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Abstract. As air pollution is regarded as the single largest environmental health risk in Europe it is important
that communication to the public is up to date and accurate and provides means to avoid exposure to high air
pollution levels. Long- and short-term exposure to outdoor air pollution is associated with increased risks of
mortality and morbidity. Up-to-date information on present and coming days’ air quality helps people avoid
exposure during episodes with high levels of air pollution. Air quality forecasts can be based on deterministic
dispersion modelling, but to be accurate this requires detailed information on future emissions, meteorological
conditions and process-oriented dispersion modelling. In this paper, we apply different machine learning (ML)
algorithms – random forest (RF), extreme gradient boosting (XGB), and long short-term memory (LSTM) –
to improve 1, 2, and 3 d deterministic forecasts of PM10, NOx , and O3 at different sites in Greater Stockholm,
Sweden.

It is shown that the deterministic forecasts can be significantly improved using the ML models but that the
degree of improvement of the deterministic forecasts depends more on pollutant and site than on what ML
algorithm is applied. Also, four feature importance methods, namely the mean decrease in impurity (MDI)
method, permutation method, gradient-based method, and Shapley additive explanations (SHAP) method, are
utilized to identify significant features that are common and robust across all models and methods for a pollutant.
Deterministic forecasts of PM10 are improved by the ML models through the input of lagged measurements
and Julian day partly reflecting seasonal variations not properly parameterized in the deterministic forecasts. A
systematic discrepancy by the deterministic forecasts in the diurnal cycle of NOx is removed by the ML models
considering lagged measurements and calendar data like hour and weekday, reflecting the influence of local
traffic emissions. For O3 at the urban background site, the local photochemistry is not properly accounted for
by the relatively coarse Copernicus Atmosphere Monitoring Service ensemble model (CAMS) used here for
forecasting O3 but is compensated for using the ML models by taking lagged measurements into account.

Through multiple repetitions of the training process, the resulting ML models achieved improvements for
all sites and pollutants. For NOx at street canyon sites, mean squared error (MSE) decreased by up to 60 %,
and seven metrics, such as R2 and mean absolute percentage error (MAPE), exhibited consistent results. The
prediction of PM10 is improved significantly at the urban background site, whereas the ML models at street
sites have difficulty capturing more information. The prediction accuracy of O3 also modestly increased, with
differences between metrics.

Further work is needed to reduce deviations between model results and measurements for short periods with
relatively high concentrations (peaks) at the street canyon sites. Such peaks can be due to a combination of non-
typical emissions and unfavourable meteorological conditions, which are rather difficult to forecast. Furthermore,
we show that general models trained using data from selected street sites can improve the deterministic forecasts
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of NOx at the station not involved in model training. For PM10 this was only possible using more complex LSTM
models. An important aspect to consider when choosing ML algorithms is the computational requirements for
training the models in the deployment of the system. Tree-based models (RF and XGB) require fewer compu-
tational resources and yield comparable performance in comparison to LSTM. Therefore, tree-based models are
now implemented operationally in the forecasts of air pollution and health risks in Stockholm. Nevertheless,
there is big potential to develop generic models using advanced ML to take into account not only local temporal
variation but also spatial variation at different stations.

1 Introduction

According to the World Health Organization (WHO), air pol-
lution is one of the leading causes of mortality worldwide
and is regarded as the single largest environmental health
risk (Fuller et al., 2022). Acute effects of air pollution are
due to short-term (e.g. daily) exposures that can lead to re-
duced lung function, respiratory infections, and aggravated
asthma (Lee et al., 2021). According to the European air
quality directive, information on air quality should be made
available to the public. Public information regarding the ex-
pected health risks associated with current or the next few
days’ concentrations of pollutants can be very important for
sensitive persons when planning their outdoor activities.

There are different approaches to obtaining information
on the spatio-temporal variation of air pollutant concen-
trations – from complex process-oriented models to differ-
ent types of statistical models. Gaussian plume models are
widely used in urban areas for estimating impacts on atmo-
spheric concentrations from different emission sources and
for health risk assessments (Munir et al., 2020; Johansson
et al., 2009; Orru et al., 2015; Johansson et al., 2017b).
Eulerian chemical transport models that describe emission,
transport, mixing, and chemical transformation of trace gases
and aerosols, e.g. CHIMERE, EMEP, and MATCH, are part
of the Copernicus Atmosphere Monitoring Service (CAMS,
https://atmosphere.copernicus.eu/, last access: 20 Decem-
ber 2023) to predict air pollution over Europe (Horálek et
al., 2019). The uncertainties in the output of the deterministic
models include uncertainties in the input, such as emissions,
model algorithms, and parameterizations.

In urban areas, detailed knowledge of the dedicated emis-
sion source is often crucial. For example, road traffic, as a
main emission source, can be modelled by various levels of
emission models (Ma et al., 2012; Keller et al., 2017). To as-
sess the concentration of contaminants, it is often required
to combine the models of emission and dispersion processes
(e.g. Ma et al., 2014). An alternative approach may derive
spatio-temporal distribution of air pollutants without mod-
elling the emission process. For example, using a land use
regression model is a popular method to explain spatial con-
trasts in air pollution concentrations (e.g. Hoek et al., 2008).

Data-driven models using machine learning (ML) have be-
come increasingly popular in predicting outdoor air qual-

ity (Rybarczyk and Zalakeviciute, 2018; Iskandaryan et
al., 2020). Previous studies predict both hourly and daily av-
erage concentrations of particulate matter (PM), as well as
gaseous air pollutants, using meteorological and traffic data
(e.g. Qadeer et al., 2020; Di et al., 2019; Thongthammachart
et al., 2021; Kamińska, 2019; Chuluunsaikhan et al., 2021;
Doreswamy et al., 2020; Castelli et al., 2020; Stafoggia et
al., 2019, 2020). In addition, a combination of ML, land-use
regression (LUR), dispersion modelling, and ground-based
and satellite measurements have been used to obtain tem-
porally and spatially distributed concentrations (Shtein et
al., 2020; Stafoggia et al., 2019; Brokamp et al., 2017; Di
et al., 2019). Recently, Kleinert et al. (2022) conducted a
study to forecast O3 concentrations in a longer-term horizon;
meanwhile, a deterministic model was also combined with
ML in the study of Hong et al. (2022) to forecast the PM2.5
concentration.

This paper aims to demonstrate how ML can improve the
1, 2, and 3 d deterministic forecasts of several critical ur-
ban air pollutants: particulate matter (PM10, particles with
an aerodynamic diameter less than 10 µm), nitrogen oxides
(NOx), and ozone (O3). The study covers both urban back-
ground and street canyon sites in Stockholm, Sweden. Three
ML algorithms were adopted, two based on decision trees
(random forest, RF, and extreme gradient boosting, XGB)
and one deep neural network model (long short-term mem-
ory, LSTM). These models were compared to investigate if
there are systematic differences in their prediction perfor-
mance depending on different pollutants and measurement
sites, which can be used to improve current applications in
Stockholm. Meanwhile, four methods for feature importance
ranking were applied to analyse the effects of different fea-
tures on the model prediction results.

2 Background

2.1 The Stockholm air quality forecast system

Stockholm city has used an air quality forecast system since
2021. Three different dispersion models are used to forecast
concentrations considering emissions and dispersion at the
European, urban and street-level scales described by Fig. 1.
The CAMS ensemble model, part of the Copernicus Pro-
gramme, was used to obtain forecasts of long-range trans-
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ported air pollution from outside of the Greater Stockholm
area. Previous assessments have found the ensemble model
to be more accurate than any individual model part of CAMS
(Meteo-France, 2017; Marécal et al., 2015). CAMS regional
ensemble forecasts are published once a day and each fore-
cast covers 96 h (4 d).

The contributions to concentrations due to local emissions
in the metropolitan area were performed on a 100 m resolu-
tion using a Gaussian dispersion model part of the Airviro
system (https://www.airviro.com/airviro/). In this modelling
domain (Greater Stockholm, 35× 35 km) individual build-
ings and street canyons are not resolved but treated using a
roughness parameter (Gidhagen et al., 2005). The Gaussian
model is fed with meteorological forecasts from the Swedish
Meteorological and Hydrological Institute (SMHI). A diag-
nostic wind model is used to account for influences of vari-
ations in topography and land use on the dispersion param-
eters input to the Gaussian model. For details regarding un-
certainties and validation of local modelling, see Johansson
et al. (2017a).

