Articles | Volume 12, issue 3
Atmos. Chem. Phys., 12, 1239–1253, 2012
https://doi.org/10.5194/acp-12-1239-2012

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 12, 1239–1253, 2012
https://doi.org/10.5194/acp-12-1239-2012

Research article 01 Feb 2012

Research article | 01 Feb 2012

The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate

C. Brühl et al.

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020,https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Potential of future stratospheric ozone loss in the mid-latitudes under climate change and sulfate geoengineering
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-747,https://doi.org/10.5194/acp-2020-747, 2020
Revised manuscript accepted for ACP
Short summary
The impact of recent changes in Asian anthropogenic emissions of SO2 on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes
Suvarna Fadnavis, Rolf Müller, Gayatry Kalita, Matthew Rowlinson, Alexandru Rap, Jui-Lin Frank Li, Blaž Gasparini, and Anton Laakso
Atmos. Chem. Phys., 19, 9989–10008, https://doi.org/10.5194/acp-19-9989-2019,https://doi.org/10.5194/acp-19-9989-2019, 2019
Short summary
Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019,https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018,https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary

Cited articles

Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical sulphur cycle, Marine Chem., 30, 1–29, 1990.
Aydin, M., Williams, M. B., Tatum, C., and Saltzman, E. S.: Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos. Chem. Phys., 8, 7533–7542, https://doi.org/10.5194/acp-8-7533-2008, 2008.
Bandy, A. R., Thornton, D. C., Scott, D. L., Lalevic, M., Lewis, E. E., and Driedger III, A. R.: A time series for carbonyl sulfide in the Northern Hemisphere, J. Atmos. Chem., 14, 527–534, 1992.
Barkley, M. P., Palmer, P. I., Boone, C. D., Bernath, P. F., and Suntharalingam, P.: Global distributions of carbonyl sulfide in the upper troposphere and stratosphere, Geoph. Res. Lett., 35, L14810, https://doi.org/10.1029/2008GL034270, 2008.
Download
Altmetrics
Final-revised paper
Preprint