Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-8459-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-8459-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Global distributions of overlapping gravity waves in HIRDLS data
C. J. Wright
CORRESPONDING AUTHOR
Centre for Space, Atmosphere and Ocean Science, University of Bath, Claverton Down, Bath, UK
Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA
S. M. Osprey
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
J. C. Gille
Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA
Center for Limb Atmospheric Sounding, University of Colorado, Boulder, CO, USA
Related authors
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
Andrew C. Moss, Corwin J. Wright, Robin N. Davis, and Nicholas J. Mitchell
Ann. Geophys., 34, 323–330, https://doi.org/10.5194/angeo-34-323-2016, https://doi.org/10.5194/angeo-34-323-2016, 2016
Short summary
Short summary
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds are observed in the first phase of the MSAO. It has been proposed that this is due to filtering of ascending gravity waves. We report the first gravity-wave momentum flux observations from the Ascension Island (8° S, 14° W) meteor radar and show that anomalous fluxes were observed during one such event in 2002. Analysis of the underlying winds suggests the wave-filtering hypothesis is not valid.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
Paula L. M. Gonzalez, Lesley J. Gray, Stergios Misios, Scott Osprey, and Hedi Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2487, https://doi.org/10.5194/egusphere-2024-2487, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study has examined a set of reanalyses, both modern and 20th Century, to evaluate the robustness of the signatures of the 11-yr solar cycle in the North Atlantic climate. We find a robust response to the 11-yr solar cycle over the North Atlantic sector with a positive SLP anomaly north of the Azores region at lags of +2–3 years following solar maximum. An ocean reanalysis dataset shows that thermal inertia of the ocean could explain the lag in the SC response.
Aleena Moolakkunnel Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1818, https://doi.org/10.5194/egusphere-2024-1818, 2024
Short summary
Short summary
Models have biases in SAO representation, primarily due to lack of strong enough eastward wave forcing. We investigated if this bias arises from increased wave absorption in low-mid stratosphere due to circulation biases. Using model experiments, we found that removing biases in lower altitudes improve the SAO, but a significant bias remains. Thus, modifications to gravity wave parametrisation is required to improve the modelled SAO, potentially leading to improved predictability of SSW.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Merritt Deeter, Gene Francis, John Gille, Debbie Mao, Sara Martínez-Alonso, Helen Worden, Dan Ziskin, James Drummond, Róisín Commane, Glenn Diskin, and Kathryn McKain
Atmos. Meas. Tech., 15, 2325–2344, https://doi.org/10.5194/amt-15-2325-2022, https://doi.org/10.5194/amt-15-2325-2022, 2022
Short summary
Short summary
The MOPITT (Measurements of Pollution in the Troposphere) satellite instrument uses remote sensing to obtain retrievals (measurements) of carbon monoxide (CO) in the atmosphere. This paper describes the latest MOPITT data product, Version 9. Globally, the number of daytime MOPITT retrievals over land has increased by 30 %–40 % compared to the previous product. The reported improvements in the MOPITT product should benefit a wide variety of applications including studies of pollution sources.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Jorge L. García-Franco, Lesley J. Gray, and Scott Osprey
Weather Clim. Dynam., 1, 349–371, https://doi.org/10.5194/wcd-1-349-2020, https://doi.org/10.5194/wcd-1-349-2020, 2020
Short summary
Short summary
The American monsoon system is the main source of rainfall for the subtropical Americas and an important element of Latin American agriculture. Here we use state-of-the-art climate models from the UK Met Office in different configurations to analyse the performance of these models in the American monsoon. Resolution is found to be a key factor to improve monsoon representation, whereas integrated chemistry does not improve the simulated monsoon rainfall.
Ellis Remsberg, V. Lynn Harvey, Arlin Krueger, Larry Gordley, John C. Gille, and James M. Russell III
Atmos. Chem. Phys., 20, 3663–3668, https://doi.org/10.5194/acp-20-3663-2020, https://doi.org/10.5194/acp-20-3663-2020, 2020
Short summary
Short summary
The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. This note focuses on the lower stratosphere of the southern hemisphere, subpolar regions in relation to the position of the polar vortex. Both LIMS ozone and nitric acid show reductions within the edge of the polar vortex at 46 hPa near 60° S from late October through mid-November 1978, indicating that there was a chemical loss of Antarctic ozone some weeks earlier.
