Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-807-2024
https://doi.org/10.5194/acp-24-807-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Improving 3-day deterministic air pollution forecasts using machine learning algorithms

Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma

Related authors

Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys., 22, 11359–11379, https://doi.org/10.5194/acp-22-11359-2022,https://doi.org/10.5194/acp-22-11359-2022, 2022
Short summary
Trends in air pollutants and health impacts in three Swedish cities over the past three decades
Henrik Olstrup, Bertil Forsberg, Hans Orru, Mårten Spanne, Hung Nguyen, Peter Molnár, and Christer Johansson
Atmos. Chem. Phys., 18, 15705–15723, https://doi.org/10.5194/acp-18-15705-2018,https://doi.org/10.5194/acp-18-15705-2018, 2018
Short summary
African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology
J. Pey, X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia
Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013,https://doi.org/10.5194/acp-13-1395-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
How to trace the origins of short-lived atmospheric species: an Arctic example
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025,https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Dust-producing weather patterns of the North American Great Plains
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025,https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025,https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary

Cited articles

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Muller, K.-R.: How to Explain Individual Classification Decisions, J. Mach. Learn. Res., 11, 1803–1831, 2010. 
Berkowicz, R.: OSPM – A parameterised street pollution model, Environ. Monit. Assess., 65, 323–331, 2000. 
Bisong, E. and Bisong, E.: Introduction to Scikit-learn. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 215–229, https://doi.org/10.1007/978-1-4842-4470-8, 2019. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., and Ryan, P.: Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches, Atmos. Environ, 151, 1–11, 2017. 
Download
Short summary
Up-to-date information on present and near-future air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by the input of lagged measurements and taking calendar information into account. The final modelled errors are substantially smaller than uncertainties in the measurements.
Share
Altmetrics
Final-revised paper
Preprint