Articles | Volume 13, issue 21
https://doi.org/10.5194/acp-13-10989-2013
https://doi.org/10.5194/acp-13-10989-2013
Research article
 | 
11 Nov 2013
Research article |  | 11 Nov 2013

Immersion freezing of birch pollen washing water

S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann

Related authors

Immersion freezing of ice nucleation active protein complexes
S. Hartmann, S. Augustin, T. Clauss, H. Wex, T. Šantl-Temkiv, J. Voigtländer, D. Niedermeier, and F. Stratmann
Atmos. Chem. Phys., 13, 5751–5766, https://doi.org/10.5194/acp-13-5751-2013,https://doi.org/10.5194/acp-13-5751-2013, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ice Nucleating Properties of Glassy Organic and Organosulfate Aerosol
Christopher Nathan Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3935,https://doi.org/10.5194/egusphere-2024-3935, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024,https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary
Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions
Pierre Grzegorczyk, Sudha Yadav, Florian Zanger, Alexander Theis, Subir K. Mitra, Stephan Borrmann, and Miklós Szakáll
Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023,https://doi.org/10.5194/acp-23-13505-2023, 2023
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary

Cited articles

Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., and Breitenbach, M.: The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene, EMBO J., 8, 1935–1938, 1989.
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012.
Clarke, A., Gleeson, P., Harrison, S., and Knox, R. B.: Pollen-stigma interactions: Identification and characterization of surface components with recognition potential, Proc. Natl. Acad. Sci. USA, 76, 3358–3362, 1979.
Clauss, T., Kiselev, A., Hartmann, S., Augustin, S., Pfeifer, S., Niedermeier, D., Wex, H., and Stratmann, F.: Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments, Atmos. Meas. Tech., 6, 1041–1052, https://doi.org/10.5194/amt-6-1041-2013, 2013.
Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell, C.: Biological residues define the ice nucleation properties of soil dust, Atmos. Chem. Phys., 11, 9643–9648, https://doi.org/10.5194/acp-11-9643-2011, 2011.
Download
Share
Altmetrics
Final-revised paper
Preprint