Merritt N. Deeter, David P. Edwards, Gene L. Francis, John C. Gille, Debbie Mao, Sara Martínez-Alonso, Helen M. Worden, Dan Ziskin, and Meinrat O. Andreae
Atmos. Meas. Tech., 12, 4561–4580, https://doi.org/10.5194/amt-12-4561-2019, https://doi.org/10.5194/amt-12-4561-2019, 2019
Short summary
Short summary
The MOPITT (Measurements of Pollution in the Troposphere) satellite instrument has been making nearly continuous observations of atmospheric carbon monoxide (CO) since 2000. MOPITT CO retrievals are routinely used to analyze emissions from fossil fuels and biomass burning, as well as the atmospheric transport of those emissions. This paper describes recent enhancements to the MOPITT retrieval algorithm. New validation results illustrate clear improvements in the fidelity of the MOPITT product.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Lesley J. Gray, James A. Anstey, Yoshio Kawatani, Hua Lu, Scott Osprey, and Verena Schenzinger
Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, https://doi.org/10.5194/acp-18-8227-2018, 2018
Short summary
Short summary
A major phenomenon in the stratosphere is the Quasi Biennial Oscillation (QBO). Although a feature of the equatorial stratosphere, its influence extends to surface weather at both equatorial and mid latitudes. Improved knowledge of mechanisms of influence should help to improve weather forecasts. In this paper, QBO impacts at the surface are characterized and dominant mechanisms explored. Three pathways are identified, referred to as the tropical, subtropical and polar routes.
Manfred Ern, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III, and Martin Riese
Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, https://doi.org/10.5194/essd-10-857-2018, 2018
Short summary
Short summary
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE) is a global data set of gravity wave (GW) distributions in the stratosphere and the mesosphere observed by the infrared limb sounding satellite instruments HIRDLS and SABER. Typical distributions of multiple GW parameters are provided. Possible applications are scientific studies, comparison with other observations, or comparison with resolved or parametrized GW distributions in models.
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
Merritt N. Deeter, David P. Edwards, Gene L. Francis, John C. Gille, Sara Martínez-Alonso, Helen M. Worden, and Colm Sweeney
Atmos. Meas. Tech., 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017, https://doi.org/10.5194/amt-10-2533-2017, 2017
Short summary
Short summary
This manuscript describes the methods used for deriving the latest version 7 product for atmospheric carbon monoxide (CO) from measurements made by the MOPITT (Measurements of Pollution in the Troposphere) satellite instrument. Comparisons of MOPITT-retrieved CO vertical profiles with in situ data measured from aircraft are also presented, and they demonstrate clear improvements relative to earlier MOPITT products. The new CO product is appropriate for a wide variety of applications.
Verena Schenzinger, Scott Osprey, Lesley Gray, and Neal Butchart
Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, https://doi.org/10.5194/gmd-10-2157-2017, 2017
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) is a pattern of winds in the equatorial stratosphere that has been observed for the past 60 years. It is thought to have long-range influences, e.g. on the Northern Hemisphere winter polar vortex and therefore Europe's winter weather. Since its period is about 2 years, being able to predict the QBO might also improve weather forecasting. Using a set of characteristic metrics, this paper examines how reliable current climate models are in simulating the QBO.
Rebecca R. Buchholz, Merritt N. Deeter, Helen M. Worden, John Gille, David P. Edwards, James W. Hannigan, Nicholas B. Jones, Clare Paton-Walsh, David W. T. Griffith, Dan Smale, John Robinson, Kimberly Strong, Stephanie Conway, Ralf Sussmann, Frank Hase, Thomas Blumenstock, Emmanuel Mahieu, and Bavo Langerock
Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, https://doi.org/10.5194/amt-10-1927-2017, 2017
Short summary
Short summary
The study presents the first systematic use of ground-based remote-sensing data from the Network for the Detection of Atmospheric Composition Change (NDACC) to validate satellite-based Measurements of Pollution in the Troposphere (MOPITT) total column carbon monoxide (CO). MOPITT generally shows low bias with respect to the ground-based instruments. The geographic and temporal dependence of validation results are determined. Our findings inform some recommendations for using MOPITT measurements.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
Andrew C. Moss, Corwin J. Wright, Robin N. Davis, and Nicholas J. Mitchell
Ann. Geophys., 34, 323–330, https://doi.org/10.5194/angeo-34-323-2016, https://doi.org/10.5194/angeo-34-323-2016, 2016
Short summary
Short summary
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds are observed in the first phase of the MSAO. It has been proposed that this is due to filtering of ascending gravity waves. We report the first gravity-wave momentum flux observations from the Ascension Island (8° S, 14° W) meteor radar and show that anomalous fluxes were observed during one such event in 2002. Analysis of the underlying winds suggests the wave-filtering hypothesis is not valid.
