. J., Borbon, A., Carslaw, D. C., Civerolo, K., Granier, C., Monks, P. S., Monks, S., Parrish, D. D., Pollack, I. B., Rosenlof, K. H., Ryerson, T. B., von Schneidemesser, E., and Trainer, M.: Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories, Geophys. Res. Lett., 43, 9920–9930, https://doi.org/10.1002/2016GL069894, 2016.
Haugen, M. J. and Bishop, G. A.: Repeat fuel specific emission measurements on two California heavy-duty truck fleets, Environ. Sci. Technol., 51, 4100–4107, https://doi.org/10.1021/acs.est.6b06172, 2017.
Health Effects Institute (HEI): Traffic-related air-pollution: a critical review of the literature on emissions, exposure and health effects, Special Report 17, 386 pp., available at: https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health (last access: 7 November 2017), 2010.
Hong, D. W., Heo, G. S., Han, J. S., and Cho, S. Y.: Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area, Atmos. Environ., 38, 5567–5576, https://doi.org/10.1016/j.atmosenv.2004.06.033, 2004.
Horrocks, L., Burton, M., Francis, P., and Oppenheimer, C.: Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua, 1998-,1999, Geophys. Res. Lett., 26, 3497–3500, 1999.
Hu, S., Fruin, S., Kozawa, K., Mara, S., Paulson, S. E., and Winer, A. M.: A wide area of air pollutant impact downwind of a freeway during pre-sunrise hours, Atmos. Environ., 43, 2541–2549, https://doi.org/10.1016/j.atmosenv.2009.02.033, 2009.
Huai, T., Durbin, T. D., Miller, J. W., Pisano, J. T., Sauer, C. G., Rhee, S. H., and Norbeck, J. M.: Investigation of NH3 emissions from new technology vehicles as a function of vehicle operating conditions, Environ. Sci. Technol., 37, 4841–4847, https://doi.org/10.1021/es030403+, 2003.
Janhäll, S., Olofson, K. F. G., Andersson, P. U., Pettersson, J. B. C., and Hallquist, M.: Evolution of the urban aerosol during winter temperature inversion episodes, Atmos. Environ., 40, 5355–5366, https://doi.org/10.1016/j.atmosenv.2006.04.051, 2006.
Jerrett, M., Finkelstein, M. M., Brook, J. R., Arain, M. A., Kanaroglou, P., Stieb, D. M., Gilbert, N. L., Verma, D., Finkelstein, N., Chapman, K. R., and Sears, M. R.: A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada, Environ. Health Persp., 117, 772–777, https://doi.org/10.1289/ehp.11533, 2009.
Jerrett, M., McConnell, R., Wolch, J., Chang, R., Lam, C., Dunton, G., Gilliland, F., Lurmann, F., Islam, T., and Berhane, K.: Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis, Environ. Health, 13, https://doi.org/10.1186/1476-069X-13-49, 2014.
Johnson, T. J., Profeta, L. T. M., Sams, R. L., Griffith, D. W. T., and Yokelson, R. L.: An infrared spectral database for detection of gases emitted by biomass burning, Vib. Spectrosc., 53, 97–102, https://doi.org/10.1016/j.vibspec.2010.02.010, 2010.
Karlsson, H. L.: Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles, Sci. Total Environ., 334–335, 125–132, https://doi.org/10.1016/j.scitotenv.2004.04.061, 2004.
Karner, A. A., Eisinger, D. S., and Niemeier, D. A.: Near-roadway air quality: Synthesizing the findings from real-world data, Environ. Sci. Technol., 44, 5334–5344, https://doi.org/10.1021/es100008x, 2010.
Kean, A. J., Harley, R. A., Littlejohn, D., and Kendall, G. R.: On-road measurement of ammonia and other motor vehicle exhaust emissions, Environ. Sci. Technol., 34, 3535–3539, https://doi.org/10.1021/es991451q, 2000.
Keirns, M. H. and Holt, E. L.: Hydrogen cyanide emissions from three-way catalyst prototypes under malfunctioning conditions, International Automotive Engineering Congress and Exposition, Detroit, MI, USA, 27 February–3 March 1978, SAE Tech. Pap., 780201, https://doi.org/10.4271/780201, 1978.
