Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8705-2023
https://doi.org/10.5194/acp-23-8705-2023
Research article
 | 
08 Aug 2023
Research article |  | 08 Aug 2023

Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic

Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell

Related authors

Contrasting extremely warm and long-lasting cold air anomalies in the North Atlantic sector of the Arctic during the HALO-(𝒜 𝒞)3 campaign
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024,https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025,https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025,https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025,https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025,https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary

Cited articles

Akperov, M., Mokhov, I., Rinke, A., Dethloff, K., and Matthes, H.: Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations, Theor. Appl. Climatol., 122, 85–96, https://doi.org/10.1007/s00704-014-1272-2, 2015. a
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Glisan, J., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiema, O., Scinocca, J. F., Sein, D., Sobolowski, S., Winger, K., and Zhang, W.: Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX), J. Geophys. Res.-Atmos., 123, 2537–2554, https://doi.org/10.1002/2017JD027703, 2018. a
Akperov, M. G., Bardin, M. Y., Volodin, E. M., Golitsyn, G. S., and Mokhov, I. I.: Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model, Izv. Atmos. Ocean. Phy.+, 43, 705–712, https://doi.org/10.1134/S0001433807060047, 2007. a, b, c, d
Bao, J., Michelson, S., Neiman, P., Ralph, F., and Wilczak, J.: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture, Mon. Weather Rev., 134, 1063–1080, https://doi.org/10.1175/MWR3123.1, 2006. a
Bardin, M. and Polonsky, A.: North Atlantic oscillation and synoptic variability in the European-Atlantic region in winter, Izv. Atmos. Ocean. Phy.+, 41, 127–136, 2005. a
Download
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Share
Altmetrics
Final-revised paper
Preprint