Articles | Volume 24, issue 17
https://doi.org/10.5194/acp-24-10113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-10113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing, 100190, China
Jianmei Wang
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing, 100190, China
Dan Liu
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing, 100190, China
Wenjie Guo
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing, 100190, China
Yiming Zhang
State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing, 100190, China
Related authors
Zengmao Zhang, Xiong Hu, Qingchen Xu, Bing Cai, and Junfeng Yang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-27, https://doi.org/10.5194/angeo-2024-27, 2025
Revised manuscript not accepted
Short summary
Short summary
Using horizontal wind data collected by the dual-frequency Stratosphere-Troposphere-Meteor radar at the Langfang Observatory, the spatiotemporal characteristics and propagation properties of planetary waves in the troposphere-stratosphere (ST) and mesosphere-lower thermosphere (MLT) were explored, along with their interactions across different atmospheric layers. These new observations enhance our understanding of vertical coupling between the ST and MLT through planetary waves.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Zengmao Zhang, Xiong Hu, Qingchen Xu, Bing Cai, and Junfeng Yang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-27, https://doi.org/10.5194/angeo-2024-27, 2025
Revised manuscript not accepted
Short summary
Short summary
Using horizontal wind data collected by the dual-frequency Stratosphere-Troposphere-Meteor radar at the Langfang Observatory, the spatiotemporal characteristics and propagation properties of planetary waves in the troposphere-stratosphere (ST) and mesosphere-lower thermosphere (MLT) were explored, along with their interactions across different atmospheric layers. These new observations enhance our understanding of vertical coupling between the ST and MLT through planetary waves.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Basic Dynamics, in: Middle Atmosphere Dynamics, International Geophysics, Academic Press, 40, 113–149, https://doi.org/10.1016/B978-0-12-058575-5.50008-6, 1987.
Atmospheric Chemistry Observations & Modeling/National Center for Atmospheric Research: Whole Atmosphere Community Climate Model, National Center for Atmospheric Research [code], https://www.cesm.ucar.edu/models/releases (last access: 7 September 2024), 2024.
Champion, K. S. W.: Middle atmosphere density data and comparison with models, Adv. Space Res., 10, 17–26, https://doi.org/10.1016/0273-1177(90)90232-O, 1990.
Chandran, A. and Collins, R. L.: Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: a study using WACCM, Ann. Geophys., 32, 859–874, https://doi.org/10.5194/angeo-32-859-2014, 2014.
Chen, B., Sheng, Z., and He, Y.: High-Precision and Fast Prediction of Regional Wind Fields in Near Space Using Neural-Network Approximation of Operators, Geophys. Res. Lett., 50, e2023GL106115, https://doi.org/10.1029/2023GL106115, 2023.
Cheng, X., Yang, J., Xiao, C., and Hu, X.: Density Correction of NRLMSISE-00 in the Middle Atmosphere (20–100 km) Based on TIMED/SABER Density Data, Atmosphere, 11, 341, https://doi.org/10.3390/atmos11040341, 2020.
China Meterological Administration National Satellite Meteorological Center: FY-3C/GNOS data, FENGYUN Satellite Data Center [data set], http://satellite.nsmc.org.cn (last access: 7 September 2024), 2024.
Chinese Meridian Project: Lidar data, Meridian Project Data Center [data set], https://data.meridianproject.ac.cn/ (last access: 7 September 2024), 2024.
Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., Ren, D., Chen, X., Lei, J., and Wang, Y.: Unveiling the Space Weather During the Starlink Satellites Destruction Event on 4 February 2022, Space Weather, 20, e2022SW003152, https://doi.org/10.1029/2022SW003152, 2022.
Davis, N. A., Richter, J. H., Glanville, A. A., Edwards, J., and LaJoie, E.: Limited surface impacts of the January 2021 sudden stratospheric warming, Nat. Commun., 13, 1136, https://doi.org/10.1038/s41467-022-28836-1, 2022.
De Wit, R. J., Hibbins, R., Espy, P. J., Orsolini, Y., Limpasuvan, V., and Kinnison, D. E.: Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming, Geophys. Res. Lett., 41, 4745–4752, https://doi.org/10.1002/2014GL060501, 2014.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res.-Atmos., 112, D09301, https://doi.org/10.1029/2006JD007485, 2007.