S. Tegtmeier, M. I. Hegglin, J. Anderson, B. Funke, J. Gille, A. Jones, L. Smith, T. von Clarmann, and K. A. Walker
Earth Syst. Sci. Data, 8, 61–78, https://doi.org/10.5194/essd-8-61-2016, https://doi.org/10.5194/essd-8-61-2016, 2016
Short summary
Short summary
The first comprehensive intercomparison of CFC-11, CFC-12, HF, and SF6 satellite data was performed as part of the SPARC Data Initiative following a new "top-down" concept of satellite measurement validation and thus providing a global picture of the data characteristics. The comparisons will provide basic information on quality and consistency of the various data sets and will serve as a guide for their use in empirical studies of climate and variability, and in model-measurement comparisons.
M. George, C. Clerbaux, I. Bouarar, P.-F. Coheur, M. N. Deeter, D. P. Edwards, G. Francis, J. C. Gille, J. Hadji-Lazaro, D. Hurtmans, A. Inness, D. Mao, and H. M. Worden
Atmos. Meas. Tech., 8, 4313–4328, https://doi.org/10.5194/amt-8-4313-2015, https://doi.org/10.5194/amt-8-4313-2015, 2015
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
H. S. Marey, Z. Hashisho, L. Fu, and J. Gille
Atmos. Chem. Phys., 15, 3893–3908, https://doi.org/10.5194/acp-15-3893-2015, https://doi.org/10.5194/acp-15-3893-2015, 2015
Short summary
Short summary
This study demonstrated the potential use of MOPITT CO measurements to better understand the CO sources over Alberta. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014, https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
Short summary
Stratospheric lifetimes determine the global warming and ozone depletion potentials of chlorofluorocarbons. We present new estimates of the CFC-11/CFC-12 lifetime ratio from satellite and model data (ACE-FTS, HIRDLS, MIPAS, and EMAC/CLaMS). Our estimates of 0.46+/-0.04 (satellites) and 0.48+/-0.07 (model) are in excellent agreement with the recent SPARC reassessment. Having smaller uncertainties than other studies, our results can help to better constrain future CFC lifetime recommendations.
J. Y. Jia, P. Preusse, M. Ern, H.-Y. Chun, J. C. Gille, S. D. Eckermann, and M. Riese
Ann. Geophys., 32, 1373–1394, https://doi.org/10.5194/angeo-32-1373-2014, https://doi.org/10.5194/angeo-32-1373-2014, 2014
M. N. Deeter, S. Martínez-Alonso, D. P. Edwards, L. K. Emmons, J. C. Gille, H. M. Worden, C. Sweeney, J. V. Pittman, B. C. Daube, and S. C. Wofsy
Atmos. Meas. Tech., 7, 3623–3632, https://doi.org/10.5194/amt-7-3623-2014, https://doi.org/10.5194/amt-7-3623-2014, 2014
Short summary
Short summary
The MOPITT Version 6 product for carbon monoxide (CO) incorporates several enhancements. First, a geolocation bias has been eliminated. Second, the new variable a priori for CO concentrations is based on simulations performed with the CAM-Chem chemical transport model for the years 2000-2009. Third, required meteorological fields are extracted from the MERRA reanalysis. Finally, a retrieval bias in the upper troposphere was substantially reduced. Validation results are presented.
L. L. Smith and J. C. Gille
Atmos. Meas. Tech., 7, 2775–2785, https://doi.org/10.5194/amt-7-2775-2014, https://doi.org/10.5194/amt-7-2775-2014, 2014
M. Belmonte Rivas, P. Veefkind, F. Boersma, P. Levelt, H. Eskes, and J. Gille
Atmos. Meas. Tech., 7, 2203–2225, https://doi.org/10.5194/amt-7-2203-2014, https://doi.org/10.5194/amt-7-2203-2014, 2014
H. M. Worden, M. N. Deeter, C. Frankenberg, M. George, F. Nichitiu, J. Worden, I. Aben, K. W. Bowman, C. Clerbaux, P. F. Coheur, A. T. J. de Laat, R. Detweiler, J. R. Drummond, D. P. Edwards, J. C. Gille, D. Hurtmans, M. Luo, S. Martínez-Alonso, S. Massie, G. Pfister, and J. X. Warner
Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013, https://doi.org/10.5194/acp-13-837-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Observational perspective on sudden stratospheric warmings and blocking from Eliassen–Palm fluxes
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Stratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
A new methodology for measuring traveling quasi-5-day oscillations during sudden stratospheric warming events based on satellite observations
The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations
Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Direct inversion of circulation from tracer measurements – Part 2: Sensitivity studies and model recovery tests
Record low ozone values over the Arctic in boreal spring 2020
New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations
Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry
Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis
Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses
Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund
Influence of ENSO and MJO on the zonal structure of tropical tropopause inversion layer using high-resolution temperature profiles retrieved from COSMIC GPS Radio Occultation
How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?