Finally, the Operational Street Pollution Model (OSPM),
developed by Berkowicz (2000) and driven by forecasted
meteorology from SMHI, is applied to the street canyon
sites. It has been applied earlier at Hornsgatan in Stockholm
in a number of modelling studies (e.g. Krecl et al., 2021;
Ottosen et al., 2015). NOx and PM10 are modelled on all
scales, whereas O3 is only forecasted by the CAMS ensem-
ble model.

For the urban-scale model domain, a detailed emission
database is used as input for the local dispersion modelling.
The database and its applications and comparisons between
modelling and measurements are described in SLB (2022).
The total emissions from road traffic are based on emission
factors for different vehicle types, including passenger cars,
buses, and light- and heavy-duty trucks. Exhaust emission
factors of NOx and particles are based on HBEFA version 3.3
(Keller et al., 2017) depending on the Euro class of the vehi-
cle. The emission factors per vehicle category were weighted
according to the national Swedish Transport Administration
vehicle registry, but the vehicle composition taken from na-
tional vehicle registry has been shown to be similar to the lo-
cal fleet using real-world number plate recognition measure-
ments at Hornsgatan (Burman and Johansson, 2010; Burman
et al., 2019). Non-exhaust emissions of PM due to wearing
of brakes, tyres, and roads are calculated using the NOR-
TRIP model (Denby et al., 2013a) forced by the forecasted
meteorology from SMHI. Information on shares of studded
winter tyres is obtained from manual counting every week
during the winter at different locations in the city centre and
along highways outside of the city. Road traffic emissions
are calculated for all roads with more than 3000 vehicles per
day. Other emission sources included in the local emissions
database include shipping and private and municipal heat-
ing (including burning of waste). More information about the

Stockholm air quality forecast system is provided in Engardt
et al. (2021).

2.2 Meteorological forecasts

As an integral part of the Stockholm air quality forecast
system, meteorological forecasts for a point in central 60
Stockholm are downloaded every morning from the websites
of SMHI (https://www.smhi.se/data/oppna-data, last access:
20 December 2023) and MET Norway (https://docs.api.met.
no/doc/, last access: 20 December 2023). The meteorologi-
cal forecasts extend over 10 d and are a combination of out-
put from a number of regional and global numerical weather
prediction models. The combination is based on statistical
adjustments and manual edits. Initial models of weather-
dependent PM emissions and urban and street canyon air
quality modelling are driven by meteorology. The forecasted
meteorological data are also used as predictors for the mod-
els in this study.

3 Methods

3.1 Data and pre-processing

The data used in this study were collected from four mon-
itoring stations in central Stockholm, including one urban
background site (Torkel Knutssonsgatan, hereafter called UB
or urban) and three street canyon sites (Hornsgatan, HO;
Folkungagatan, FO; and Sveavägen, SV). They are all lo-
cated in central Stockholm (see Fig. 2). Detailed descrip-
tions of measurement methods and sites are provided in Ap-
pendix A.

Data from the UB site cover approx. 1000 d (10 April 2019
through 31 December 2021). As the OSPM model became
operational at a later date, the street canyon data extend over
500 d (5 August 2020 through 31 December 2021). Pollu-
tant concentration measurements from monitoring stations,
pollutant forecasts, and meteorological forecasts from the
Stockholm air quality forecast system were aggregated into
the following four datasets.

All the data above were collected at 1 h intervals, with de-
tails illustrated in Table 1. It should be noted that there are
several studies that show the impact of the COVID-19 pan-
demic on pollutant emissions as a result of some restrictive
regulations (Sokhi et al., 2021; Torkmahalleh et al., 2021).
The COVID-19 pandemic in Sweden commenced in January
2020 and continued until February 2022, meaning that the
majority of the data were collected during this pandemic pe-
riod.

The pollutant measurements and forecasts from the deter-
ministic model exhibit a missing rate of less than 5 %, with a
few inaccurate samples, including outliers and negative val-
ues. Appendix B shows the missing status of O3 in the UB
dataset. To accurately represent the extreme values in the real
world, outliers were deliberately included in the data because
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Figure 1. Illustration of the deterministic modelling from European scale at a resolution of 0.1◦× 0.1◦ (ca. 11 km× 6 km) via urban scale
(100 m resolution over an area of 35× 35 km) down to the street canyon sites. The CAMS ensemble forecast map example is taken from
https://atmosphere.copernicus.eu/. The map with the Gaussian model local forecast example is output from the Airviro system (https://
www.airviro.com/airviro/, last access: 1 February 2023) used in Stockholm. The illustration of a street canyon site is taken from https:
//www.wikiwand.com/en/Operational_Street_Pollution_Model (last access: 1 February 2023).

Figure 2. Map of central Stockholm showing the locations of the urban background site and the street canyon traffic sites. Base map credits
are as follows: © OpenStreetMap contributors, licensed under the Open Data Commons Open Database License (ODbL) v1.0.

their occurrence is hard to justify. However, negative pollu-
tant samples were eliminated, and missing data were manu-
ally interpolated using historical average interpolation (Will-
mott and Matsuura, 1995).

Frequently employed approaches of interpolating time se-
ries data comprise constant interpolation, nearest-neighbour
interpolation, and linear interpolation. To keep the tempo-
ral relationship, the historical average interpolation is applied
based on the periodicity pattern in the data. The periodicity
of each feature, denoted by p, is determined by the analysis
of the autocorrelation function (ACF) and partial autocorre-

lation function (PACF) of the data. Subsequently, the missing
value p̃(t) at time t is substituted by the average of the avail-
able data from the two preceding periods and their adjacent
values:

p̃(t)=
1
n

∑(
p̃(t −p), p̃(t −p± 1), p̃(t − 2p),

p̃(t − 2p± 1)
)
, (1)

where n is the number of samples used in Eq. (2). An exam-
ple result of interpolation is shown in Appendix B.
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Table 1. Description of the dataset.

Name Time Range Pollutants Amount Features

Urban background, UB 10 April 2019–31 December 2021 NOx , PM10, O3 23 927 Pollutant measurements

Folkungagatan, FO 5 August 2020–31 December 2021 NOx , PM10 12 335 Pollutant forecasts

Hornsgatan, HO 5 August 2020–31 December 2021 NOx , PM10 12 335 Meteorological forecasts

Sveavägen, SV 5 August 2020–31 December 2021 NOx , PM10 12 335

3.2 Prediction scheme

This study is to forecast hourly concentrations for the com-
ing 1, 2, and 3 d of data based on historical pollutant mea-
surements and other available information as inputs, which is
a time series prediction for multiple time steps, for example,
72 time steps for 3 d prediction. Instead of more complex net-
work structure, multiple single-output ML models are chosen
for forecasting different air pollutants for k = 1, 2, and 3 d in-
tervals, as shown in Eq. (2).

ρ̂i,j (d, t)=ML_model
(
ρ̃i,j (d − k, t),ρS

i,j (d − k, t),

ρ̌i,j (d, t),W (d, t),C(d, t)
)
, (2)

where ρ̂i,j (d, t) is the forecast of the pollutant j for day
d and time t at the location i, and ρ̃i,j (d, t) is the cor-
responding real measurement; ρS

i,j (d, t) uses a set S to
represent several statistical measures, including maximum,
minimum, 25 % quantile, and 75 % quantile of the mea-
sured concentration data during the past 24 h until t , and
the measurement dataset can be represented by a set,
i.e.

{
ρ̃i,j (d, t), ρ̃i,j (d, t − 1), ρ̃i,j (d, t − 2). . .

}
ρ̌i,j (d, t) is the

predicted concentration using deterministic model. W (d, t)
represents the weather condition predicted for day d and time
t .

Figure 3 demonstrates the prediction horizon and lagged
information horizon for the case of 1 d prediction. To build
consistent statistical ML models with a fixed rolling horizon,
a new measurement point at the current time (d, t) will lead to
an additional prediction for 1 d ahead, i.e. the predicted value
at (d+1, t). In this case, the measurement statistics ρS

i,j (d, t)
will be based on 1 d preceding measurement data of (d, t),
resulting in a lagged rolling horizon described by Fig. 3.

3.3 Machine learning models

As already mentioned before, two tree-based ML models, RF
and XGB, and one deep-learning model, LSTM, are applied
to implement the prediction scheme. In addition, an ensemble
learning approach based on a general additive model (GAM),
aggregating the selected three learning models, is also ap-
plied to further optimize the results.

