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Abstract. Due to a lack of high-latitude ground-based and satellite-based data from traditional passive- and
active-based measurements, the impact of aerosol particles on the Arctic region is one of the least understood
factors contributing to recent Arctic sea ice changes. In this study, we investigated the feasibility of using the
ultraviolet (UV) aerosol index (AI) parameter from the Ozone Monitoring Instrument (OMI), a semi-quantitative
aerosol parameter, for quantifying spatiotemporal changes in UV-absorbing aerosols over the Arctic region. We
found that OMI AI data are affected by an additional row anomaly that is unflagged by the OMI quality control
flag and are systematically biased as functions of observing conditions, such as azimuth angle, and certain surface
types over the Arctic region, resulting in an anomalous “ring” of climatologically high AI centered at about
70◦ N, surrounding an area of low AI over the pole. Two methods were developed in this study for quality-
assuring the Arctic AI data. Using quality-controlled OMI AI data from 2005 through 2020, we found decreases
in UV-absorbing aerosols in the spring months (April and May) over much of the Arctic region and increases
in UV-absorbing aerosols in the summer months (June, July, and August) over northern Russia and northern
Canada. Additionally, we found significant increases in the frequency and size of UV-absorbing aerosol events
across the Arctic and high-Arctic (north of 80◦ N) regions for the latter half of the study period (2014–2020),
driven primarily by a significant increase in boreal biomass-burning plume coverage.

1 Introduction

The Arctic region experienced noticeable changes in climate
over the past 2 decades (Serreze and Francis, 2006; Serreze
and Barry, 2011; Dai et al., 2019). Notable are the rapid melt-
ing of Arctic sea ice (Comiso, 2012; Dai et al., 2019; Kwok
and Rothrock, 2009), increased permafrost melting (Kokelj
et al., 2017; Blunden and Arndt, 2019; Liljedahl et al., 2016),
and shifts in wildfire activity (Xian et al., 2022b). Despite
being identified as a major factor affecting the Arctic cli-
mate, atmospheric aerosol particles are still a large source
of uncertainty in climate simulations (IPCC, 2013). Aerosol
particles can alter the Arctic climate directly through reflect-

ing/absorbing solar incoming energy and absorbing terres-
trial emission of IR radiation (for micrometer-sized particles
such as dust) and indirectly as cloud condensation nuclei by
modifying cloud properties and increasing snow–ice melting
through deposition of dust/smoke aerosols on snow- and ice-
covered surfaces. All of these factors may very well interact
between themselves and the overall Arctic meteorology re-
sulting in a difficult sea ice prediction problem.

One of the limitations of current Arctic aerosol studies is
that there are few spaceborne measurements from tradition-
ally aerosol-sensitive instruments (both passive- and active-
based). This is largely due to the bright and variable lower
boundary conditions of snow, ice, and low clouds in the re-
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gion (Martin, 2008). Consequently, there are no current op-
erational aerosol retrievals that are available over the Arctic
region from passive-based sensors such as the Moderate Res-
olution Imaging Spectroradiometer (MODIS), Multi-angle
Imaging SpectroRadiometer (MISR), and Visible Infrared
Imaging Radiometer Suite (VIIRS) (Xian et al., 2022a). Ac-
tive sensors, such as the Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP) on board the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite, are able to provide retrievals of aerosol vertical pro-
files regardless of the surface condition by measuring re-
turned backscatter for the atmospheric layers below. Yet,
CALIPSO’s orbit only extends up to 82◦ N, missing a large
portion of the Arctic region, and CALIOP aerosol retrievals
suffer from a “retrieval filled value” issue over or near the
Arctic region due to the reduced sensitivity to optically thin
aerosol layers (Toth et al., 2018).

