Articles | Volume 15, issue 3
Atmos. Chem. Phys., 15, 1221–1236, 2015
https://doi.org/10.5194/acp-15-1221-2015
Atmos. Chem. Phys., 15, 1221–1236, 2015
https://doi.org/10.5194/acp-15-1221-2015
Research article
04 Feb 2015
Research article | 04 Feb 2015

Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?

M. Leuchner et al.

Related authors

Comparison of different methods for the in situ measurement of forest litter moisture content
C. Schunk, B. Ruth, M. Leuchner, C. Wastl, and A. Menzel
Nat. Hazards Earth Syst. Sci., 16, 403–415, https://doi.org/10.5194/nhess-16-403-2016,https://doi.org/10.5194/nhess-16-403-2016, 2016
Short summary
ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015,https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Forest fire danger rating in complex topography – results from a case study in the Bavarian Alps in autumn 2011
C. Schunk, C. Wastl, M. Leuchner, C. Schuster, and A. Menzel
Nat. Hazards Earth Syst. Sci., 13, 2157–2167, https://doi.org/10.5194/nhess-13-2157-2013,https://doi.org/10.5194/nhess-13-2157-2013, 2013

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Ground-based investigation of HOx and ozone chemistry in biomass burning plumes in rural Idaho
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022,https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Insights into the significant increase in ozone during COVID-19 in a typical urban city of China
Kun Zhang, Zhiqiang Liu, Xiaojuan Zhang, Qing Li, Andrew Jensen, Wen Tan, Ling Huang, Yangjun Wang, Joost de Gouw, and Li Li
Atmos. Chem. Phys., 22, 4853–4866, https://doi.org/10.5194/acp-22-4853-2022,https://doi.org/10.5194/acp-22-4853-2022, 2022
Short summary
Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022,https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Full latitudinal marine atmospheric measurements of iodine monoxide
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022,https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022,https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary

Cited articles

Anderson, M. J., Daly, E. P., Miller, S. L., and Milford, J. B.: Source apportionment of exposures to volatile organic compounds: II. Application of receptor models to TEAM study data, Atmos. Environ., 36, 3643–3658, https://doi.org/10.1016/S1352-2310(02)00280-7, 2002.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R.: Our present understanding of the gas-phase atmospheric degradation of VOCs, in: Simulation and Assessment of Chemical Processes in a Multiphase Environment, edited by: Barnes, I. and Kharytonov, M. M., 1–19, Springer, Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-8846-9_1, 2008.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, 2003.
Badol, C., Locoge, N., and Galloo, J. C.: Using a source–receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions, Part II: Source contribution assessment using the chemical mass balance (CMB) model, Sci. Total. Environ., 389, 429–440, https://doi.org/10.1016/j.scitotenv.2007.09.002, 2008.
Download
Altmetrics
Final-revised paper
Preprint