Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8705-2023
https://doi.org/10.5194/acp-23-8705-2023
Research article
 | 
08 Aug 2023
Research article |  | 08 Aug 2023

Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic

Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell

Data sets

Global Atmospheric Rivers catalog for ERA5 reanalysis Melanie Lauer, Mario Mech, and Bin Guan https://doi.org/10.1594/PANGAEA.957161

ERA5 hourly data on single levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.adbb2d47

ERA5 hourly data on pressure levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.bd0915c6

Video supplement

ARs ACLOUD Melanie Lauer https://doi.org/10.5446/62348

ARS AFLUX Melanie Lauer https://doi.org/10.5446/62349

Download
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Altmetrics
Final-revised paper
Preprint