The Ozone Monitoring Instrument (OMI), on board the
Aura satellite, is a nadir-viewing spectrometer that measures
backscattered solar radiation at channels both sensitive and
not sensitive to ozone (Levelt et al., 2006). The OMI aerosol
index (AI) is a semi-quantitative aerosol parameter that re-
lates perturbations in UV radiance presumably caused by
absorbing aerosols to an assumed radiance from a purely
Rayleigh atmosphere and is able to detect UV-absorbing
aerosols over bright surfaces such as clouds, deserts, snow,
and ice (Torres et al., 2012; Alfaro-Contreras et al., 2014,
2016; Zhang et al., 2021). Launched in 2004, OMI provides
one of the longest contiguous data records of the Arctic re-
gion at much higher spatial resolution than previous UV-
sensitive spectrometers such as the Total Ozone Mapping
Spectrometer (13×24 km2 for OMI, 50×50 km2 for TOMS).
While widely used in scientific applications for detection of
UV-absorbing aerosols over lower-latitude regions, OMI AI
suffers from its own problems, including a well-known row
anomaly issue that affects downstream products such as OMI
AI (Torres et al., 2018) that could hinder aerosol analyses
based on OMI AI in the Arctic. The OMI row anomaly first
began in 2008 and is believed to be caused by a “physical
obstruction”, with the number of affected rows growing and
decreasing over the years and now affecting over 30 rows, or
over 50 % of all OMI rows, and removing about one-quarter
of coverage from each OMI swath. Further, long-period av-
erage AI fields demonstrate an unnatural pattern of seasonal
“rings”. The ring, seen in the spring (April and May; Fig. 1a)
and summer (June, July, and August; Fig. 1b), consists of
high AI values in latitudes between approximately 70 and
80◦ N and much lower AI values in latitudes north of ap-
proximately 80◦ N. Additional high AI values are seen over
shoreline regions in northern Russia, as well as along the ice–
water boundary in the Greenland Sea.

In this study, we investigated uncertainties in OMI AI by
enhancing this parameter’s specificity by developing qual-
ity control methods. Using a revised and quality-controlled
dataset, we studied extreme UV-absorbing aerosol events

(dust and/or biomass-burning smoke; BB) over the Arctic re-
gion. Lastly, the developed OMI AI data may also be used
for ongoing OMI AI data assimilation efforts over the Arctic
region (e.g., Zhang et al., 2021).

2 OMI datasets

On board the Aura satellite with a ∼ 13:30 local equatorial
crossing time, OMI measures reflected solar energy between
270–500 nm (Levelt et al., 2006). Using radiance measure-
ments at the 354 nm spectral channel, the OMI aerosol index
(ultraviolet aerosol index, UVAI) is derived based on Eq. (1):

UVAI= −100log

[
I obs
λ

I cal
λ

]
, (1)

where I obs
λ is the observed radiance and I cal

λ is the calcu-
lated radiance for a hypothetical pure Rayleigh scattering
atmosphere. Over non-snow–ice surfaces, I cal

λ for the op-
erational product is calculated by considering both clear-
and cloudy-sky contributions, but over snow–ice surfaces,
I cal
λ is calculated assuming a Lambertian surface reflectiv-

ity with no consideration of cloud cover status (Torres and
Leonard, 2018). OMI OMAERUV V003 UV aerosol index
data from the Aura OMI Level 2 near-UV aerosol data prod-
uct “OMAERUV” are retrieved from the Goddard Earth Sci-
ences Data and Information Services Center (GES DISC)
archive for times between 1 April and 30 September each
year from 2005 through 2020 (Torres, 2006). Sunlight is ab-
sent from the Arctic region during the boreal winter months,
so only UVAI data between 1 April and 30 September of each
year are analyzed.

3 Observed bias/uncertainties in OMI AI data

As the first phase of the study, to construct the quality-
assured AI data for quantitative climatology and trend anal-
ysis of aerosol distributions over the Arctic region, we inves-
tigate uncertainties in the Arctic OMI AI data caused by the
row anomaly and by observing condition dependencies.