Khalifa, A., Marchetti, M., Bouilloud, L., Martin, E., Bues, M., and Chancibaut, K.: Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model, Geosci. Model Dev., 9, 547–565, https://doi.org/10.5194/gmd-9-547-2016, 2016.
Kim, S. W., McDonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Frost, G. J., Harley, R. A., Holloway, J. S., Lee, H. J., McKeen, S. A., Neuman, J. A., Nowak, J. B., Oetjen, H., Ortega, I., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Scarino, A. J., Senff, C. J., Thalman, R., Trainer, M., Volkamer, R., Wagner, N., Washenfelder, R. A., Waxman, E., and Young, C.J.: Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign, J. Geophys. Res.-Atmos., 121, 1340–1360, https://doi.org/10.1002/2015JD024292, 2016.
Lee, P. K. H., Brook, J. R., Dabek-Zlotorzynska, E., and Mabury, S. A.: Identification of the major sources contributing to PM2.5 observed in Toronto, Environ. Sci. Technol., 37, 4831–4840, https://doi.org/10.1021/es026473i, 2003.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Leroyer, S., Bélair, S., Spacek, L., Filion, A. B., Winter, B., and Vallée, M.: Modeling the urban and lake-induced boundary-layers for the Greater Toronto Area, 22nd American Meteorological Society Symposium on Boundary Layers and Turbulence, 19–24 June 2016, Salt Lake City, USA, 13A.8, 2016.
Lin, S., Munsie, J. P., Hwang, S. A., Fitzgerald, E., and Cayo, M. R.: Childhood asthma hospitalization and residential exposure to state route traffic, Environ. Res., 88, 73–81, https://doi.org/10.1006/enrs.2001.4303, 2002.
Lindenmaier, R., Batchelor, R. L., Strong, K., Fast, H., Goutail, F., Kolonjari, F., Thomas McElroy, C., Mittermeier, R. L., and Walker, K. A.: An evaluation of infrared microwindows for ozone retrievals using the Eureka Bruker 125HR Fourier transform spectrometer, J. Quant. Spectrosc. Ra., 111, 569–585, https://doi.org/10.1016/j.jqsrt.2009.10.013, 2010.
Liu, B. and Frey, H. C.: Variability in light-duty gasoline vehicle emission factors from trip-based real-world measurements, Environ. Sci. Technol., 49, 12525–12534, https://doi.org/10.1021/acs.est.5b00553, 2015.
Liu, Y., Liggio, J., Staebler, R., and Li, S.-M.: Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, 2015.
Livingston, C., Rieger, P., and Winer, A.: Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin, Atmos. Environ., 43, 3326–3333, https://doi.org/10.1016/j.atmosenv.2009.04.009, 2009.
Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather, part 2: Effects on chemistry, Atmos. Environ., 115, 499–526, https://doi.org/10.1016/j.atmosenv.2014.10.021, 2015a.
Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution and weather, part 1: Effects on weather, Atmos. Environ., 115, 442–469, 2015b.
Marr, L. C. and Harley, R. A.: Spectral analysis of weekday–weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California, Atmos. Environ., 36, 2327–2335, https://doi.org/10.1016/S1352-2310(02)00188-7, 2002a.
Marr, L. C. and Harley, R. A.: Modeling the effect of weekday–weekend differences in motor vehicle emissions on photochemical air pollution in central California, Environ. Sci. Technol., 36, 4099–4106, https://doi.org/10.1021/es020629x, 2002b.
McConnell, R., Berhane, K., Yao, L., Jerrett, M., Lurmann, F., Gilliland, F., Künzli, N., Gauderman, J., Avol, E., Thomas, D., and Peters, J.: Traffic, susceptibility, and childhood asthma, Environ. Health Persp., 114, 766–772, https://doi.org/10.1289/ehp.8594, 2006.