3.3.1 Framework

Figure 4 summarizes the framework of ML models and as-
sociated computational experiments for air pollution predic-
tion. The input includes the deterministic forecasts of PM10,
NOx , and O3 to evaluate how much the deterministic fore-
casts can be improved by the ML algorithms. In the com-
putational experiments, data-driven forecasting models are
trained for one urban background site and three street canyon
sites separately. Different ML models are trained and tested
separately for predicting various air pollution concentrations
in future periods, i.e. 1 d (0–24 h), 2 d (25–48 h), and 3 d (48–
72 h).

To make a fair comparison with all models, a vanilla
LSTM model in this case is set up to take the same type of
input as the other two models. In addition to the measured
air pollution time series data itself, the forecasted meteoro-
logical conditions for the prediction day d (or d+1 or d+2)
and calendar information such as weekday and hour are also
applied as input features. Moreover, the air pollutant concen-
trations predicted by the deterministic models are also used
as inputs to the ML models.

Table 2 presents a detailed explanation of the essential
input features that are applied in the computational exper-
iments. During feature engineering, new features are con-
structed through statistical analysis to expand the feature
space and facilitate context extraction. At the same time, tem-
poral attributes are decomposed and encoded to the dataset to
reflect the temporal dependence of each sample.

3.3.2 Model setups

All ML models are implemented in Python using exist-
ing libraries including scikit-learn (Bisong et al., 2019)
andpytorch (Paszke et al., 2019) for conventional ML models
and deep-learning models, respectively. The detailed imple-
mentation can be seen in the open-source code provided in
Zhang and Ma (2023).

The following configurations are applied as the initial
models.

– The initial parameters of the two tree-based models
(XGB and RF) are the default parameters of scikit learn,
and the tuned parameters are presented in Appendix C.
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Figure 3. Illustration of the machine learning modelling scheme for 1 d prediction based on available datasets.

Figure 4. Illustration summarizing input data for modelling 1, 2, and 3 d forecasts of PM10, NOx , and O3 using the four models.

– The LSTM model architecture consists of two layers of
LSTM with 100 neurons and a fully connected layer be-
fore the output. The activation function was tanh.

– The LSTM model was trained by Adam optimizer. The
initial learning rate is 0.01 and is dynamically changed
using the ReduceLROnPlateau algorithm, with a param-
eter patience of 10, which means that the algorithm
will monitor the performance (e.g. validation loss) for
10 consecutive epochs. If there is no improvement, the
learning rate will be reduced according to the specified
reduction strategy. The initial batch size is set as 72.

The data are split along the time axis with a ratio of 16 : 4 : 5
to achieve non-overlapping sets among training, validation,
and test data. Due to the autocorrelation of the air pollu-
tant data, the assumption of independent and identically dis-
tributed classical cross-validation is not satisfied. Therefore,
to preserve the time-dependent property, the function Time-
SeriesSplit in scikit-learn was chosen as the cross-validation
method. In the kth split, the data of the first k folds are set as

the training data, whereas the data of the (k+ 1)th fold is the
test set. Empirically, the value of k is set to be 5.

Given the inherent uncertainty of the ML models, they are
trained by setting different random seeds. Therefore, the final
results are presented in terms of statistical means and their
confidence intervals, which provide a consistent way to eval-
uate the robustness of the prediction models. The number of
repeated training processes in our experiment is set to 10 for
each model.

3.4 Hyperparameter optimization

The grid and greedy search approaches are combined in the
hyperparameter tuning process to balance the model optimal-
ity and computational cost (Liashchynskyi and Liashchyn-
skyi, 2019). The grid search allows for a systematic in-
vestigation of different combinations of hyperparameters,
whereas the greedy approach searches local optima for a cer-
tain variable iteratively.

Table 3 depicts the strategies of parameter optimization
when training the ML models. For each model, a tuning
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Table 2. Measured and forecasted air pollutant concentrations used as input data (features) in the ML modelling of pollutant concentrations
at the urban background site (UB) and at the street canyon sites (SC). For periodic input data, using sine and cosine values can remove
discontinuities and create consistent distance measures, thereby improving model accuracy. The bolded values are explained in column 3
(Description) of Table 2.

Category Short names Description

NOx_nday_local Deterministic 1, 2, and 3 d forecast of contributions from local
PM10_nday_local emissions based on urban-scale Gaussian modelling
n= 1,2,3

Deterministic features NOx_nday_regional Deterministic 1, 2, and 3 d forecast of contributions based
PM10_nday_regional from non-local emissions based on CAMS ensemble model
O3_nd_regional (regional background)
n= 1,2,3

Autocorrelation features

NOx_lagXX XX h lagged air pollutant concentrations based on
PM10_lagXX autocorrelation and prediction time span.
O3_lagXX
XX= 24, 48, 72

Statistical features

NOx_Sta_dXX Average, median, minimum, maximum, and quantiles 1 and 3
PM10_Sta_dXX of lagged air pollutant concentrations in rolling
O3_Sta_dXX XX h periods.
Sta= avg., median, min,
max, Q1, Q3
XX= 24,48,72

Time features

Time; Time_sin; Time_cos Julian day of the year (1,2,3, . . .365), sine, and cosine of 2∗π/365∗ wind direction.
Day of the week (1,2,3, . . .7), sine, and cosine of 2∗π∗d/7.

Time= year, julianday, Hour of the day (0,1,2, . . .23), sine, and cosine of 2∗π∗h/24.
month, weekday, day, hour year, month, and day

wind_direction Wind direction [0,360) at 10 m in central Stockholm,
wind_direction_cos sine and cosine of (2*pi/360)*wind direction
wind_direction_sin

Meteorological pressure; temperature; Pressure (10 m), temperature (10 m)
features precipitation; cloudiness

wind_speed Wind speed (10 m)

relative_humidity Relative humidity

boundary_layer_height Boundary layer height for central Stockholm

strategy is represented by a combination of a grid search
(the searching dimensions are described in { }) and a greedy
search (the search sequence is presented by→). The parame-
ter search space and optimal parameter combinations are pre-
sented in Appendix C.

For XGB and RF, the most influential parameters are the
number of evaluators (n_estimators), the number of input
features (max_features), and the learning rate. Therefore, a
grid search is first applied to identify an optimal combination
of those parameters. Appendix C shows the results of grid
search for n_estimators and learning_rate. The search spaces
for n_estimators and learning_rate are set to 9 and 12, re-
spectively, resulting in a total of 108 grid points. The optimal
model performance is achieved in (60,0.03). Subsequently,
the greedy search strategy is applied sequentially to find the

suboptimal combination of the parameters. The model per-
formance is evaluated according to the mean squared error
(MSE) on the validation set. For the LSTM model, only the
greedy search strategy is applied to optimize the parameters
sequentially due to the large search space and computational
cost for training the LSTM model.

3.5 Feature importance ranking

ML models used in our study are black-box models, and fea-
ture importance analysis plays a key role in understanding
the model behaviour and improvement. Feature analysis is
carried out by calculating an importance score for each indi-
vidual feature to quantitatively evaluate how much a feature
may contribute to the forecasts.

https://doi.org/10.5194/acp-24-807-2024 Atmos. Chem. Phys., 24, 807–851, 2024
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Table 3. Hyperparameter tuning method and process.

Models Hyperparameter tuning strategy∗

XGBoost {n_estimators, learning_rate} →max_depth→ subsample→ colsample_bytree→min_child_weight
RandomForest {n_estimators,max_features} →max_depth→min_samples_split→min_samples_leaf
LSTM batch_size→ n_steps_in→ hidden_size→ learning rate

∗ { } represents the dimension of grid search, and→ represents greedy search sequence.

For tree-based models, three methods, namely the mean
decrease in impurity (MDI) method, permutation method,
and Shapley additive explanations (SHAP) method, are used
for feature ranking. For LSTM models, the gradient-based
method, permutation method, and SHAP method were fre-
quently employed. Below is a simple explanation of the fea-
ture ranking methods for the ML models.

1. Mean decrease in impurity. Mean impurity decrease
(MDI) is a popular feature importance analysis for tree-
based models, such as RF. The implementation of the
method is integrated into scikit-learn. It calculates the
average reduction in impurities using the inclusion of
a particular feature as the importance score of this fea-
ture. However, the computation of impurity-based im-
portance is based on the training data, so it does not ac-
curately reflect the performance of the features for the
test set (Bisong et al., 2019).