3.1 Row anomaly

The first possible cause for the AI ring over the Arctic re-
gion as shown in Fig. 2 may be associated with the OMI
row anomaly. In the OMI data, row anomalies are high-
lighted with a quality control flag named XTrackQualityFlag
(Xtrack). The Xtrack values change from 0 to 4, represent-
ing a row as “not affected” (Xtrack value of 0); “affected,
not corrected, do not use” (Xtrack value of 1); “slightly af-
fected, not corrected, use with caution” (Xtrack value of 2);
“affected, corrected, use with caution” (Xtrack value of 3);
and “affected, corrected, use pixel” (Xtrack value of 4) by
the row anomalies.
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Figure 1. Spring (April, May) and summer (June, July, and August) climatological averages of pre-quality-control (QC) OMI aerosol index
(AI) between April 2005 and September 2020.

However, even after applying the Xtrack flag screening
(by using OMI AI data with Xtrack= 0 only), additional
bad sensor rows are found throughout the OMI data record
(e.g., Fig. 2). As seen in Fig. 2a, which shows the OMI AI
values for 10 April 2012 at 21:52:00 UTC, two rows (43
and 44) with significantly high AI values of above 3 are
found in the middle of the swath, while the adjacent rows
(45–50) report much lower AI. These same two rows report
similarly high AI in the following swath on 10 April 2012
at 23:30:00 UTC (Fig. 2b), indicating that the AI signal in
the two swaths is non-meteorological and is caused by the
unflagged-row anomaly. The unflagged anomalous rows in
the OMI dataset, which seem to exhibit a latitudinal depen-
dence, must be identified and removed from further analysis.

The first step in cleaning the OMI data is to remove the
bad scan rows that are not flagged by the Xtrack flag through
the entire study period of 1 April 2005 to 30 September 2020.
Daily averages of AI from all 60 OMI sensor rows over the
Arctic are calculated, and if any one of those 60 row averages
is more than 2 standard deviations away from the mean of all
60 row averages, it is flagged as a bad row. For example, for
the single OMI swath shown in Fig. 2b, the averages of the AI
values from each row over the Arctic (Fig. 2c) reveal that the
average AI in rows 43 and 44 is significantly higher than in
the other rows, more than twice as large as any of the other
row averages from the swath and nearly 400 % higher than
nearby rows 47 and 48. Figure 2e shows the “flagged-” (blue)
and “unflagged-row” (red) anomaly-affected rows in the Arc-
tic OMI data between 1 April 2005 and 30 September 2020.
The flagged rows in the figure reflect any row in which at
least one pixel over the Arctic has a non-zero Xtrack qual-
ity control (QC) flag value, indicating that it is affected by
the row anomaly. The unflagged rows are more than 2 stan-
dard deviations away from the average of all rows over the

Arctic (indicating a row anomaly) but are not flagged by the
Xtrack QC flag. As shown in Fig. 2e, the bad rows identified
by the algorithm are variable across the dataset time period,
with scattered unidentified bad rows found in the 10 s before
2012 and others in the 40 s found between 2012 and 2013.
The most strongly affected unflagged rows found by the al-
gorithm are rows 24, 22, and 53, with row 24 being con-
taminated from 2013 to 2015, row 22 being contaminated in
2016, and row 53 being contaminated from 2016 until at least
the end of the time period. The unflagged bad rows found for
each day are used in further analysis to pre-screen the AI data
before applying the main QC methods.