Moeckli, M. A., Fierz, M., and Sigrist, M. W.: Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace gas detection system, Environ. Sci. Technol., 30, 2864–2867, https://doi.org/10.1021/es960152n, 1996.
Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W., Landry, H., Gravel, S., Gong, S., Crevier, L. P., Kallaur, A., and Sassi, M.: Particulate-matter forecasting with GEM-MACH15, a new Canadian air-quality forecast model, in: Air Pollution Modelling and its Application XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, the Netherlands, 289–292, https://doi.org/10.1007/978-90-481-3812-8, 2010.
Moran, M. D., Ménard, S., Pavlovic, R., Anselmo, D., Antonopoulos, S., Makar, P. A., Gong, W., Stroud, C., Zhang, J., Zheng, Q., Robichaud, A., Landry, H., Beaulieu, P.-A., Gilbert, S., Chen, J., and Kallaur, A.: Recent advances in Canada's national operational AQ forecasting system, in: Air Pollution Modeling and its Application XXII, edited by: Steyn, D. G., Builtjes, P. J. H. and Timmermans, R. M. A., Springer, Dordrecht, the Netherlands, 215–220, https://doi.org/10.1007/978-94-007-5577-2_4, 2014.
Moussa, S. G., Leithead, A., Li, S. M., Chan, T. W., Wentzell, J. J. B., Stroud, C., Zhang, J., Lee, P., Lu, G., Brook, J. R., Hayden, K., Narayan, J., and Liggio, J.: Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles, Atmos. Environ., 131, 185–195, https://doi.org/10.1016/j.atmosenv.2016.01.050, 2016.
Murphy, J. G., Day, D. A., Cleary, P. A., Wooldridge, P. J., Millet, D. B., Goldstein, A. H., and Cohen, R. C.: The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity, Atmos. Chem. Phys., 7, 5327–5339, https://doi.org/10.5194/acp-7-5327-2007, 2007.
National Air Pollution Surveillance Program of Government of Canada: NAPS Data Products, available at: http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en, last access: 23 November 2017.
Ontario Ministry of Transportation: 2013 data, available at: http://www.raqsb.mto.gov.on.ca/techpubs/TrafficVolumes.nsf/tvweb?OpenForm&Seq=6 (last access: 23 November 2017), 2016.
Oppenheimer, C. and Kyle, P. R.: Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions, J. Volcanol. Geoth. Res., 177, 743–754, https://doi.org/10.1016/j.jvolgeores.2007.08.022, 2008.
Parrish, D. D., Trainer, M., Hereid, D., Williams, E. J., Olszyna, K. J., Harley, R. A., Meagher, J. F., and Fehsenfeld, F. C.: Decadal change in carbon monoxide to nitrogen oxide ratio in U.S. vehicular emissions, J. Geophys. Res.-Atmos., 107, ACH 5-1–ACH 5-9, https://doi.org/10.1029/2001JD000720, 2002.
Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313–11333, https://doi.org/10.5194/acp-14-11313-2014, 2014.
Pavlovic, R., Chen, J., Anderson, K., Moran, M. D., Beaulieu, P.-A., Davignon, D., and Cousineau, S.: The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season, J. Air Waste Manage., 66, 819–841, https://doi.org/10.1080/10962247.2016.1158214, 2016.
Pearson, R. L., Wachtel, H., and Ebi, K. L.: Distance-weighted traffic density in proximity to a home is a risk factor for leukemia and other childhood cancers, J. Air Waste Manage., 50, 175–180, https://doi.org/10.1080/10473289.2000.10463998, 2000.
Perrino, C., Catrambone, M., Menno Di Bucchianico, A., and Allegrini, I.: Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions, Atmos. Environ., 36, 5385–5394, https://doi.org/10.1016/S1352-2310(02)00469-7, 2002.