2. Permutation. The permutation method is defined as the
decrease in model performance when a single feature
value is randomly shuffled (Breiman, 2001). For the
data used in this study, it can be applied to tree-based
models but also to neural networks like LSTM. The
computation of feature scores allows for the consider-
ation of the impacts of various features on the model
prediction capacity. The method has the benefit of cir-
cumventing the concerns about the tendency of MDI to
favour high-cardinality features.

3. Gradient-based method. The gradient-based method ex-
plains the local relationship between inputs and out-
puts by harnessing the gradients of the model prediction
with respect to input features as an importance score
(Baehrens et al., 2010). It should be noted that the gradi-
ents of neural networks depend on both input and output
data, and the feature importance for the LSTM model
was computed as the average of feature gradient ob-
tained from all samples in test data.

4. SHAP. Shapley additive explanations (SHAP) is a gen-
eral explanatory framework, in which SHAP values rep-
resent the average marginal contribution of each fea-
ture towards the difference between the model’s pre-
diction and a reference prediction. The greatest strength
of SHAP is its ability to reflect the influence of each

feature on each sample, which is interpreted as a posi-
tive or negative influence. The SHAP is an interpretation
scheme for almost all ML models. This study uses the
Python library shap to evaluate tree-based models and
LSTM, respectively (Lundberg and Lee, 2017; Shriku-
mar et al., 2017).

3.6 Statistical performance indicators

Several performance metrics have been selected for com-
paring the prediction results of different ML models includ-
ing R squared (R2), mean square error (MSE), and normal-
ized error measures, i.e. mean average error (MAE), mean
absolute percentage error (MAPE), root-mean-squared er-
ror (RMSE), and Pearson correlation (Pearson). These mea-
sures have also been recommended for air quality model
benchmarking in the context of the Air Quality Directive
2008/50/EC (AQD) by Janssen and Thunis (2022).

In addition, to properly assess model quality, it is nec-
essary to consider measurement uncertainty. In the Forum
for Air Quality Modeling, the modelling quality indicator
(MQI) is used to assess if a model fulfils certain objectives
(Janssen and Thunis, 2022). It is defined as the ratio between
the model bias at a fixed time (i), quantified by the RMSE,
and a quantity proportional to the measurement uncertainty
as follows:

MQI(i)=

√
1
n

∑n
i=1
(
yi − ŷi

)2
β

√
1
n

∑n
i=1U (yi)2

=
RMSE
βRMSU

,

where U (yi) is the expanded 95th percentile measurement
uncertainty and β is a coefficient of proportionality (Janssen
and Thunis, 2022). The value of β determines the stringency
of the MQI and is set equal to 2, thus allowing deviation be-
tween modelled and measured concentrations as twice the
measurement uncertainty. The uncertainty of the measure-
ments (RMSU ) was calculated for the mean of the measure-
ment concentrations as follows:

U (yi)= Ur (RV)
√(

1−∝2
)
y2
i +∝

2RV2 ,

where Ur (RV) and ∝ are parameters that depend on pollu-
tant and RV is a reference value, here taken to be 200, 50,
and 120 µgm−3, corresponding Ur (RV) was 0.24, 0.28, and
0.18 and ∝ was 0.20, 0.25, 0.79 for NO2, PM10, and O3, re-
spectively (Janssen and Thunis, 2022). In our case we have
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Table 4. Performance indicators.

Indicators Formula Indicators Formula

R2 R2(y, ŷ)= 1−
∑n
i=1(yi−ŷi)2∑n
i=1(yi−y)2 Mean square error MSE(y, ŷ)= 1

n

n∑
i=1

(
yi − ŷi

)2
Mean absolute percentage error MAPE(yŷ)= 1

n

n∑
i=1

|yi−ŷi |
|yi |

Root-mean-square error RMSE(yŷ)=

√
1
n

n∑
i=1

(
yi − ŷi

)2
Pearson correlation Pearson(y, ŷ)=

∑n
i=1(yi−yi )

(
ŷi−ŷi

)
√∑n

i=1(yi−yi )2

√∑n
i=1

(
ŷi−ŷi

)2

Note that ŷi is the predicted value of the ith sample, yi is the corresponding true value, and y is the mean value of all n samples. MAE and RMSE were normalized by
dividing by the mean of the measured concentrations, hereafter called nMAE and nRMSE.

calculated NOx , not NO2, but we used the same settings of
the parameters for NOx as recommended for NO2.

4 Computational results

The focus of this paper is to compare the deterministic fore-
casts of NOx , PM10 and O3 with the forecasts based on the
different machine learners which also include the determinis-
tic forecasts as input variables (features). As described above
we have made deterministic and ML forecasts for hourly
mean concentrations for the coming 72 h, based on 1, 2, and
3 d meteorological forecasts for one urban background site
(NOx , PM10, and O3) and three street canyon sites (NOx
and PM10). We also compare results separately for the urban
background site and the street canyon sites.

4.1 Urban background

4.1.1 Comparison between deterministic forecasts and
ML models – urban background

As illustrated in Table 5 and Fig. 5, all statistical perfor-
mance measures of the deterministic forecasts are improved
by the ML models for the pollutants: NOx , PM10, and O3.
The statistical mean and 95 % confidence intervals are esti-
mated from 10 repeated computational experiments using 10
different random seeds.

Table 5 summarizes the prediction performance of both
deterministic and ML models in terms of five selected met-
rics. For NOx , the R2 value increases, from a range between
0.12 and 0.22 for the deterministic forecasts to a range be-
tween 0.33 and 0.42 achieved by ML models. The other four
metrics, including MAPE, nRMSE, nMAE, and MSE, de-
crease for all forecasting days. The LSTM model achieves
superior performance for almost all the metrics, and XG-
Boost performs closely in this case. For PM10, R2 increases,
from the range of 0.08–0.21 in the deterministic forecasts
to higher values between 0.28 and 0.55 using ML models.
Again, there are big reductions in the other four performance
measures, among which MSE is decreased by 45 % com-

pared to deterministic forecasts. XGB and RF models are the
winners with comparable performance. For O3 there is about
a 40 % drop in MSE for tree-based models, with slight im-
provements on other metrics for all forecasting days. LSTM
also performs equally well and achieves remarkable perfor-
mance for the 3 d prediction. While the errors of determinis-
tic CAMS modelling for O3 are quite small when compared
to the prediction of NOx and PM10, MLs demonstrate their
capacity to further refine the pollutant prediction.

The width of the confidence interval indicates the reliabil-
ity of the model prediction results. The two tree-based mod-
els (XGB and RF) produce a very small variance, less than
1 %, whereas the LSTM model exhibits a higher variance
(but less than 5 %). The higher variance of LSTM model may
be due to the random initialization of the weights, which af-
fects the subsequent gradient descent trajectory and model
results.

Figure 5 presents statistical mean of 1, 2, and 3 d fore-
casts by ML and deterministic models. Overall, all the per-
formance metrics, including MQI and Pearson correlation,
are consistently improved by ML models for three pollutants,
NOx , PM10, and O3. The difference in performance metrics
achieved by different ML models is less than 30 %.

All MQI results are below 100 %, indicating that the devia-
tion between model results and measurements is smaller than
the estimated uncertainties of the measurements. XGBoost
seems more efficient in reducing MQI, from 66 % to 52 %
for PM10. The LSTM model shows a reduction of around
10 % on MQI for both NOx and O3. The Pearson correlation
reveals similar behaviour to theR2 but represents a more pro-
nounced enhancement on improvement.

Figure 6a shows an example time series plot of the fore-
casts by the GAM and deterministic models during Septem-
ber 2021. Similar plots are also demonstrated for other mod-
els in Appendix D. According to the figures, the ML models
show better performance in capturing the trends and variation
of measured pollutant concentrations, compared to the deter-
ministic forecasts, although they still have obvious deviations
from the real measurement. None of the models performs
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Figure 5. Statistical performances for ML models and the deterministic hourly forecasts for the urban site. Mean of 1, 2, and 3 d forecasts.
Note that the ranges are different for different metrics.

well in capturing the peaks of PM10, e.g. on 30 Septem-
ber. Figure 6b demonstrates an example time series plot of
the difference between the forecasted concentrations of three
pollutants, NOx , PM10, and O3, predicted by both determin-
istic and ML models and the real observation. The graphs
illustrate that during some hours all models systematically
show large absolute deviations from the observed mean con-
centrations. Sometimes the hours with large deviations for
NOx coincide with deviations for PM10, indicating some spe-
cific meteorological situation or common source that caused
this deviation.