3.2 Other observing-condition-related uncertainties

There are known limitations in the OMAERUV retrieval al-
gorithm over topographically variable regions. The assumed
surface pressure plays a critical role in the radiative transfer
calculation of the Rayleigh atmosphere scattering necessary
to determine the UV reflectance perturbation due to the ab-
sorbing aerosols. Thus, there are known AI biases in regions
where the actual surface pressure varies from the pressure
assumed by the OMAERUV algorithm, such as in moun-
tainous regions (Colarco et al., 2017). In addition, over the
Arctic, we found that AI patterns are highly dependent upon
observing conditions such as surface properties and viewing
geometry, likely associated with the retrieval algorithm. This
can be illustrated by evaluating AI patterns over the same re-
gion for similar observing conditions but with observations
separated by almost exactly 1 year. For example, the OMI
swaths from 2 April 2007 at 00:51:00 UTC (Fig. 3a) and
1 year later on 2 April 2008 at 00:57:00 UTC (Fig. 3b) ex-
hibit nearly identical AI patterns along the coast of northern
Russia. Clearly, the repeated patterns in OMI AI indicate that
they are systematic and are associated with surface proper-
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Figure 2. (a) Single-swath OMI UV aerosol index data from the swath from 10 April 2012 at 21:51:00 UTC. The large gap in the middle
of the swath is caused by the removal of flagged-row anomaly-affected OMI data, while the red portion of the scan line over the Arctic is
caused by the unflagged-row anomaly. (b) Single-swath OMI AI from 10 April 2012 at 23:30:00 UTC. (c) Averages of AI from each OMI
sensor row over the Arctic from the swath from 10 April 2012 at 23:30 UTC. (d) Single-swath OMI AI from 10 April 2012 at 23:30:00 UTC
but after removing anomalous rows 43 and 44 identified in panel (c). (e) Flagged- (blue) and unflagged-row (red) anomaly-affected OMI
sensor rows not flagged by the XTrackQualityFlag variable in the OMI data files.

ties and viewing geometries. Despite this observing condi-
tion dependency, aerosol events can still be detected using
OMI AI data as shown in Fig. 3c and d. Figure 3c shows
the OMI swath from 22 April 2007 at 15:19:00 UTC, and
Fig. 3d shows the OMI swath from almost 1 year later on
22 April 2008 at 15:24:00 UTC (Fig. 3d). While similar pat-
terns of moderate AI are observed along the northern Cana-
dian and Alaskan coasts, the smoke plume extending over
northern Alaska is still detectable in Fig. 3d. Figure 3 reveals
that OMI AI data can still be used in an aerosol study over
the Arctic region, but there are systematic biases in the OMI

AI data that must be considered before using the data for
quantitative scientific applications.

One of the causes for the systematic bias in OMI AI as
seen in Fig. 3 is related to surface properties, with anoma-
lously high AI values being associated with certain sur-
face types. To examine the impact of surface properties on
anomalies in OMI AI, we use the GroundPixelQualityFlags
(GPQFs), which are included in the OMAERUV data. Each
GPQF variable is a 16-bit unsigned integer, and different bit
ranges are used to store different characterizations. Bits 0–
3 contain the land–water flags, including “shallow ocean”,
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Figure 3. Single-swath OMI AI data from (a) 2 April 2007 at 00:51:00 UTC, (b) 2 April 2008 at 00:57:00 UTC, (c) 22 April 2007 at
15:19:00 UTC, and (d) 22 April 2008 at 15:19:00 UTC.

“land”, “shallow inland water”, and “deep inland water”. The
bits of interest for studying the isolated high AI values are
bits 8–14, which contain the snow–ice flags. The flag values
(Table 1) contain flags for snow-free land, sea ice concen-
tration from 1 % to 100 %, permanent ice (used mostly for
Greenland and Antarctica), dry snow, and ocean, among oth-
ers.

Anomalously high OMI AI values are found to be asso-
ciated with the surface class “dry snow” for high latitudes,
which denotes regions covered in seasonal snow, unlike the
flag “permanent ice”, which denotes regions that are as-
sumed to be covered with snow year-round (Stammes and
Noordhoek, 2002). For example, the OMI AI data from the
swath from 22 April 2008 at 10:27:00 UTC (Fig. 4a) show
isolated regions around Greenland and the Canadian Arctic
Archipelago with AI values of at least 2, much higher than
the surrounding areas. The GPQF surface type classification
values for the same swath (Fig. 4b) show that much of Green-
land and the northeastern Canadian Arctic Archipelago are
classified as permanent ice (seen as the cyan color in Fig. 4b),
but there are also some areas classified as dry snow. The iso-
lated areas of dry snow match up well with both the areas
of isolated high AI in the single-swath AI data and the iso-
lated climatologically high AI seen in the same regions in
Fig. 1a. The isolated, anomalously high UVAI values in the

Table 1. OMAERUV snow–ice flags, taken from bits 8–14 of the
GroundPixelQualityFlags found in each OMI data file. This table
is adapted from information described in the OMI file specification
document (Ahn et al., 2011). NISE: Near-real-time Ice and Snow
Extent.