Pollack, I. B., Ryerson, T. B., Trainer, M., Parrish, D. D., Andrews, A. E., Atlas, E. L., Blake, D. R., Brown, S. S., Commane, R., Daube, B. C., de Gouw, J. A., Dubé, W. P., Flynn, J., Frost, G. J., Gilman, J. B., Grossberg, N., Holloway, J. S., Kofler, J., Kort, E. A., Kuster, W. C., Lang, P. M., Lefer, B., Lueb, R. A., Neuman, J. A., Nowak, J. B., Novelli, P. C., Peischl, J., Perring, A. E., Roberts, J. M., Santoni, G., Schwarz, J. P., Spackman, J. R., Wagner, N. L., Warneke, C., Washenfelder, R. A., Wofsy, S. C., and Xiang, B.: Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin, J. Geophys. Res.-Atmos., 117, D00V05, https://doi.org/10.1029/2011jd016772, 2012.
Popa, M. E., Vollmer, M. K., Jordan, A., Brand, W. A., Pathirana, S. L., Rothe, M., and Röckmann, T.: Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO, Atmos. Chem. Phys., 14, 2105–2123, https://doi.org/10.5194/acp-14-2105-2014, 2014.
Rantala, P., Järvi, L., Taipale, R., Laurila, T. K., Patokoski, J., Kajos, M. K., Kurppa, M., Haapanala, S., Siivola, E., Petäjä, T., Ruuskanen, T. M., and Rinne, J.: Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland, Atmos. Chem. Phys., 16, 7981–8007, https://doi.org/10.5194/acp-16-7981-2016, 2016.
Reche, C., Viana, M., Pandolfi, M., Alastuey, A., Moreno, T., Amato, F., Ripoll, A., and Querol, X.: Urban NH3 levels and sources in a Mediterranean environment, Atmos. Environ., 57, 153–164, https://doi.org/10.1016/j.atmosenv.2012.04.021, 2012.
Reyes, F., Grutter, M., Jazcilevich, A., and González-Oropeza, R.: Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City, Atmos. Chem. Phys., 6, 5339–5346, https://doi.org/10.5194/acp-6-5339-2006, 2006.
Rogers, T. M., Grimsrud, E. P., Herndon, S. C., Jayne, J. T., Kolb, C. E., Allwine, E., Westberg, H., Lamb, B. K., Zavala, M., Molina, L. T., Molina, M. J., and Knighton, W. B.: On-road measurements of volatile organic compounds in the Mexico City metropolitan area using proton transfer reaction mass spectrometry, Int. J. Mass Spectrom., 252, 26–37, https://doi.org/10.1016/j.ijms.2006.01.027, 2006.
Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J. M., Perrin, A., Camy-Peyret, C., Dana, V., Mandin, J. Y., Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshino, K., Chance, K. V., Jucks, K. W., Brown, L. R., Nemtchinov, V., and Varanasi, P.: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition, J. Quant. Spectrosc. Ra., 60, 665–710, 1998.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J. M., Gamache, R. R., Harrison, J. J., Hartmann, J. M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Rubin, J. I., Kean, A. J., Harley, R. A., Millet, D. B., and Goldstein, A. H.: Temperature dependence of volatile organic compound evaporative emissions from motor vehicle, J. Geophys. Res.-Atmos., 111, D03305, https://doi.org/10.1029/2005JD006458, 2006.
Sahu, L. K. and Saxena, P.: High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources, Atmos. Res., 164–165, 84–94, https://doi.org/10.1016/j.atmosres.2015.04.021, 2015.
Sailor, D. J. and Lu, L.: A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas, Atmos. Environ., 38, 2737–2748, https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc, Hoboken, New Jersey, USA, 1203 pp., 2006.
Shankardass, K., Jerrett, M., Dell, S. D., Foty, R., and Stieb, D.: Spatial analysis of exposure to traffic-related air pollution at birth and childhood atopic asthma in Toronto, Ontario, Health Place, 34, 287–295, https://doi.org/10.1016/j.healthplace.2015.06.001, 2015.
Sharpe, S. W., Johnson, T. J., Sams, R. L., Chu, P. M., Rhoderick, G. C., and Johnson, P. A.: Gas-phase databases for quantitative infrared spectroscopy, Appl. Spectrosc., 58, 1452–1461, https://doi.org/10.1366/0003702042641281, 2004.
