Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1619-2016
https://doi.org/10.5194/acp-16-1619-2016
Research article
 | 
11 Feb 2016
Research article |  | 11 Feb 2016

OH reactivity and concentrations of biogenic volatile organic compounds in a Mediterranean forest of downy oak trees

N. Zannoni, V. Gros, M. Lanza, R. Sarda, B. Bonsang, C. Kalogridis, S. Preunkert, M. Legrand, C. Jambert, C. Boissard, and J. Lathiere

Related authors

Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013
N. Zannoni, S. Dusanter, V. Gros, R. Sarda Esteve, V. Michoud, V. Sinha, N. Locoge, and B. Bonsang
Atmos. Meas. Tech., 8, 3851–3865, https://doi.org/10.5194/amt-8-3851-2015,https://doi.org/10.5194/amt-8-3851-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The impact of organic nitrates on summer ozone formation in Shanghai, China
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025,https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Differences in the key volatile organic compound species between their emitted and ambient concentrations in ozone formation
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025,https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025,https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025,https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025,https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary

Cited articles

Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R. and Arey, J.: Atmospheric Chemistry of Biogenic Organic Compounds, Acc. Chem. Res., 31, 574–583, https://doi.org/10.1021/ar970143z, 1998.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, 197–219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.: Rate constants for the gas phase reactions of OH radicals and O3 with pyrrole at 295 ± 1 K and atmospheric pressure, Atmos. Environ., 18, 2105–2107, https://doi.org/10.1016/0004-6981(84)90196-3, 1984.
Download
Short summary
Our manuscript shows results of OH reactivity and Biogenic Volatile Organic Compounds (BVOCs) concentration during a field experiment conducted in late spring 2014 at the Observatoire de Haute Provence (OHP) site. We found that OH reactivity is among the highest measured in forests globally (69 s−1) and it is mainly due to isoprene. No missing reactivity was present during daytime inside or above the canopy, while 50 % missing reactivity was found by night at both heights.
Share
Altmetrics
Final-revised paper
Preprint