Flag value Flag

0 Snow-free land
1–100 Sea ice concentration (percent)
101 Permanent ice (Greenland, Antarctica)
102 Not used
103 Dry snow
104 Ocean (NISE-255)
105–123 Reserved for future use
124 Mixed pixels at coastline (NISE-252)
125 Suspect ice value (NISE-253)
126 Corners undefined (NISE-254)
127 Error

Canadian Arctic Archipelago are found in the same places
as the pixels classified as dry snow in the GroundPixelQual-
ityFlags. This suggests that different algorithms are being
used in the UVAI calculations between the two surface clas-
sification types. As mentioned in the data section (Sect. 2),
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different algorithms are applied over non-icy regions versus
snow- and ice-covered regions (Torres and Leonard, 2018).

Another cause for the systematic bias in OMI AI is linked
to azimuth angle or the row number. For example, Fig. 5a
shows the average of all OMI AI data from each row over
the Arctic between 1 April and 30 September 2006 (Fig. 5a,
blue) and the relative azimuth angles for each OMI row
(Fig. 5a, orange). OMI rows 1 to 30 have a relative azimuth
angle of about 70◦, and OMI rows 31 to 60 have a relative
azimuth angle of about 110◦. Not only is the average AI in
rows 1 to 30 much higher than the average AI in rows 31
to 60, but also the average AI in rows 1 to 30 varies signifi-
cantly as a function of row number. In contrast, the average
AI in rows 31 to 60 does not vary as a function of row num-
ber and remains at about an average AI value of 0, with slight
variation. This bias can be seen in OMI AI data from two
aerosol-free swaths on 22 April 2006: one at 10:50:00 UTC
(Fig. 5b) and another from two swaths later at 14:08:00 UTC
(Fig. 5c). The OMI data from the 10:50:00 UTC swath over
Greenland are sampled using the lower 30 scan lines and ex-
hibit AI values near 1, which, by the definition of OMI AI,
indicates the presence of UV-absorbing aerosols. Yet, large
amounts of UV-absorbing aerosols are normally not expected
over Greenland for this season (e.g., Xian et al., 2022b). The
same region viewed with the higher 30 scan lines two swaths
later exhibits much lower AI values below 0, indicating this
region is free of UV-absorbing aerosols. Similar patterns can
be routinely observed, with abnormal OMI AI values found
for observations with row numbers of 1–30 (or a relative az-
imuth angle of below 100◦). This suggests that systematic
biases exist in OMI AI data associated with either row num-
ber or relative azimuth angle, and higher-than-normal OMI
AI values are found for observations with a relative azimuth
angle lower than 100◦ or row numbers lower than 31.

4 Methods

4.1 Data QC methods

Knowing the issues in OMI AI data over the Arctic region,
two different methods are presented for quality control of
OMI AI data. In this first method, which is referred to as
the “screening method”, all non-reliable data are removed.
As discussed in the previous section, abnormally high OMI
AI values are associated with certain surface types and low
relative azimuth angles. Thus, AI pixels with a relative az-
imuth angle less than 100◦, ground classification type of dry
snow, and either flagged (Xtrack flag not equal to 0) or un-
flagged (as identified above) row anomaly are excluded. For
the climatological study, we also used only rows 56–60, as
we found that only rows 56–60 have a high relative azimuth
angle larger than 100◦ and are unaffected by a row anomaly
through the entire study period (2005–2020). The advan-
tage to the screening method is that unperturbed and quality-
assured OMI AI data are included. Also, with the use of the