Garcia, R. R., Yue, J., and Russell III, J. M.: Middle Atmosphere Temperature Trends in the Twentieth and Twenty-First Centuries Simulated With the Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res.-Space, 124, 7984–7993, https://doi.org/10.1029/2019JA026909, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gille, J. C., Lyjak, L. V., and Smith, A. K.: The Global Residual Mean Circulation in the Middle Atmosphere for the Northern Winter Period, J. Atmos. Sci., 44, 1437–1454, https://doi.org/10.1175/1520-0469(1987)044<1437:TGRMCI>2.0.CO;2, 1987.
Hale, N., Lamotte, N., and Garner, T.: Operational Experience with Hypersonic Entry of the Space Shuttle, AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference, Orleans, France, 29 September–4 October 2002, 5259, https://doi.org/10.2514/6.2002-5259, 2002.
He, M., Forbes, J. M., Chau, J. L., Li, G., Wan, W., and Korotyshkin, D. V.: High-Order Solar Migrating Tides Quench at SSW Onsets, Geophys. Res. Lett., 47, e2019GL086778, https://doi.org/10.1029/2019GL086778, 2020.
Hoffmann, P., Singer, W., Keuer, D., Hocking, W., Kunze, M., and Murayama, Y.: Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events, J. Atmos. Sol.-Terr. Phy., 69, 2355–2366, https://doi.org/10.1016/j.jastp.2007.06.010, 2007.
Kodera, K., Mukougawa, H., Maury, P., Ueda, M., and Claud, C.: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation, J. Geophys. Res.-Atmos., 121, 80–94, https://doi.org/10.1002/2015JD023359, 2016.
Koval, A. V., Chen, W., Didenko, K. A., Ermakova, T. S., Gavrilov, N. M., Pogoreltsev, A. I., Toptunova, O. N., Wei, K., Yarusova, A. N., and Zarubin, A. S.: Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events, Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, 2021.
Lee, S. H.: The January 2021 sudden stratospheric warming, Weather, 76, 135–136, https://doi.org/10.1002/wea.3966, 2021.
Lee, W., Song, I. S., Kim, J. H., Kim, Y. H., Jeong, S. H., Eswaraiah, S., and Murphy, D.: The observation and SD-WACCM simulation of planetary wave activity in the middle atmosphere during the 2019 Southern Hemispheric sudden stratospheric warming, J. Geophys. Res.-Space, 126, e2020JA029094, https://doi.org/10.1029/2020JA029094, 2021.
Liu, G., Huang, W., Shen, H., Aa, E., Li, M., Liu, S., and Luo, B.: Ionospheric Response to the 2018 Sudden Stratospheric Warming Event at Middle- and Low-Latitude Stations Over China Sector, Space Weather, 17, 1230–1240, https://doi.org/10.1029/2019SW002160, 2019.
Liu, H. L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., Kinnison, D., Marsh, D. R., Smith, A. K., Richter, J., Sassi, F., and Oberheide, J.: Thermosphere extension of the Whole Atmosphere Community Climate Model, J. Geophys. Res.-Space, 115, A12302, https://doi.org/10.1029/2010JA015586, 2010.
Livesey, N., Read, W., Wagner, P., Froidevaux, L., Lambert, A., Manney, G., Pumphrey, H., Santee, M., Schwartz, M., and Wang, S.: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 4.2 x level 2 data quality and description document, Tech. rep., Jet Propulsion Laboratory, D-33509, 2015.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, C., and Wang, T.: The sudden stratospheric warming in January 2021, Environ. Res. Lett., 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021.
Manney, G. L., Harwood, R. S., MacKenzie, I. A., Minschwaner, K., Allen, D. R., Santee, M. L., Walker, K. A., Hegglin, M. I., Lambert, A., Pumphrey, H. C., Bernath, P. F., Boone, C. D., Schwartz, M. J., Livesey, N. J., Daffer, W. H., and Fuller, R. A.: Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming, Atmos. Chem. Phys., 9, 4775–4795, https://doi.org/10.5194/acp-9-4775-2009, 2009.
NCAR: Atmospheric Chemistry Observations & Modeling/National Center for Atmospheric Research/University Corporation for Atmospheric Research, and Climate and Global Dynamics Division/National Center for Atmospheric Research/University Corporation for Atmospheric Research: MERRA2 Global Atmosphere Forcing Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://rda.ucar.edu/datasets/ds313.3 (last access: 7 September 2024), 2024.