First tomographic observations of gravity waves by the infrared limb imager GLORIA
Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air
Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage
A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements
The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss
The tropical tropopause inversion layer: variability and modulation by equatorial waves
Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings
Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
Global temperature response to the major volcanic eruptions in multiple reanalysis data sets
Reassessment of MIPAS age of air trends and variability
Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region
The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO
Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere
The influence of the North Atlantic Oscillation and El Niño–Southern Oscillation on mean and extreme values of column ozone over the United States
Short vertical-wavelength inertia-gravity waves generated by a jet–front system at Arctic latitudes – VHF radar, radiosondes and numerical modelling
A climatology of the diurnal variations in stratospheric and mesospheric ozone over Bern, Switzerland
Long-term changes in the upper stratospheric ozone at Syowa, Antarctica
Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations
Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010
Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS
Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere
Quantification of structural uncertainty in climate data records from GPS radio occultation
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023, https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
Short summary
The Madden–Julian oscillation is an important feature of weather in the tropics. Although it is mainly active in the troposphere, we show that it systematically influences the air temperature in the layers above, up to about 100 km altitude and from pole to pole. We have linked this to another known far-reaching process, interhemispheric coupling. This is basic research on atmospheric couplings and variability but might also be of interest for intraseasonal weather forecasting models.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Short summary
A comprehensive data set of airborne lidar water vapour profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Collocated O3 and H2O observations reveal a particularly strong bias in the mixing layer, indicating insufficiently modelled transport processes fostering the bias.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022, https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
Thomas von Clarmann, Udo Grabowski, Gabriele P. Stiller, Beatriz M. Monge-Sanz, Norbert Glatthor, and Sylvia Kellmann
Atmos. Chem. Phys., 21, 8823–8843, https://doi.org/10.5194/acp-21-8823-2021, https://doi.org/10.5194/acp-21-8823-2021, 2021
Short summary
Short summary
Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Multiannual monthly mean circulation fields are presented.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Thomas von Clarmann and Udo Grabowski
Atmos. Chem. Phys., 21, 2509–2526, https://doi.org/10.5194/acp-21-2509-2021, https://doi.org/10.5194/acp-21-2509-2021, 2021
Short summary
Short summary
The direct inversion of the 2D continuity equation allows us to infer the effective meridional transport velocity of trace gases in the middle stratosphere. This method exploits the information both given by the displacement of patterns in measured trace gas distributions and by the approximate balance between sinks and horizontal as well as vertical advection. The robustness of this method has been tested and characterized using model recovery tests and sensitivity studies.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Lars Hoffmann, Reinhold Spang, Andrew Orr, M. Joan Alexander, Laura A. Holt, and Olaf Stein
Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, https://doi.org/10.5194/acp-17-2901-2017, 2017
Short summary
Short summary
We introduce a 10-year record (2003–2012) of AIRS/Aqua observations of gravity waves in the polar lower stratosphere. The data set was optimized to study the impact of gravity waves on the formation of polar stratospheric clouds (PSCs). We discuss the temporal and spatial patterns of gravity wave activity, validate explicitly resolved small-scale temperature fluctuations in the ECMWF data, and present a survey of gravity-wave-induced PSC formation events using joint AIRS and MIPAS observations.
Asen Grytsai, Andrew Klekociuk, Gennadi Milinevsky, Oleksandr Evtushevsky, and Kane Stone
Atmos. Chem. Phys., 17, 1741–1758, https://doi.org/10.5194/acp-17-1741-2017, https://doi.org/10.5194/acp-17-1741-2017, 2017
Short summary
Short summary
Twenty years ago we discovered that the ozone hole shape is asymmetric. This asymmetry is minimum over the Weddell Sea region and maximum over the Ross Sea area. Later we detected that the position of the ozone minimum is shifting east. We have continued to follow this event, and a couple years ago we revealed that the shift is slowing down and starting to move back. We connect all this movement with ozone hole increase; since 2000 the ozone layer has been stabilizing and recently recovering.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Gloria L. Manney and Zachary D. Lawrence
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, https://doi.org/10.5194/acp-16-15371-2016, 2016
Short summary
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Lars Hoffmann, Alison W. Grimsdell, and M. Joan Alexander
Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, https://doi.org/10.5194/acp-16-9381-2016, 2016
Short summary
Short summary
We present a 12-year record (2003-2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the AIRS/Aqua satellite instrument. We introduce a method to discriminate between gravity waves from orographic or other sources and propose a simple model to predict the occurrence of mountain waves using zonal wind thresholds. The prediction model can help to disentangle upper level wind effects from low level source and other influences.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
E. E. Remsberg
Atmos. Chem. Phys., 15, 3739–3754, https://doi.org/10.5194/acp-15-3739-2015, https://doi.org/10.5194/acp-15-3739-2015, 2015
Short summary
Short summary
Time series of the satellite-observed stratospheric tracer, CH4, are analyzed to see whether they indicate a significant trend for the hemispheric Brewer--Dobson circulation (BDC) for 1992-2005. Trends in CH4 for the lower stratosphere are generally positive and equivalent to those of the troposphere. However, the Northern Hemisphere BDC is clearly accelerated in the mid-stratosphere (20 to 7hPa). Corresponding trends for the Southern Hemisphere are smaller and less significant.