Smith, T. E. L., Wooster, M. J., Tattaris, M., and Griffith, D. W. T.: Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of “clean air” and “polluted plumes”, Atmos. Meas. Tech., 4, 97–116, https://doi.org/10.5194/amt-4-97-2011, 2011.
Smith, T. E. L., Paton-Walsh, C., Meyer, C. P., Cook, G. D., Maier, S. W., Russell-Smith, J., Wooster, M. J., and Yates, C. P.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 2: Australian tropical savanna fires, Atmos. Chem. Phys., 14, 11335–11352, https://doi.org/10.5194/acp-14-11335-2014, 2014.
Statistics Canada: Sales of fuel used for road motor vehicles, by province and territory, available at: http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/trade37b-eng.htm (last access: 7 November 2017), 2016.
Stedman, D. H.: Automobile carbon monoxide emission, Environ. Sci. Technol., 23, 147–149, https://doi.org/10.1021/es00179a002, 1989.
Stremme, W., Grutter, M., Rivera, C., Bezanilla, A., Garcia, A. R., Ortega, I., George, M., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Hannigan, J. W., and Coffey, M. T.: Top-down estimation of carbon monoxide emissions from the Mexico Megacity based on FTIR measurements from ground and space, Atmos. Chem. Phys., 13, 1357–1376, https://doi.org/10.5194/acp-13-1357-2013, 2013.
Stroud, C. A., Zaganescu, C., Chen, J., McLinden, C. A., Zhang, J., and Wang, D.: Toxic volatile organic air pollutants across Canada: multi-year concentration trends, regional air quality modelling and source apportionment, J. Atmos. Chem., 73, 137–164, https://doi.org/10.1007/s10874-015-9319-z, 2016.
Stull, R. B.: An Introduction To Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, the Netherlands, 670 pp., 2003.
Su, J. G., Apte, J. S., Lipsitt, J., Garcia-Gonzales, D. A., Beckerman, B. S., de Nazelle, A., Texcalac-Sangrador, J. L., and Jerrett, M.: Populations potentially exposed to traffic-related air pollution in seven world cities, Environ. Int., 78, 82–89, https://doi.org/10.1016/j.envint.2014.12.007, 2015.
Suárez, M. P. and Löffler, D. G.: HCN synthesis from NH3 and CH4 on Pt at atmospheric pressure, J. Catal., 97, 240–242, https://doi.org/10.1016/0021-9517(86)90054-0, 1986.
Suarez-Bertoa, R., Zardini, A. A., and Astorga, C.: Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle, Atmos. Environ., 97, 43–53, https://doi.org/10.1016/j.atmosenv.2014.07.050, 2014.
Sutton, M. A., Dragosits, U., Tang, Y. S., and Fowler, D.: Ammonia emissions from non-agricultural sources in the UK, Atmos. Environ., 34, 855–869, https://doi.org/10.1016/S1352-2310(99)00362-3, 2000.
Urban, C. M. and Garbe, R. J.: Regulated and unregulated exhaust emissions from malfunctioning automobiles, International Automotive Engineering Congress and Exposition, Detroit, MI, USA, 26 February–2 March 1979, SAE Tech. Pap., 790696, https://doi.org/10.4271/790696, 1979.
Urban, C. M. and Garbe, R. J.: Exhaust emissions from malfunctioning three-way catalyst-equipped automobiles, International Automotive Engineering Congress and Exposition, Detroit, MI, USA, 25–29 February 1980, SAE Tech. Pap., 800511, https://doi.org/10.4271/800511, 1980.
U.S. EPA: MOVES2010 Highway vehicle temperature, humidity, air conditioning, and inspection and ,maintenance adjustments”, EPA-420-R-10-027, available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=216504 (last access: 7 November 2017), 2010a.
U.S. EPA: IRIS Toxicological review of hydrogen cyanide and cyanide salts (Final Report), U.S. Environmental Protection Agency, Washington, D.C., EPA/635/R-08/016F, 108 pp., available at: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=227766&CFID=79548176&CFTOKEN=33756592 (last access: 7 November 2017), 2010b.