Oberheide, J., Pedatella, N. M., Gan, Q., Kumari, K., Burns, A. G., and Eastes, R. W.: Thermospheric Composition O/N Response to an Altered Meridional Mean Circulation During Sudden Stratospheric Warmings Observed by GOLD, Geophys. Res. Lett., 47, e2019GL086313, https://doi.org/10.1029/2019GL086313, 2020.
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The Stratospheric Sudden Warming Event in February 2018 and its Prediction by a Climate System Model, J. Geophys. Res.-Atmos., 123, 13332–13345, https://doi.org/10.1029/2018JD028908, 2018.
Rao, J., Garfinkel, C. I., White, I. P., and Schwartz, C.: The Southern Hemisphere Minor Sudden Stratospheric Warming in September 2019 and its Predictions in S2S Models, J. Geophys. Res.-Atmos., 125, e2020JD032723, https://doi.org/10.1029/2020JD032723, 2020.
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J. L. F., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophys. Res.-Atmos., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.
Schwartz, M. J., Livesey, N. J., and Read, W. G.: MLS/Aura Level 2 Geopotential Height and Temperature, NASA Goddard Earth Science Data and Information Services Center [data set], https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2 (last access: 7 September 2024), 2024.
Sherhag, R.: Die explosionsartigen Stratospharenerwarmungen des Spatwinters 1951–1952, Ber. Deut. Wetterd. (U. S. Zone), 6, 51–63, 1952.
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Stober, G., Jacobi, C., Matthias, V., Hoffmann, P., and Gerding, M.: Neutral air density variations during strong planetary wave activity in the mesopause region derived from meteor radar observations, J. Atmos. Sol.-Terr. Phy., 74, 55–63, https://doi.org/10.1016/j.jastp.2011.10.007, 2012.
Sun, Y., Bai, W., Liu, C., Liu, Y., Du, Q., Wang, X., Yang, G., Liao, M., Yang, Z., Zhang, X., Meng, X., Zhao, D., Xia, J., Cai, Y., and Kirchengast, G.: The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications, Atmos. Meas. Tech., 11, 5797–5811, https://doi.org/10.5194/amt-11-5797-2018, 2018.
Wang, C.: New Chains of Space Weather Monitoring Stations in China, Space Weather, 8, S08001, https://doi.org/10.1029/2010SW000603, 2010.
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Gun-Shing, C., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Yibo, J., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite, IEEE T. Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006.
Weaver, A. B., Alexeenko, A. A., Greendyke, R. B., and Camberos, J. A.: Flowfield uncertainty analysis for hypersonic computational fluid dynamics simulations, J. Thermophys. Heat Tr., 25, 10–20, https://doi.org/10.2514/1.49522, 2011.
World Meteorological Organization: Guide to Meteorological Instruments and Methods of Observation, WMO-No. 8, https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf (last access: 7 September 2024), 2018.
Wu, D. L. and Eckermann, S. D.: Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation, J. Atmos. Sci., 65, 3695–3718, https://doi.org/10.1175/2008JAS2489.1, 2008.
Yang, J., Xiao, C., Hu, X., and Xu, Q.: Responses of zonal wind at ∼40 N to stratospheric sudden warming events in the stratosphere, mesosphere and lower thermosphere, Sci. China Technol. Sc., 60, 935–945, https://doi.org/10.1007/s11431-016-0310-8, 2017.
Yuan, T., Thurairajah, B., She, C.-Y., Chandran, A., Collins, R. L., and Krueger, D. A.: Wind and temperature response of midlatitude mesopause region to the 2009 Sudden Stratospheric Warming, J. Geophys. Res.-Atmos., 117, D09114, https://doi.org/10.1029/2011JD017142, 2012.
Yue, C., Yang, G., Wang, J., Guan, S., Du, L., Cheng, X., and Yang, Y.: Lidar observations of the middle atmospheric thermal structure over north China and comparisons with TIMED/SABER, J. Atmos. Sol.-Terr. Phy., 120, 80–87, https://doi.org/10.1016/j.jastp.2014.08.017, 2014.
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft...
Altmetrics
Final-revised paper
Preprint