Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7605-2015
https://doi.org/10.5194/acp-15-7605-2015
Research article
 | 
14 Jul 2015
Research article |  | 14 Jul 2015

A comprehensive investigation on afternoon transition of the atmospheric boundary layer over a tropical rural site

A. Sandeep, T. N. Rao, and S. V. B. Rao

Related authors

Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888, https://doi.org/10.5194/amt-16-871-2023,https://doi.org/10.5194/amt-16-871-2023, 2023
Short summary
Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements
Kadiri Saikranthi, Basivi Radhakrishna, Thota Narayana Rao, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019,https://doi.org/10.5194/acp-19-10423-2019, 2019
Short summary
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016,https://doi.org/10.5194/hess-20-1719-2016, 2016
A novel approach for the extraction of cloud motion vectors using airglow imager measurements
S. Satheesh Kumar, T. Narayana Rao, and A. Taori
Atmos. Meas. Tech., 8, 3893–3901, https://doi.org/10.5194/amt-8-3893-2015,https://doi.org/10.5194/amt-8-3893-2015, 2015
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015,https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign
Bing Cao, Jennifer S. Haase, Michael J. Murphy, M. Joan Alexander, Martina Bramberger, and Albert Hertzog
Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022,https://doi.org/10.5194/acp-22-15379-2022, 2022
Short summary
Wind lidars reveal turbulence transport mechanism in the wake of a tree
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022,https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021,https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021,https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
Measurement report: characteristics of clear-day convective boundary layer and associated entrainment zone as observed by a ground-based polarization lidar over Wuhan (30.5° N, 114.4° E)
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021,https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary

Cited articles

Acevedo, O. C. and Fitzjarrald, D. R.: The early evening surface-layer transition: Temporal and spatial variability, J. Atmos. Sci., 11, 2650–2667, 2001.
Anandan, V. K., Shravankumar, M., and Srinivasarao, I.: First results of experimental tests of newly developed NARL phased array Doppler sodar, J. Atmos. Ocean. Tech., 25, 1778–1784, 2008.
Angevine, W. M.: Entrainment results including advection and case studies from the Flatland boundary layer experiments, J. Geophys. Res., 104, 30947–30963, 1999.
Angevine, W. M.: Transitional, entraining, cloudy, and coastal boundary layers, Acta Geophys., 56, 2–20, 2008.
Beare, R. J., Edwards, J. M., and Lapworth, A. J.: Simulation of the observed evening transition and nocturnal boundary layers: Large–eddy modelling, Q. J. Roy. Meteor. Soc., 132, 61–80, 2006.
Download
Short summary
The afternoon-evening transition (AET) in the atmospheric boundary layer has been studied in an integrated approach using 3 years of tower, sodar and wind profiler measurements. Such a long-term data set has been used for the first time to understand the behavior of AET. It allowed us to study the seasonal variation. In contrast to the common belief that the transition evolves from bottom to top, the present study clearly showed that the start time of transition follows top-to-bottom evolution.
Altmetrics
Final-revised paper
Preprint