Articles | Volume 24, issue 16
https://doi.org/10.5194/acp-24-9401-2024
https://doi.org/10.5194/acp-24-9401-2024
Research article
 | 
15 Sep 2024
Research article |  | 15 Sep 2024

The importance of an informed choice of CO2-equivalence metrics for contrail avoidance

Audran Borella, Olivier Boucher, Keith P. Shine, Marc Stettler, Katsumasa Tanaka, Roger Teoh, and Nicolas Bellouin

Related authors

Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024,https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Relative humidity over ice as a key variable for Northern Hemisphere midlatitude tropopause inversion layers
Daniel Köhler, Philipp Reutter, and Peter Spichtinger
Atmos. Chem. Phys., 24, 10055–10072, https://doi.org/10.5194/acp-24-10055-2024,https://doi.org/10.5194/acp-24-10055-2024, 2024
Short summary
Technical note: Posterior uncertainty estimation via a Monte Carlo procedure specialized for 4D-Var data assimilation
Michael Stanley, Mikael Kuusela, Brendan Byrne, and Junjie Liu
Atmos. Chem. Phys., 24, 9419–9433, https://doi.org/10.5194/acp-24-9419-2024,https://doi.org/10.5194/acp-24-9419-2024, 2024
Short summary
Understanding the role of contrails and contrail cirrus in climate change: a global perspective
Dharmendra Kumar Singh, Swarnali Sanyal, and Donald J. Wuebbles
Atmos. Chem. Phys., 24, 9219–9262, https://doi.org/10.5194/acp-24-9219-2024,https://doi.org/10.5194/acp-24-9219-2024, 2024
Short summary
Interannual variations in Siberian carbon uptake and carbon release period
Dieu Anh Tran, Christoph Gerbig, Christian Rödenbeck, and Sönke Zaehle
Atmos. Chem. Phys., 24, 8413–8440, https://doi.org/10.5194/acp-24-8413-2024,https://doi.org/10.5194/acp-24-8413-2024, 2024
Short summary
Using historical temperature to constrain the climate sensitivity, the transient climate response, and aerosol-induced cooling
Olaf Morgenstern
Atmos. Chem. Phys., 24, 8105–8123, https://doi.org/10.5194/acp-24-8105-2024,https://doi.org/10.5194/acp-24-8105-2024, 2024
Short summary

Cited articles

Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., and Macey, A. H.: A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation, npj Clim. Atmos. Sci., 1, 16, https://doi.org/10.1038/s41612-018-0026-8, 2018. 
Archer, D., Eby, M., Brovkin, V., Ridgwell, A, Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev. Earth Pl. Sc. 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009. 
Bickel, M.: Climate Impact of Contrail Cirrus, DLR-Forschungsbericht, DLR-FB-2023-14, Dissertation, Ludwig-Maximilians-Universität München, 133 S, https://doi.org/10.57676/mzmg-r403, 2023. 
Bickel, M., Ponater, M., Bock, L., Burkhardt, U., and Reineke, S.: Estimating the effective radiative forcing of contrail cirrus, J. Climate, 33, 1991–2005, https://doi.org/10.1175/JCLI-D-19-0467.1, 2020. 
Download
Short summary
This work studies how to compare the climate impact of the CO2 emitted and contrails formed by a flight. This is applied to contrail avoidance strategies that would decrease climate impact of flights by changing the trajectory of aircraft to avoid persistent contrail formation, at the risk of increasing CO2 emissions. We find that different comparison methods lead to different quantification of the total climate impact of a flight but lead to similar decisions of whether to reroute an aircraft.
Altmetrics
Final-revised paper
Preprint