I. Petropavlovskikh, R. Evans, G. McConville, G. L. Manney, and H. E. Rieder
Atmos. Chem. Phys., 15, 1585–1598, https://doi.org/10.5194/acp-15-1585-2015, https://doi.org/10.5194/acp-15-1585-2015, 2015
A. Réchou, S. Kirkwood, J. Arnault, and P. Dalin
Atmos. Chem. Phys., 14, 6785–6799, https://doi.org/10.5194/acp-14-6785-2014, https://doi.org/10.5194/acp-14-6785-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
K. Miyagawa, I. Petropavlovskikh, R. D. Evans, C. Long, J. Wild, G. L. Manney, and W. H. Daffer
Atmos. Chem. Phys., 14, 3945–3968, https://doi.org/10.5194/acp-14-3945-2014, https://doi.org/10.5194/acp-14-3945-2014, 2014
N. M. Gavrilov
Atmos. Chem. Phys., 13, 12107–12116, https://doi.org/10.5194/acp-13-12107-2013, https://doi.org/10.5194/acp-13-12107-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
S. M. Khaykin, J.-P. Pommereau, and A. Hauchecorne
Atmos. Chem. Phys., 13, 6391–6402, https://doi.org/10.5194/acp-13-6391-2013, https://doi.org/10.5194/acp-13-6391-2013, 2013
P. Baron, D. P. Murtagh, J. Urban, H. Sagawa, S. Ochiai, Y. Kasai, K. Kikuchi, F. Khosrawi, H. Körnich, S. Mizobuchi, K. Sagi, and M. Yasui
Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, https://doi.org/10.5194/acp-13-6049-2013, 2013
T. Flury, D. L. Wu, and W. G. Read
Atmos. Chem. Phys., 13, 4563–4575, https://doi.org/10.5194/acp-13-4563-2013, https://doi.org/10.5194/acp-13-4563-2013, 2013
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, https://doi.org/10.5194/acp-13-3849-2013, 2013
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Cited articles
Alexander, M. J.: Interpretations of observed climatological patterns in stratospheric gravity wave variance, J. Geophys. Res.-Atmos., 103, 8627–8640, https://doi.org/10.1029/97JD03325, 1998.
Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Dean, V., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinneson, D., Lee, H., Massie, S., Nardi, B., and Lambert, A.: Global Estimates of Gravity Wave Momentum Flux from High Resolution Dynamics Limb Sounder (HIRDLS) Observations, J. Geophys. Res.-Atmos., 113, D15S18, https://doi.org/10.1029/2007JD008807, 2008.
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. Roy. Meteorol. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010.
Ern, M. and Preusse, P.: Gravity wave momentum flux spectra observed from satellite in the summertime subtropics: Implications for global modeling, Geophys. Res. Lett., 39, L15810, https://doi.org/10.1029/2012GL052659, 2012.
Ern, M., Preusse, P., Alexander, M., and Warner, C. D.: Absolute values of gravity wave momentum flux derived from satellite data, J. Geophys. Res.-Atmos., 109, D20103, https://doi.org/10.1029/2004JD004752, 2004.
Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G., Russell, J. M., and Riese, M.: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere, J. Geophys. Res.-Atmos., 116, 1–24, https://doi.org/10.1029/2011JD015821, 2011.
Fetzer, E. J. and Gille, J. C.: Gravity Wave Variance in LIMS Temperatures. part I: Variability and Comparison with Background Winds, J. Atmos. Sci., 51, 2461–2483, 1994.
France, J., Harvey, V., Alexander, M., Randall, C., and Gille, J.: High Resolution Dynamics Limb Sounder observations of the gravity wave-driven elevated stratopause in 2006, J. Geophys. Res.-Atmos., 117, D20108, https://doi.org/10.1029/2012JD017958, 2012.
