Articles | Volume 24, issue 2
https://doi.org/10.5194/acp-24-807-2024
https://doi.org/10.5194/acp-24-807-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Improving 3-day deterministic air pollution forecasts using machine learning algorithms

Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma

Data sets

ACP-2023-38 paper submission support: code and data for 3-days prediction of Air Quality using Ma- chine Learning algorithms Zhiguo Zhang and Xiaoliang Ma https://doi.org/10.5281/zenodo.8433033

Download
Short summary
Up-to-date information on present and near-future air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by the input of lagged measurements and taking calendar information into account. The final modelled errors are substantially smaller than uncertainties in the measurements.
Altmetrics
Final-revised paper
Preprint