U.S. EPA: Criteria pollutants National Tier 1 for 1970–2016, Data in MS Excel, available at: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data (last access: 31 March 2017), 2016.
Voorhoeve, R. J. H., Patel, C. K. N., Trimble, L. E., and Kerl, R. J.: Hydrogen cyanide production during reduction of nitric oxide over platinum catalysts, Science, 190, 149–151, 1975.
Wallace, H. W., Jobson, B. T., Erickson, M. H., McCoskey, J. K., VanReken, T. M., Lamb, B. K., Vaughan, J. K., Hardy, R. J., Cole, J. L., Strachan, S. M., and Zhang, W.: Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories, Atmos. Environ., 63, 289–297, https://doi.org/10.1016/j.atmosenv.2012.08.062, 2012.
Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., Williams, E. J., Lerner, B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. L., Baker, A., and Blake, D. R.: Determination of urban volatile organic compound emission ratios and comparison with an emissions database, J. Geophys. Res.-Atmos., 112, D10S47, https://doi.org/10.1029/2006JD007930, 2007.
Warneke, C., De Gouw, J. A., Edwards, P. M., Holloway, J. S., Gilman, J. B., Kuster, W. C., Graus, M., Atlas, E., Blake, D., Gentner, D. R., Goldstein, A. H., Harley, R. A., Alvarez, S., Rappenglueck, B., Trainer, M., and Parrish, D. D.: Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday-weekend effect, J. Geophys. Res.-Atmos., 118, 5018–5028, https://doi.org/10.1002/jgrd.50423, 2013.
Wu, R. T., Chang, S.-Y., Chung, Y .W., Tzou, H. C., and Tso, T.-L.: FTIR remote sensor measurements of air pollutants in the petrochemical industrial park, Proc. SPIE 2552, Infrared Technology XXI, San Diego, CA, USA, 719–727, 1995.
Yao, X., Hu, Q., Zhang, L., Evans, G. J., Godri, K. J., and Ng, A. C.: Is vehicular emission a significant contributor to ammonia in the urban atmosphere?, Atmos. Environ., 80, 499–506, https://doi.org/10.1016/j.atmosenv.2013.08.028, 2013.
Yokelson, R. J.: Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier Transform Infrared spectroscopy, J. Geophys. Res.-Atmos., 104, 30109–30125, 1999.
Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path Fourier Transform Infrared studies of large-scale laboratory biomass fires, J. Geophys. Res.-Atmos., 101, 21067–21080, 1996.
Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W. T.: Emissions from smoldering combustion of biomass measured by open-path Fourier Transform Infrared spectroscopy, J. Geophys. Res.-Atmos., 102, 18865–18877, 1997.
Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., and Hao, W. M.: The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements, Atmos. Chem. Phys., 7, 5175–5196, https://doi.org/10.5194/acp-7-5175-2007, 2007.
Yokelson, R. J., Christian, T. J., Karl, T. G., and Guenther, A.: The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data, Atmos. Chem. Phys., 8, 3509–3527, https://doi.org/10.5194/acp-8-3509-2008, 2008.
Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung, H., and Weise, D. R.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, 2013.
Zhang, J., Zheng, Q., Moran, M. D., Gordon, M., Liggio, J., Makar, P., Stroud, C., and Taylor, B.: Improvements to SMOKE processing of Canadian on-road mobile emissions, 20th Emissions Inventory Conference, 13–16 August 2012, Tampa, USA, 13 pp., available at: http://www.epa.gov/ttn/chief/conference/ei20/session1/jzhang.pdf (last access: 7 November 2017), 2012.
Zhang, K., Batterman, S., and Dion, F.: Vehicle emissions in congestion: Comparison of work zone, rush hour and free-flow conditions, Atmos. Environ., 45, 1929–1939, https://doi.org/10.1016/j.atmosenv.2011.01.030, 2011.
Zhou, Y. and Levy, J.I.: Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis, BMC Public Health, 7, 89, https://doi.org/10.1186/1471-2458-7-89, 2007.
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
A novel approach for traffic emission measurements is shown to have the capacity to provide...
Altmetrics
Final-revised paper
Preprint