Fritts, D. C.: Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys., 22, 275–308, https://doi.org/10.1029/RG022i003p00275, 1984.
Fritts, D. C. and Alexander, M. J.: Gravity Wave Dynamics and Effects in the Middle Atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J. T., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A., and Zhou, T.: A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models, J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1, 2013.
Gille, J., Barnett, J., Whitney, J., Dials, M., Woodard, D., Rudolf, W., Lambert, A., and Mankin, W.: The High Resolution Dynamics Limb Sounder (HIRDLS) Experiment on Aura, Proc. SPIE, 5152, 162–171, 2003.
Gille, J. C., Barnett, J. J., Arter, P., Barker, M., Bernath, P. F., Boone, C. D., Cavanaugh, C. C., Chow, J., Coffey, M. T., Craft, J., Craig, C., Dials, M., Dean, V., Eden, T. D., Edwards, D. P., Francis, G., Halvorson, C. M., Harvey, V. L., Hepplewhite, C. L., Khosravi, R., Kinnison, D. E., Krinsky, C., Lambert, A., Lee, H., Lyjak, L., Loh, J., Mankin, W., Massie, S. T., McInerney, J., Moorhouse, J., Nardi, B., Packman, D., Randall, C. E., Reburn, W. J., Rudolf, W., Schwartz, M. J., Serafin, J., Stone, K. A., Torpy, B., Walker, K. A., Waterfall, A., Watkins, R. E. J., Whitney, J., Woodard, D., and Young, G.: High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data, J. Geophys. Res.-Atmos., 113, D16S43, https://doi.org/10.1029/2007JD008824, 2008.
Gille, J. C., Gray, L. J., Cavanaugh, C. C., Coffey, M. T., Dean, V., Halvorson, C. M., Karol, S., Khosravi, R., Kinnison, D. E., Massie, S. T., Nardi, B., Belmonte Rivas, M., Smith, L., Torpy, B., Waterfall, A., and Wright, C. J.: High Resolution Dynamics Limb Sounder Earth Observing System (EOS): Data Description and Quality Version 7, available at: http://www.eos.ucar.edu/hirdls/data/ (last access: 28 July 2015), 2013.
Harrower, M. and Brewer, C. A.: ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps, Cartogr. J., 40, 27–37, https://doi.org/10.1179/000870403235002042, 2003.
Hertzog, A., Alexander, M. J., and Plougonven, R.: On the Intermittency of Gravity Wave Momentum Flux in the Stratosphere, J. Atmos. Sci., 69, 3433–3448, https://doi.org/10.1175/JAS-D-12-09.1, 2012.
Hoffmann, L. and Alexander, M. J.: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies, J. Geophys. Res.-Atmos., 114, D07105, https://doi.org/10.1029/2008JD011241, 2009.
Holton, J. R., Haynes, P. H., Mcintyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-Troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Jiang, J. H., Wang, B., Goya, K., Hocke, K., Eckermann, S. D., Ma, J., Wu, D. L., and Read, W. G.: Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses, J. Geophys. Res.-Atmos., 109, D03111, https://doi.org/10.1029/2003JD003756, 2004.
Karoly, D. J., Roof, G. L., and Reeder, M. J.: Gravity wave activity association with tropical convection detected in TOGA COARE sounding data, Geophys. Res. Lett., 23, 261–264, 1996.
Khosravi, R., Lambert, A., Lee, H., Gille, J., Barnett, J., Francis, G., Edwards, D., Halvorson, C., Massie, S., Craig, C., Krinsky, C., McInerney, J., Stone, K., Eden, T., Nardi, B., Hepplewhite, C., Mankin, W., and Coffey, M.: Overview and characterization of retrievals of temperature, pressure, and atmospheric constituents from the High Resolution Dynamics Limb Sounder (HIRDLS) measurements, J. Geophys. Res.-Atmos., 114, D20304, https://doi.org/10.1029/2009JD011937, 2009.
Kim, Y.-J., Eckermann, S. D., and Chun, H.-Y.: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models, Atmos. Ocean, 41, 65–98, https://doi.org/10.3137/ao.410105, 2003.