Systematic deviations between the observed mean diurnal
variations and the deterministic forecast are shown in Ap-
pendix D. The deterministic forecasts are significantly im-
proved using the ML models, especially for NOx and O3. For
O3 the deterministic forecast systematically overestimates
the concentrations, which is mainly due to the fact that the
chemical destruction of O3 in the city centre is not prop-
erly accounted for by the regional CAMS model. For NOx ,
the concentrations calculated by the deterministic model are
systematically shifted 1 h compared to the observed concen-
tration, and this is likely associated with errors in parame-
terization of traffic emissions, which is the most important
source of NOx in Stockholm. For PM10, concentrations mod-
elled by the deterministic model are too low during the night
compared to observations, but this is corrected using RF and
XGB but not using GAM.

For the general public, it is important to receive informa-
tion on future pollution episodes with high concentrations.
The plots in Appendix E show that statistical performances
for all models are worse when concentrations are higher than
when the mean value is analysed. R2 is somewhat higher
for O3, while NOx and PM10 decreased significantly, with
the LSTM model having a relatively higher value among all
models for NOx , while the XGBoost shows higher values for
PM10. The nRMSE showed a similar trend to R2.

4.1.2 Importance of features – urban background

Figure 7 presents the top 10 features obtained by the four
feature ranking methods, i.e. MDI, gradient based, permuta-
tion, and SHAP. More detailed plots of feature importance
ranking are shown in Appendix F, including the results of all
models (RF, XGB and LSTM), for all three pollutants (PM10,
NOx , O3), and for all three forecasting periods (1, 2, and 3 d).
It should be noted that the local deterministic models, both
Gaussian and OSPM models, use the same meteorological
data to forecast hourly pollutant concentrations. So, when the
meteorological variables are important features for the ML
models, it indicates that the deterministic models do not cap-
ture all hidden processes related to those factors. Regarding
feature importance ranking for the urban background model,
we have the following findings.

1. For the NOx model, the factors, including temperature,
wind speed, calendar data, lagged 24 h mean concen-
trations, and local deterministic forecasts, are among
the top 10 most important variables, but the determin-
istic forecast is not the most important feature for any
model. Among the calendar features, hour is the most
important factor, indicating the importance of regular,
diurnal variations of traffic emissions. Since both XGB
and RF are decision-tree-based algorithms, the top 10
features selected by the three feature ranking methods
are basically the same; however, for LSTM, different
features are extracted. Among all models, only the per-
mutation model raises the importance of the determinis-
tic forecasts of O3 and PM10, which reflect the fact that
O3 production is dependent on the status of NOx (Ha-
genbjörk et al., 2017) and compensate for the results of
other methods of feature importance.

2. Regarding PM10, the regional deterministic forecast is
the most important feature of all models. Among the
meteorological factors, both wind direction and pres-
sure show their importance for prediction. The sea-
sonal variation is reflected in the importance of the Ju-
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Figure 6. (a) Temporal variations of hourly mean concentrations of NOx , PM10, and O3 at the urban background site during September
2021 based on mean of 1, 2, and 3 d forecasts for observations, deterministic forecasts, and GAM. (b) Absolute deviations of forecasted
NOx , PM10, and O3 concentrations from observed (Obs) concentrations based on mean of 1, 2, and 3 d forecasts for September 2021. All
data are hourly mean concentrations.

lian day. For LSTM, precipitation shows a high impor-
tance, indicating the dependence of suspension of dust
on surface wetness not being captured by the determin-
istic forecasts. For redundant features such as hour_sin
and hour_cos, the permutation method may calculate
lower importance values for both features due to mul-
ticollinearity despite being important in reality. In this
case, MDI and SHAP can capture those features.

3. For O3, all models result in similar feature importance
rankings. The deterministic forecasts are the dominant
features for the models of various forecasting hori-
zons. In addition, the lagged maximum concentration,
O3_max_d24, demonstrates its higher importance for
tree-based models. The high importance of relative hu-
midity (RH) reflects the potential fact that O3 concen-
trations may be higher during dry, clear-sky conditions,
not completely captured by the deterministic forecasts.

4.2 Street canyon sites

4.2.1 Comparison between deterministic forecasts and
ML models – street canyon sites

For all street sites, the forecasts of NOx are improved by the
ML models, which are illustrated in detail for different pol-
lutants in Fig. 8 and Table 6. The improvements in terms of

MQI, R squared (R2), Pearson correlation, MAPE, nRMSE,
nMAE, and MSE show similar patterns for the ML models
but differ between street sites.

Figure 8 summarizes the improvements, in terms of dif-
ferent statistical performance metrics, for NOx prediction at
all street canyon sites and for different ML models. The er-
ror, represented by MAPE, nRMSE, nMAE, and MSE, is re-
duced by 30 % to 60 %, and the R-squared coefficients are
increased by 30 % to 50 %. Similar to urban background, the
variation in Pearson correlation is similar to that of R2, but
Pearson correlation tends to be much larger than R2 for the
same model. Also, relative uncertainties decrease using the
ML models compared to the deterministic forecast.

It should be noted that the R2 of some deterministic fore-
casts is negative in Table 6, which implies that the determin-
istic forecasts are sometimes worse than simply using the
mean of pollutant concentration as the predictor. For Folkun-
gagatan, the GAM model shows a good integration of results
from the tree-based model and LSTM, resulting in further
improvement of the prediction performance. MSE of the XG-
Boost model drops by more than 40 % in Sveavägen. Fore-
casts for Hornsgatan show higher R2 and lower relative er-
rors compared to the other streets. In addition, LSTM models
exhibit greater variability compared to the tree model due to
its training process being more susceptible to random influ-
ences.
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820 Z. Zhang et al.: Improving 3 d AQ forecasts using MLs

Figure 7. Top 10 important features (%) of all 1 d forecasting models, XGB, RF, and LSTM, for the urban site. All data are hourly mean
concentrations.

Comparison between the statistical performance measures
of ML models and deterministic forecasts for PM10 gives
somewhat diverse results, depending on statistical measure,
street site, and ML model. MSE decreases slightly in most
cases and the normalized RMSE and MAE are lower for most
(but not all) ML models and streets, while MAPE often in-
creases using the ML models (Table 7 and Fig. 9).
R2 and Pearson of LSTM prediction are 10 % to 40 %

higher for Folkungagatan and Hornsgatan. However, the pre-
diction results for Sveavägen show little improvement, and
tree-based model and GAM give even worse MAPE than the
deterministic forecasts. For relative uncertainties represented

by MQI, there is no systematic improvement using ML mod-
els compared to the deterministic model.

Comparisons between the hourly temporal variations in
observations and forecasts of NOx with the GAM model in
October 2022 are shown in Fig. 10. Further details for all
models are presented in Appendix G. One can see that the
deterministic forecast tends to overestimate concentrations
of NOx during daytime especially for Sveavägen, and this is
corrected when the ML model is being applied. Correspond-
ing plots for PM10 are shown in Appendix F. In this case,
the GAM overestimates concentrations on Hornsgatan dur-
ing the beginning of October but performs well otherwise.
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Figure 8. Statistical performances for ML models and the deterministic hourly forecasts of NOx for the street site. Mean of 1, 2, and 3 d
forecasts. Note that the ranges are different for different metrics.

Figure 9. Statistical performances for ML models versus the deterministic hourly forecasts for PM10 at the street canyon sites. Mean of 1,
2, and 3 d forecasts. Note that the ranges are different for different metrics.

The improvement of the temporal variations of NOx and
PM10 is illustrated by comparing the mean diurnal variations
in observations with deterministic model and other models in
Appendix G. For all street sites, the deterministic forecasts of
both NOx and PM10 concentrations show systematic devia-
tions from observations, which are corrected by applying the
ML models, especially for NOx . The tendency that the GAM
model is not as good at capturing variations in PM10 at the
urban site is also seen here for the street canyon sites.

As pointed out before, it is important to assess statistical
performance measures for periods with high concentrations.
Similar to what is shown for the urban site, the statistical
performance indexes for all models are much worse for the
hourly average concentrations that are higher than the mean
values, and the pattern is also similar for the almost street
sites, as shown in Appendix H. However, the performance of
ML models for NOx maintains the improvement in Horns-
gatan, as detailed in Fig. 11, suggesting that the model effec-
tively captures the significant variations in high concentra-
tion levels.

