Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-807-2024
https://doi.org/10.5194/acp-24-807-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Improving 3-day deterministic air pollution forecasts using machine learning algorithms

Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma

Related authors

Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys., 22, 11359–11379, https://doi.org/10.5194/acp-22-11359-2022,https://doi.org/10.5194/acp-22-11359-2022, 2022
Short summary
Trends in air pollutants and health impacts in three Swedish cities over the past three decades
Henrik Olstrup, Bertil Forsberg, Hans Orru, Mårten Spanne, Hung Nguyen, Peter Molnár, and Christer Johansson
Atmos. Chem. Phys., 18, 15705–15723, https://doi.org/10.5194/acp-18-15705-2018,https://doi.org/10.5194/acp-18-15705-2018, 2018
Short summary
African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology
J. Pey, X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia
Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013,https://doi.org/10.5194/acp-13-1395-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024,https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024,https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024,https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024,https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024,https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary

Cited articles

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Muller, K.-R.: How to Explain Individual Classification Decisions, J. Mach. Learn. Res., 11, 1803–1831, 2010. 
Berkowicz, R.: OSPM – A parameterised street pollution model, Environ. Monit. Assess., 65, 323–331, 2000. 
Bisong, E. and Bisong, E.: Introduction to Scikit-learn. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 215–229, https://doi.org/10.1007/978-1-4842-4470-8, 2019. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., and Ryan, P.: Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches, Atmos. Environ, 151, 1–11, 2017. 
Download
Short summary
Up-to-date information on present and near-future air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by the input of lagged measurements and taking calendar information into account. The final modelled errors are substantially smaller than uncertainties in the measurements.
Altmetrics
Final-revised paper
Preprint