Kinnison, D. E., Gille, J., Barnett, J., Randall, C., Harvey, V. L., Lambert, A., Khosravi, R., Alexander, M. J., Bernath, P. F., Boone, C. D., Cavanaugh, C., Coffey, M., Craig, C., Dean, V. C., Eden, T., Ellis, D., Fahey, D. W., Francis, G., Halvorson, C., Hannigan, J., Hartsough, C., Hepplewhite, C., Krinsky, C., Lee, H., Mankin, B., Marcy, T. P., Massie, S., Nardi, B., Packman, D., Popp, P. J., Santee, M. L., Yudin, V., and Walker, K. A.: Global observations of HNO3 from the High Resolution Dynamics Limb Sounder (HIRDLS): First results, J. Geophys. Res.-Atmos., 113, D16S44, https://doi.org/10.1029/2007JD008814, 2008.
Li, J. and Zeng, Q.: A unified monsoon index, Geophys. Res. Lett., 29, 115.1–115.4, https://doi.org/10.1029/2001GL013874, 2002.
Massie, S., Gille, J., Khosravi, R., Lee, H., Kinnison, D., Francis, G., Nardi, B., Eden, T., Craig, C., Halvorson, C., Coffey, M., Packman, D., Cavanaugh, C., Craft, J., Dean, V., Ellis, D., Barnett, J., Hepplewhite, C., Lambert, A., Manney, G., Strawa, A., and Legg, M.: High Resolution Dynamics Limb Sounder observations of polar stratospheric clouds and subvisible cirrus, J. Geophys. Res.-Atmos., 112, D24S31, https://doi.org/10.1029/2007JD008788, 2007.
McDonald, A. J.: Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations, J. Geophys. Res.-Atmos., 117, 1–12, https://doi.org/10.1029/2011JD016715, 2012.
Mertens, C., Russell, J., Mlynczak, M., She, C., Schmidlin, F., Goldberg, R., Lopezpuertas, M., Wintersteiner, P., Picard, R., and Winick, J.: Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument, Adv. Space Res., 43, 15–27, https://doi.org/10.1016/j.asr.2008.04.017, 2009.
Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, International Geophysics Series, Academic Press, Waltham, Massachusetts, USA, 2002.
Nardi, B., Gille, J. C., Barnett, J. J., Randall, C. E., Harvey, V. L., Waterfall, A., Reburn, W. J., Leblanc, T., McGee, T. J., Twigg, L. W., Thompson, A. M., Godin-Beekmann, S., Bernath, P. F., Bojkov, B. R., Boone, C. D., Cavanaugh, C., Coffey, M. T., Craft, J., Craig, C., Dean, V., Eden, T. D., Francis, G., Froidevaux, L., Halvorson, C., Hannigan, J. W., Hepplewhite, C. L., Kinnison, D. E., Khosravi, R., Krinsky, C., Lambert, A., Lee, H., Loh, J., Massie, S. T., McDermid, I. S., Packman, D., Torpy, B., Valverde-Canossa, J., Walker, K. A., Whiteman, D. N., Witte, J. C., and Young, G.: Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder, J. Geophys. Res.-Atmos., 113, D16S36, https://doi.org/10.1029/2007JD008837, 2008.
Preusse, P., Eckermann, S. D., and Offermann, D.: Comparison of Global Distributions of Zonal-Mean Gravity, Geophys. Res. Lett., 27, 3877–3880, 2000.
Preusse, P., Dörnbrack, A., Eckermann, S. D., Riese, M., Schaeler, B., Bacmeister, J. T., Broutman, D., and Grossman, K. U.: Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study, J. Geophys. Res.-Atmos., 107, 8178, https://doi.org/10.1029/2001JD000699, 2002.
Preusse, P., Ern, M., Eckermann, S. D., Warner, C. D., Picard, R. H., Knieling, P., Krebsbach, M., Russell III, J. M., Mlynczak, M. G., Mertens, C. J., and Riese, M.: Tropopause to mesopause gravity waves in August: Measurement and modeling, J. Atmos. Sol.-Terr., 68, 1730–1751, https://doi.org/10.1016/j.jastp.2005.10.019, 2006.
Preusse, P., Eckermann, S. D., and Ern, M.: Transparency of the atmosphere to short horizontal wavelength gravity waves, J. Geophys. Res.-Atmos., 113, D24104, https://doi.org/10.1029/2007JD009682, 2008.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C. Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res.-Atmos., 113, D17101, https://doi.org/10.1029/2008JD010013, 2008.
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010.
Sato, K. and Dunkerton, T. J.: Estimates of momentum flux associated with equatorial Kelvin and gravity waves, J. Geophys. Res.-Atmos., 102, 26247–26261, https://doi.org/10.1029/96JD02514, 1997.
Song, I.-S., Chun, H.-Y., Garcia, R. R., and Boville, B. A.: Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves and Its Application to Gravity Wave Drag Parameterization. Part II: Impacts in a GCM (WACCM), J. Atmos. Sci., 64, 2286–2308, https://doi.org/10.1175/JAS3954.1, 2007.