4.2.2 Importance of features – street canyon sites

For the street canyon sites, the feature importance rank-
ings are different for PM10 and NOx and also depend on
ML models and street sites. Feature importance ranking in
Hornsgatan is shown in Fig. 12, and detailed rankings are
presented in Appendix I. There are, however, some typical
features that tend to be more important. For PM10, Julian
day, lagged measurements, and deterministic forecasts are,
in most cases, among the top 5 most important features for
RF and XGB models, whereas precipitation is an important
feature for LSTM models. For NOx , deterministic forecasts,
hour, and weekday are among the most important features,
while the features of lagged measurements seem less use-
ful for the ML models. The importance ranking of calendar
features of NOx models indicates the importance of diurnal
and weekday variations in traffic emissions not properly cap-
tured by the deterministic forecast. The importance of Julian
day reflects the seasonal variation of non-exhaust-emission
PM10, and the importance of precipitation reflects the im-
pacts of street wetness on the suspension of road dust. Even
though there are variations, it is difficult to summarize any
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Figure 10. (a) Temporal variations in hourly mean NOx concentrations at the street canyon site during October 2021 based on mean of
1, 2, and 3 d forecasts for observations (black), deterministic forecasts (grey) and GAM (red). (b) Absolute deviations of forecasted NOx
concentrations from observed (Obs) concentrations at the street canyon site based on a mean of 1, 2, and 3 d forecasts for October 2021.

Figure 11. Statistical performance measures for forecasted NOx
hourly mean concentrations higher than the mean values at Horns-
gatan, where ∗ represents a negative R2 value. Mean of 1, 2, and 3 d
forecasts.

systematic difference in the features between ML models for
the different street sites.

4.3 Generalization of street canyon modelling

Until now, the model performance has been evaluated using
training and testing data from three single sites. In Stock-
holm, as well as in other cities, most of the streets do not
have any monitoring stations. This is of course due to re-

source constraints but also associated with the fact that the
EU Air Quality Directives regulate the number of monitoring
sites required in a city depending on the level of air pollution
and number of inhabitants. The monitoring stations should
provide information for both areas where the highest concen-
trations of air pollutants occur and other areas that are rep-
resentative of the exposure of the general population. Fewer
resources are required if this information can be achieved by
accurate enough modelling.

We therefore analyse the generalization capacities of the
models, with the expectation that we can achieve certain pre-
diction performances of one site without having any mea-
surement data. Computational experiments were carried out
through cross-validation, which combines training and test-
ing data coming from different measurement sites. For the
street canyon sites, four combinations of training datasets
were applied to evaluate the generalization abilities of dif-
ferent ML models.

Figure 13 shows the mean of 1, 2, and 3 d forecasted NOx
and PM10 concentrations on the test set for the three street
canyon sites based on training the models on the other streets.
It shows that the forecast is improved compared to the deter-
ministic forecast for Hornsgatan and Sveavägen but not so
much for Folkungagatan. For Sveavägen the R2 is 0.14 us-
ing the deterministic forecast, whereas the ML models give
R2 between 0.62 and 0.63, and here all errors decrease sub-
stantially using the ML models. However, for Folkungagatan
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Figure 12. Top 10 most important features (%) for 1 d forecasts using XGB, RF, and LSTM at Hornsgatan. All data are hourly mean
concentrations.

the ML models show different results. R2 is similar or even
decreases for tree-based models, whereas errors mostly de-
crease depending on the ML applied.

The performance of PM10 is shown in the right column of
Fig. 13. It can be seen that it is not possible to find any major
improvement in the deterministic forecast for the streets us-
ing RF and XGB. However, with LSTMR2 increases slightly
and errors decrease for Hornsgatan and Sveavägen compared
to the deterministic forecasts.

5 Discussion

The performance of the ML models is quite similar for the
different sites and forecast days. However, there are large
differences in improvements for different pollutants. In gen-
eral, our results indicate that ML models are more effective at
improving NOx than PM10. For PM10 the ML models show
slight improvement in R2 but not much improvement in rela-
tive error. This difference in improvement is likely associated
with the different processes controlling the concentrations,
such as different sources: NOx concentrations are mainly due
to vehicle exhaust emissions, which show regular variations
from 1 d to the next depending on day of the week and time

of day, while PM10 is mainly due to road dust emissions con-
trolled by a combination of variations in vehicle volumes and
meteorological conditions that affect suspension of coarse
particles from street surfaces (e.g. Denby et al., 2013a; Jo-
hansson et al., 2007; Krecl et al., 2021). Road dust accumu-
lates on the road surfaces during wet road surface conditions
and is suspended by vehicle-induced turbulence during dry
conditions (Denby et al., 2013a).

The improvement of the forecasts of NOx with ML is
partly driven by the calendar, hour, day of the week. and to
some degree also Julian day, but different features appear to
be important for RF compared to XGB. For PM10, the sea-
sonal variation described by Julian day is the most impor-
tant feature at the street canyon sites for both RF and XGB.
This indicates that the deterministic forecasts are not capa-
ble of describing the impacts of meteorology and road dust
emissions on PM10, even though parameterizations of these
processes are included in the deterministic modelling sys-
tem. The total mass generated by road wear is a key factor
for PM10 emissions, and these emissions are strongly con-
trolled by surface moisture conditions. This is taken into ac-
count by the NORTRIP model. As pointed out by Denby et
al. (2013b), there are periods where surface wetness is not
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Figure 13. Statistical performances of NOx and PM10 forecasts for the streets in the test set when the ML models are trained using only
data from the other streets. Mean of 1, 2, and 3 d forecasts.

well modelled, and it is not known if this is the result of in-
put data, e.g. precipitation, or of the model formulation itself.

It is clear that the deterministic forecast of O3 underesti-
mates concentrations at the urban site due to the fact that the
local emissions of NOx influencing the photochemistry are
not properly considered by the CAMS model, but this is cor-
rected using the ML models. Despite the deterministic fore-
cast being the most important feature for both RF and XGB,
lagged measured mean and maximum O3 concentrations im-
prove the deterministic forecasts.

Despite the fact that the configurations and traffic situa-
tions are quite similar for the street canyon sites, the im-
provements in the deterministic forecasts over ML models
differ. For NOx , the forecasts at Hornsgatan are more accu-
rate (lower errors and higher R2) than for the other two sites,

while for PM10 there is no obvious difference between the
sites.

The overall model quality according to the recommenda-
tions by the Forum for Air Quality Modeling in the context
of the air quality directives is improved using the ML mod-
els, resulting in uncertainties that are significantly smaller
than the measurement uncertainties for all pollutants. How-
ever, the forecasts of the highest concentrations, including
episodes with high concentrations, are not systematically im-
proved for all pollutants and all performance measures using
the ML models.

We have shown that the statistical performances of the de-
terministic forecasts for concentrations of NOx at the street
canyon sites can be improved using the ML models. How-
ever, for PM10, LSTM showed systematic improvements at
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all sites. Thus, this again accentuates the importance of not
testing the models for only one pollutant. Further work is
needed to improve deterministic forecasts of PM10 based on
the training of ML models at a few monitoring stations. As
discussed above, the situation in Stockholm is different from
cities in central and southern Europe since the road dust con-
tribution is very large. It might be that results for PM10 are
different in other cities, but we have not found any publica-
tion on this matter.

5.1 Comparison of different ML models

Several studies have compared the performances of different
machine learners in predicting air quality (Zaini et al., 2021).
Assessing forecasts of PM10 and PM2.5 concentrations, Cz-
ernecki et al. (2021) found that XGB performed the best,
followed by RF and an artificial neural network model,
while stepwise regression performed the worst in four Pol-
ish agglomerations. Likewise, Joharestani et al. (2019) found
XGB to perform best of three ML models (XGB, RF, and
a deep-learning algorithm), in predicting PM2.5 in Tehran
(Iran). On the contrary, LSTM was shown to outperform XG-
Boost for forecasting hourly PM2.5 concentrations (Qadeer
et al., 2020), similar to what was shown by Chuluunsaikhan
et al. (2021). Cai et al. (2009) obtained more accurate pre-
dictions of CO concentrations using artificial neural network
modelling compared to using multiple linear regression and
the deterministic California line source dispersion model. On
the other hand, Shaban et al. (2016) concluded that a tree-
based algorithm (M5P) outperformed artificial neural net-
work modelling when comparing forecasts of different pollu-
tants in Qatar. There are many reasons for the different results
presented in the literature, including model formulation and
setup, different types of input data, and different atmospheric
conditions and source contributions governing the concentra-
tions. In addition, different performance metrics have been
used. This makes it hard to draw general conclusions regard-
ing which model to use. However, we find that other factors
may be more important to consider than the type of model,
such as sources of pollutants and influence of photochem-
istry, characteristics of the site resulting in different features
being of varying importance depending on pollutant type of
location. In this context, output of feature importance meth-
ods can provide useful information to improve models.

