Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10965-2024
https://doi.org/10.5194/acp-24-10965-2024
Technical note
 | 
27 Sep 2024
Technical note |  | 27 Sep 2024

Technical note: Nighttime OH and HO2 chemical equilibria in the mesosphere–lower thermosphere

Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin

Related authors

Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023,https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Nighttime O(1D) distributions in the mesopause region derived from SABER data
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys., 38, 815–822, https://doi.org/10.5194/angeo-38-815-2020,https://doi.org/10.5194/angeo-38-815-2020, 2020
Nighttime O(1D) distributions in the mesopause region derived from SABER data
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-154,https://doi.org/10.5194/angeo-2019-154, 2019
Manuscript not accepted for further review
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018,https://doi.org/10.5194/acp-18-7453-2018, 2018
Daytime ozone loss term in the mesopause region
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017,https://doi.org/10.5194/angeo-35-677-2017, 2017

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024,https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023,https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Reaction dynamics of P(4S) + O2(X3Σg)  →  O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023,https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022,https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021,https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary

Cited articles

Avallone, L. M. and Toohey, D. W.: Tests of halogen photochemistry using in situ measurements of ClO and BrO in the lower polar stratosphere, J. Geophys. Res., 106, 10411–1042, https://doi.org/10.1029/2000JD900831, 2001. 
Belikovich, M. V., Kulikov, M. Yu, Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.: Ozone chemical equilibrium in the extended mesopause under the nighttime conditions, Adv. Space Res., 61, 426–432, https://doi.org/10.1016/j.asr.2017.10.010, 2018. 
Berger, U. and von Zahn, U.: Two level structure of the mesopause: A model study, J. Geophys. Res., 104, 22083–22093, 1999. 
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, https://jpldataeval.jpl.nasa.gov/ (last access: 19 September 2024), 2020. 
Download
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Altmetrics
Final-revised paper
Preprint