Stockwell, R. G.: S-transform analysis of gravity wave activity from a small scale network of airglow imagers, PhD thesis, The University of Western Ontario, available at: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999PhDT........98S (last access: 28 July 2015), 1999.
Stockwell, R. G., Mansinha, L., and Lowe, R. P.: Localization of the Complex Spectrum: The S Transform, IEEE T. Signal Proces., 44, 998–1001, 1996.
Trinh, Q. T., Kalisch, S., Preusse, P., Chun, H.-Y., Eckermann, S. D., Ern, M., and Riese, M.: A comprehensive observational filter for satellite infrared limb sounding of gravity waves, Atmos. Meas. Tech., 8, 1491–1517, https://doi.org/10.5194/amt-8-1491-2015, 2015.
Wang, L. and Alexander, M. J.: Gravity wave activity during stratospheric sudden warmings in the 2007–2008 Northern Hemisphere winter, J. Geophys. Res.-Atmos., 114, D18108, https://doi.org/10.1029/2009JD011867, 2009.
Wang, L., Fritts, D. C., Williams, B. P., Goldberg, R. A., Schmidlin, F. J., and Blum, U.: Gravity waves in the middle atmosphere during the MaCWAVE winter campaign: evidence of mountain wave critical level encounters, Ann. Geophys., 24, 1209–1226, https://doi.org/10.5194/angeo-24-1209-2006, 2006.
Wrasse, C., Fechine, J., Takahashi, H., Denardini, C., Wickert, J., Mlynczak, M., Russell, J., and Barbosa, C.: Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere, Adv. Space Res., 41, 1423–1428, https://doi.org/10.1016/j.asr.2007.06.073, 2008.
Wright, C. J.: Detection of stratospheric gravity waves using HIRDLS data, PhD thesis, University of Oxford, available at: http://ora.ouls.ox.ac.uk/objects/uuid:ef4aa65d-67c1-43ac-90de-1b5bda6c8230 (last access: 29 July 2015), 2010.
Wright, C. J.: A one-year seasonal analysis of martian gravity waves using MCS data, Icarus, 219, 274–282, https://doi.org/10.1016/j.icarus.2012.03.004, 2012.
Wright, C. J. and Gille, J. C.: HIRDLS observations of gravity wave momentum fluxes over the monsoon regions, J. Geophys. Res.-Atmos., 116, D12103, https://doi.org/10.1029/2011JD015725, 2011.
Wright, C. J. and Gille, J. C.: Detecting overlapping gravity waves using the S-Transform, Geophys. Res. Lett., 40, https://doi.org/10.1002/grl.50378, 2013.
Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., and Gille, J. C.: High Resolution Dynamics Limb Sounder Measurements of Gravity Wave Activity in the 2006 Arctic Stratosphere, J. Geophys. Res.-Atmos., 115, D02105, https://doi.org/10.1029/2009JD011858, 2010.
Wright, C. J., Rivas, M. B., and Gille, J. C.: Intercomparisons of HIRDLS, COSMIC and SABER for the detection of stratospheric gravity waves, Atmos. Meas. Tech., 4, 1581–1591, https://doi.org/10.5194/amt-4-1581-2011, 2011.
Wright, C. J., Osprey, S. M., and Gille, J. C.: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology, J. Geophys. Res.-Atmos., 118, 10980–10993, https://doi.org/10.1002/jgrd.50869, 2013.
Wu, D. L., Preusse, P., Eckermann, S. D., Jiang, J. H., de la Torre Juarez, M., Coy, L., and Wang, D. Y.: Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques, Adv. Space Res., 37, 2269–2277, https://doi.org/10.1016/j.asr.2005.07.031, 2006.
Yan, X., Arnold, N., and Remedios, J.: Global observations of gravity waves from High Resolution Dynamics Limb Sounder temperature measurements: A yearlong record of temperature amplitude and vertical wavelength, J. Geophys. Res.-Atmos., 115, D10113, https://doi.org/10.1029/2008JD011511, 2010.
Short summary
Data from the HIRDLS instrument are used to study the numerical variability of gravity waves. Observed distributions are dominated by long-vertical-short-horizontal-wavelength waves, with a similar spectral form at all locations. We further divide our data into subspecies by wavelength, and investigate variation in these subspecies in time and space. We show that the variations associated with particular phenomena arise due to changes in specific parts of the spectrum.
Data from the HIRDLS instrument are used to study the numerical variability of gravity waves....
Altmetrics
Final-revised paper
Preprint