Another more practical aspect to consider when com-
paring the ML models is the complexity and computer re-
sources required for training the models. In air quality lit-
erature, deep-learning models such as standard LSTM and
other recurrent neural networks (RNNs) have been explored
for their prediction capacities. However, most of the stud-
ies have adopted complex neural network structures, such as
models of multiple outputs that mainly give convenience for
data processing and automated feature handling. Neverthe-
less, training even a simple LSTM model is computationally
much more expensive than the two conventional ML mod-

els, i.e. the decision-tree-based models (RF and XGB) in our
case. In fact, we have to resort to the high-performance ma-
chine, the Swedish Berzelius high-performance computer, to
reduce the computational time. For the current practice in our
real air quality prediction system, we implemented the two
tree-based models instead of LSTM. We are also exploring
well-designed deep-learning models, which may replace the
conventional models being adopted in the air quality system
in the near future, especially due to the ability to deploy a
generic model and handle all the modelling processes auto-
matically.

5.2 Temporal dependency of feature importance

The exploration of feature importance is one contribution
of the paper for analysing different ML models. In com-
parison to MDI and permutation methods, SHAP provides
a more comprehensive approach to analysing feature impor-
tance. The model can compute the importance value of each
feature for all data samples but also estimate the feature im-
portance value for each individual sample. This gives us a
useful tool to analyse the temporal dependency of feature im-
portance.

Figure 14 illustrates the feature importance analysis using
the SHAP method for an XGBoost model of 1 d NOx pre-
diction. Figure 14a illustrates the feature importance ranking
derived from test dataset, employing red dots to denote sam-
ples with higher numerical feature values and blue dots to
represent lower numerical values. In addition, the dots on the
left side of the x axis, i.e. SHAP value< 0, reflect a nega-
tive impact for predictions, while dots on the right side sug-
gest a positive impact. Figure 14a revealed a distinct relation-
ship between the feature hour_cos and the NOx predictions.
Higher values of hour_cos, representing night-time, exhibit
a negative impact on the forecasts. Conversely, lower values
of hour_cos show a positive correlation with the forecasts.
Additionally, the wider distribution of this feature indicates
its significant influence on the prediction process, suggest-
ing that the model may capture the diurnal pattern of traf-
fic emissions. In Fig. 14b, a more pronounced diurnal pat-
tern emerges. Here, SHAP values of feature hour are posi-
tive from 07:00 to 17:00 CET, contrasting with the negative
values observed at night. Meanwhile, the high concentration
of NOx forecasts nox_2d from 2 d deterministic model (red
dots) show an evident increase during the heavy traffic pe-
riod, spanning from 08:00 to 01:00 CET of the next day. This
observation reinforces the substantial effect of traffic emis-
sions on NOx levels.

Figure 15 displays a heatmap of SHAP values, illustrat-
ing the temporal variation of feature importance when they
are used by a model to forecast. The deterministic fore-
cast nox_3d plays an important role in prediction, i.e. exe-
cutes positive influence (red block) for NOx predictions with
higher numeric value and vice versa. Meanwhile, the week-
end, e.g. 2, 9, 16, and 23 October, exhibits negative impacts
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Figure 14. (a) Feature importance ranking based on the SHAP method of XGBoost model for the 1 d NOx prediction at the HO site. (b) The
relationship between feature hour and feature nox_2d from the results of SHAP method in panel (a). All examples belong to the test set.

(blue block), while the weekday factor provides positive sup-
port for model forecasts. The impact of the 24 h lagged val-
ues of NOx , nox_lag24, is also evident. For example, the
SHAP value at the peak on 19 October has a negative im-
pact, whereas the SHAP value of the next day shows a posi-
tive impact, which explains the delay between the predicted
peak and real observation.

6 Conclusions

This paper has applied different ML models to improve 1, 2,
and 3 d deterministic forecasts of NOx , PM10, and O3 con-
centrations for multiple locations in Stockholm, Sweden. It
is shown that the degree of improvement over deterministic
forecasts depends more on pollutant and monitoring site than
on what ML algorithm is applied. Also, four feature impor-
tance methods, namely MDI, permutation, gradient-based,
and SHAP, are utilized to identify significant features that are
common and robust across models. Notably, deterministic
forecasts of NOx are significantly improved across all sites
using all models. R2 is increased by up to 80 %, and predic-
tion errors are reduced by up to 60 %. For PM10, variable re-
sults are achieved, reflecting the more complicated processes
controlling the road wear emissions that constitute a large
fraction of PM10. For O3 at the urban background site, the
deviation between deterministically modelled absolute level
is corrected by the ML models, and nRMSE and nMAE are
reduced by on average around 20 %.

We have shown that it is possible to improve determinis-
tic forecasts of NOx at street canyon sites based on training

ML models at other sites. When tested for PM10, only LSTM
shows modest improvements compared to the deterministic
forecasts.

One contribution of our study is that we compare fore-
casts based on several pollutants and base our forecasts on a
combination of deterministic models, which are based on the
underlying physicochemical mechanisms responsible for the
emissions and dispersion of the pollutants, and three different
ML models with additional variables, such as measurement
data, calendar data, and meteorological data. The models are
evaluated at different sites and for different pollutants dur-
ing several months with different meteorological conditions.
In addition, by comparing the four feature importance meth-
ods, the robust features for associated models are identified,
establishing the foundation for model performance analysis
and improvement.

There are different aspects that we would like to further
improve and extend regarding the models. Investigating the
impact of the COVID-19 pandemic on our model’s perfor-
mance is meaningful, especially considering that our dataset
predominantly covers this specific time period during the
pandemic. Moreover, we will further explore the means to
transfer the learning approach to more general models, ad-
dressing the challenges posed by the scarcity of monitoring
stations in many areas and the representation of spatial cor-
relation of the measurement stations.
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Figure 15. SHAP feature importance analysis of the XGBoost model for the 1 d prediction of NOx concentrations at the HO street site. All
examples belong to the test set. The blue blocks imply a negative impact, while the red blocks are positive.

Appendix A: Description of measurement methods
and sites

All measurement methods are approved for monitoring ac-
cording to the EU Air Quality Directives for NOx , O3, and
PM10. PM10 was measured either using an optical particle
counter (Hornsgatan: OPC, Grimm EDM 180-MC) or ta-
pered element oscillating microbalance (Sveavägen, Folkun-
gagatan, and urban: TEOM model, 1400AB, Rupprecht &
Patashnik, Co.). NOx was measured using chemilumines-
cence (AC32M, Environnement S.A.), and O3 was measured
by UV absorption (O342M, Environnement S.A.).
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Table A1. Description of monitoring sites.

Site name Description Traffic volume Photo

Hornsgatan Street canyon site. Measurements 23 000 vehicles per day
of NOx and PM10 on north side (4 % heavy-duty vehicles).
of street, 3 m above ground. Vehicle composition
Street width 24 m and measured during 4-week
building height 24 m. campaigns using automatic

number plate recognition.

Sveavägen Street canyon site. 21 000 vehicles per day
Measurements of NOx and (7 % heavy-duty vehicles).
PM10 on west side of street,
3 m above ground.
Street width 33 m and
building height 24 m.

Folkungagatan Street canyon site. 12 000 vehicles per day
Measurements NOx and PM10 (18 % heavy-duty vehicles).
on west side of street,
3 m above ground.
Street width 24 m and
building height 24 m.

Torkel Urban background. ca. 13 000 vehicles on
Knutssongatan Measurements of NOx , Hornsgatan road

PM10, ozone, and 250 m north of site.
meteorology on top
of a 20 m high building.
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Appendix B: Interpolation

Figure B1. (a) The missing value of O3 in the UB dataset, where blue represents missing data and white represents not missing data.
(b) Interpolation results based on historical averages for O3 in the UB dataset. The yellow arrows indicate the interpolation results for
missing values of O3 within the yellow circle.

Appendix C: Hyperparameter tuning

Figure C1. Illustration of the results of hyperparameter tuning for the XGBoost model of NOx at Folkungagatan.
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Table C1. The result of hyperparameter tuning for all models and all sites.

