Articles | Volume 24, issue 8
https://doi.org/10.5194/acp-24-4895-2024
https://doi.org/10.5194/acp-24-4895-2024
Research article
 | 
25 Apr 2024
Research article |  | 25 Apr 2024

An inverse model to correct for the effects of post-depositional processing on ice-core nitrate and its isotopes: model framework and applications at Summit, Greenland, and Dome C, Antarctica

Zhuang Jiang, Becky Alexander, Joel Savarino, and Lei Geng

Related authors

A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022,https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Impacts of post-depositional processing on nitrate isotopes in the snow and the overlying atmosphere at Summit, Greenland
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022,https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Impacts of the photo-driven post-depositional processing on snow nitrate and its isotopes at Summit, Greenland: a model-based study
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere, 15, 4207–4220, https://doi.org/10.5194/tc-15-4207-2021,https://doi.org/10.5194/tc-15-4207-2021, 2021
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Examining ENSO-related variability in tropical tropospheric ozone in the RAQMS-Aura chemical reanalysis
Maggie Bruckner, R. Bradley Pierce, and Allen Lenzen
Atmos. Chem. Phys., 24, 10921–10945, https://doi.org/10.5194/acp-24-10921-2024,https://doi.org/10.5194/acp-24-10921-2024, 2024
Short summary
Global assessment of climatic responses to ozone–vegetation interactions
Xinyi Zhou, Xu Yue, Chenguang Tian, and Xiaofei Lu
Atmos. Chem. Phys., 24, 9923–9937, https://doi.org/10.5194/acp-24-9923-2024,https://doi.org/10.5194/acp-24-9923-2024, 2024
Short summary
The long-term impact of BVOC emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation
Marina Liaskoni, Peter Huszár, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Kateřina Šindelářová
EGUsphere, https://doi.org/10.5194/egusphere-2024-2027,https://doi.org/10.5194/egusphere-2024-2027, 2024
Short summary
Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024,https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Opinion: Understanding the impacts of agriculture and food systems on atmospheric chemistry is instrumental to achieving multiple Sustainable Development Goals
Amos P. K. Tai, Lina Luo, and Biao Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-293,https://doi.org/10.5194/egusphere-2024-293, 2024
Short summary

Cited articles

Abbatt, J. P. D.: Interaction of HNO3 with water-ice surfaces at temperatures of the free troposphere, Geophys. Res. Lett., 24, 1479–1482, https://doi.org/10.1029/97GL01403, 1997. 
Akers, P. D., Savarino, J., Caillon, N., Magand, O., and Le Meur, E.: Photolytic modification of seasonal nitrate isotope cycles in East Antarctica, Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, 2022a. 
Akers, P. D., Savarino, J., Caillon, N., Servettaz, A. P. M., Le Meur, E., Magand, O., Martins, J., Agosta, C., Crockford, P., Kobayashi, K., Hattori, S., Curran, M., van Ommen, T., Jong, L., and Roberts, J. L.: Sunlight-driven nitrate loss records Antarctic surface mass balance, Nat. Commun., 13, 4274, https://doi.org/10.1038/s41467-022-31855-7, 2022b. 
Alexander, B. and Mickley, L. J.: Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions, Curr. Pollut. Rep., 1, 57–69, https://doi.org/10.1007/s40726-015-0006-0, 2015. 
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004. 
Download
Short summary
Ice-core nitrate could track the past atmospheric NOx and oxidant level, but its interpretation is hampered by the post-depositional processing. In this work, an inverse model was developed and tested against two polar sites and was shown to well reproduce the observed nitrate signals in snow and atmosphere, suggesting that the model can properly correct for the effect of post-depositional processing. This model offers a very useful tool for future studies on ice-core nitrate records.
Altmetrics
Final-revised paper
Preprint