Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-7161-2023
https://doi.org/10.5194/acp-23-7161-2023
Research article
 | 
28 Jun 2023
Research article |  | 28 Jun 2023

Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications

Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker

Related authors

Thermal infrared observations of a western United States biomass burning aerosol plume
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024,https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022,https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022,https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024,https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023,https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Sebastien Garrigues, Samuel Remy​​​​​​​, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022,https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022,https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Atmospheric oxidation mechanism and kinetics of indole initiated by OH and Cl: a computational study
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022,https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary

Cited articles

Ahn, C., Kinney, E., and Torres, O.: OMI File Specification Document, https://docserver.gesdisc.eosdis.nasa.gov/repository/ (last access: 1 April 2023), 2011. 
Alfaro-Contreras, R., Zhang, J., Campbell, J. R., Holz, R. E., and Reid, J. S.: Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS, J. Geophys. Res.-Atmos., 119, 5410–5423, https://doi.org/10.1002/2013JD021270, 2014. 
Alfaro-Contreras, R., Zhang, J., Campbell, J. R., and Reid, J. S.: Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI, Atmos. Chem. Phys., 16, 47–69, https://doi.org/10.5194/acp-16-47-2016, 2016. 
Blunden, J. and Arndt, D. S.: State of the Climate in 2018, Bull. Am. Meteorol. Soc., 100, Si-S306, https://doi.org/10.1175/2019BAMSStateoftheClimate.1, 2019. 
Colarco, P. R., Gassó, S., Ahn, C., Buchard, V., da Silva, A. M., and Torres, O.: Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products, Atmos. Meas. Tech., 10, 4121–4134, https://doi.org/10.5194/amt-10-4121-2017, 2017. 
Download
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Altmetrics
Final-revised paper
Preprint