Station Pollutants Models Range of hyperparameters Best parameters

FO NOx XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100, 125, 150], ’n_estimators’: 60,
’learning_rate’: [0.005, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3] ’max_depth’: 6,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_child_weight’: 10,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.8,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’learning_rate’: 0.03,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’subsample’: 0.4.

FO NOx RandomForest ’n_estimators’: [50, 100, 150, 200, 250, 300, 325, 350, 375, 400], ’max_features’: ’sqrt’,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 250,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 7,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 10,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 9

FO NOx LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 48,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 160,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

FO PM10 XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100, 125, 150], ’learning_rate’: 0.06,
’learning_rate’: [0.005, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3] ’n_estimators’: 300,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 2,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.5,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.3,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 9.

FO PM10 RandomForest ’n_estimators’: [50, 100, 150, 200, 300, 400, 425, 450, 475, 500, 550], ’max_features’: None,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 475,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 1,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 1.

FO PM10 LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 60,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 128,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

HO NOx XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100,125, 150], ’learning_rate’: 0.095,
’learning_rate’: [0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5], ’n_estimators’: 40,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 6,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.8,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.7,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 6.

HO NOx RandomForest ’n_estimators’: [50, 100, 150, 200, 250, 300, 325, 350, 375, 400], ’max_features’: None,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 375,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 1,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 2.

HO NOx LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 60,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 160,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’:0.005.

HO PM10 XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100, 125, 150], ’learning_rate’: 0.085,
’learning_rate’: [0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5], ’n_estimators’: 30,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 4,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.6,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.8,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 1.
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Table C1. Continued.

Station Pollutants Models Range of hyperparameters Best parameters

HO PM10 RandomForest ’n_estimators’: [50, 100, 150, 200, 300, 400, 425, 450, 475, 500, 550], ’max_features’: ’sqrt’,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 450,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 4,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 1.

HO PM10 LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 60,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 32,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

SV NOx XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100, 125, 150], ’learning_rate’: 0.09,
’learning_rate’: [0.001, 0.005, 0.01, 0.03, 0.05, 0.07, 0.09,0.1, 0.2, 0.3, 0.4, 0.5], ’n_estimators’: 60,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 6,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.8,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.6,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 10.

SV NOx RandomForest ’n_estimators’: [50, 100, 150, 200, 250, 300, 325, 350, 375, 400], ’max_features’: ’log2’,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 375,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 8,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 5

SV NOx LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 12,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 64,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

SV PM10 XGBoost ’n_estimators’: [30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], ’learning_rate’: 0.02,
’learning_rate’: [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4], ’n_estimators’: 50,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 3,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.2,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.9,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 1

SV PM10 RandomForest ’n_estimators’: [50, 100, 150, 200, 300, 400, 425, 450, 475, 500, 550], ’max_features’: ’log2’,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 500,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 8,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 3,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 1

SV PM10 LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 48,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 96,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’:0.01.

UB NOx XGBoost ’n_estimators’: [20, 30, 40, 50, 60, 75, 100, 125, 150], ’learning_rate’: 0.02,
’learning_rate’: [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4], ’n_estimators’: 150,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 6,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.8,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.6,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 3.

UB NOx RandomForest ’n_estimators’: [50, 100, 150, 200, 225, 250, 275, 300, 325, 350, 375, 400], ’max_features’: ’sqrt’,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 275,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 10,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 1,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 7.

UB NOx LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 60,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 160,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

UB PM10 XGBoost ’n_estimators’: [50, 75, 100, 200, 300, 400, 500, 600], ’learning_rate’: 0.04,
’learning_rate’: [0.01, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4], ’n_estimators’: 600,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 6,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.4,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.8,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 1.
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Table C1. Continued.

Station Pollutants Models Range of hyperparameters Best parameters

UB PM10 RandomForest ’n_estimators’: [50, 100, 150, 200, 250, 300, 325, 350, 375, 400], ’max_features’: None,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 250,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 6,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 5.

UB PM10 LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 24,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 96,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.001.

UB O3 XGBoost ’n_estimators’: [50, 100, 150, 200, 250, 275, 300, 325, 350, 400], ’learning_rate’: 0.04,
’learning_rate’: [0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.2, 0.3, 0.4], ’n_estimators’: 300,
”max_depth”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: 4,
”subsample”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’subsample’: 0.7,
”colsample_bytree”: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ’colsample_bytree’: 0.7,
”min_child_weight”: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_child_weight’: 10.

UB O3 RandomForest ’n_estimators’: [50, 100, 200, 300, 350, 375, 400, 425, 450, 500, 550, 600], ’max_features’: None,
’max_features’: [None, ’sqrt’, ’log2’], ’n_estimators’: 400,
’max_depth’: [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’max_depth’: None,
’min_samples_split’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ’min_samples_split’: 1,
’min_samples_leaf’: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. ’min_samples_leaf’: 7.

UB O3 LSTM ’batch_size’: [24, 48, 72, 96, 120, 144, 168], ’batch_size’: 168,
’n_steps_in’: [12, 24, 36, 48, 60], ’n_steps_in’: 24,
’hidden_size’: [32, 64, 96, 128, 160], ’hidden_size’: 128,
’learning_rate’: [1e−2,5e−2,1e−3,5e−3,1e−4

]. ’learning_rate’: 0.0001.
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Appendix D: Temporal variations in hourly mean
NOx, PM10, and O3 concentrations at the urban
background

Figure D1. Temporal variations of deterministic and ML-forecasted NOx , PM10, and O3 concentrations together with corresponding mea-
sured concentrations at the urban background site for September 2021. Mean of 1, 2, and 3 d forecasts.

Figure D2. Mean diurnal variations in measured and forecasted concentrations of NOx , PM10, and O3 at the urban site. Mean of 1, 2, and
3 d forecasts for June–December 2021.
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Appendix E: Statistical performance measures for
forecasts higher than the hourly mean
concentrations at the urban site

Figure E1. Statistical performance measures for concentrations of NOx , PM10, and O3 higher than the hourly mean value at the urban site,
where ∗ represents a negative R2 value. Mean of 1, 2, and 3 d forecasts.
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Appendix F: Importance of features – urban

Figure F1. Top 10 most important features (%) for NOx forecasts using XGB, RF, and LSTM at the urban site.
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Figure F2. Top 10 most important features (%) for PM10 forecasts using XGB, RF, and LSTM at the urban site.
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Figure F3. Top 10 most important features (%) for O3 forecasts using XGB, RF, and LSTM at the urban site.
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Appendix G: Temporal variations in hourly mean
NOx, PM10, and O3 concentrations at the street
canyon sites

Figure G1. Temporal variations of hourly deterministic and ML-forecasted NOx concentrations together with corresponding measured
concentrations at street canyon sites for October 2021. Mean of 1, 2, and 3 d forecasts.
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Figure G2. Temporal variations of hourly deterministic and ML-forecasted PM10 concentrations together with corresponding measured
concentrations at the street canyon sites for October 2021. Mean of 1, 2, and 3 d forecasts.
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Figure G3. Mean diurnal variations in measured and forecasted concentrations of NOx and PM10 at the street canyon sites. Mean of 1, 2,
and 3 d forecasts for September–December 2021. Shaded areas are 95 % confidence intervals.
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Appendix H: Statistical performance measures for
forecasted hourly mean concentrations higher than
the mean values at the street canyon sites

Figure H1. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean values at
Folkungagatan, where ∗ represents a negative R2 value. Mean of 1, 2, and 3 d forecasts.

Figure H2. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean values at
Hornsgatan, where ∗ represents a negative R2 value. Mean of 1, 2, and 3 d forecasts.

Figure H3. Statistical performance measures for forecasted NOx and PM10 hourly mean concentrations higher than the mean values at
Sveavägen, where ∗ represents a negative R2 value. Mean of 1, 2, and 3 d forecasts.
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Appendix I: Importance of features – street canyon
sites

Figure I1. Top 10 most important features (%) for NOx forecasts using RF, XGB, and LSTM at Folkungagatan.
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Figure I2. Top 10 most important features (%) for NOx forecasts using RF, XGB, and LSTM at Hornsgatan.
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Figure I3. Top 10 most important features (%) for NOx forecasts using RF, XGB, and LSTM at Sveavägen.
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Figure I4. Top 10 most important features (%) for PM10 forecasts using RF, XGB, and LSTM at Folkungagatan.
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Figure I5. Top 10 most important features (%) for PM10 forecasts using RF, XGB, and LSTM at Hornsgatan.
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Figure I6. Top 10 most important features (%) for PM10 forecasts using RF, XGB, and LSTM at Sveavägen.
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