same set of rows (56–60), the sampling bias is reduced (ob-
servations from the same set of rows are used in each month
for the trend analysis as shown later, ensuring row-related
bias is minimized). Still, due to the stringent selection crite-
ria, only a small fraction of the data over the Arctic region
pass this quality check. For example, for daily averages of
AI for 17 July 2018 using only rows 56 through 60, only
12.2 % of all 0.25◦ latitude–longitude boxes north of 65◦ N
contain data, compared to 51.1 % when all good rows are
used. When all good rows are used, about 85 % of 0.25◦ grid
boxes between 70 and 80◦ N have daily observation cover-
age, but that coverage drops to about 6 % when only rows 56
through 60 are used. North of 80◦ N, only about 20 % of grid
boxes have observation coverage in both methods because
rows 56 through 60 are the only functional rows that sample
in that region.

As discussed in the previous section and as shown in
Fig. 4, OMI AI biases are strong and systematic functions
of viewing geometries and surface conditions. Thus, in the
second method, systematic patterns in OMI AI as functions
of surface properties and viewing geometry are constructed
using 15 years of OMI AI data over the Arctic region. Then,
by excluding those systematic patterns, perturbations in OMI
AI values can be derived and further used to study spatiotem-
poral trends of OMI AI over the region. This method is called
the “perturbing method”. For this method, an OMI AI clear-
sky climatology is constructed as a function of viewing ge-
ometry and ground classification for each month of the year
(i.e., an April climatology contains data from April 2005,
April 2006, etc.). As with the screening method, all bad rows
from each day (both flagged and unflagged) are removed.
Then, for a given monthly climatology, all OMI AI data from
the associated month across all 15 years being analyzed in
this study are binned by solar zenith angle (SZA), viewing
zenith angle (VZA), relative azimuth angle (AZM), spectral
albedo (ALB), and surface type (SFCT), with 2.5◦ bins used
for the SZA and VZA, 2.0◦ bins used for the AZM, and the
albedo bins being 0.05 wide. The addition of the SFCT di-
mension allows for the removal of AI data associated with
faulty surface types, such as data over the regions of dry snow
in the Arctic. Thus, for a given set of observing conditions,
SZA, VZA, AZM, ALB, and SFCT values of each original
OMI pixel are used to compute climatological AI values. Per-
turbations in OMI AI due to unrealized aerosol plumes are
therefore identified. Note that the individual latitude and lon-
gitude of the OMI pixel are not used to bin the climatology.
Also, the cloud fraction flag provided in the OMI L2 data was
not used. Our tests showed that strict cloud screening meth-
ods (cloud fraction less than 0.2) removed much of the data
over the snow- and ice-covered regions in the Arctic, indicat-
ing that there might be a potential misclassification issue in
the OMI cloud flag over the Arctic region, which is not sur-
prising as cloud detection over the Arctic from passive-based
observations is a challenging topic.
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Figure 4. (a) Pre-QC OMI UVAI and (b) the surface type flag values extracted from the OMI GroundPixelQualityFlags from the OMI swath
from 22 April 2008 at 10:27:00 UTC.

Figure 5. (a) Row-based climatology of OMI AI over the Arctic
region calculated between 1 April and 30 September 2006 (blue)
and the relative azimuth angle associated with each OMI sensor
row from the OMI swath from 22 April 2006 at 10:50:00 UTC (or-
ange). (b) OMI AI data from the OMI swath from 22 April 2006 at
10:50:00 UTC. (c) OMI AI data from the swath from 22 April 2006
at 14:08:00 UTC, two OMI swaths after the swath shown in
panel (b).

Figure 6 shows an example of the results of applying both
the screening and perturbing methods to the OMI swath from
22 April 2008 at 21:59:00 UTC. While a large smoke plume
over Alaska and the Arctic Ocean is seen in the raw, pre-
QC AI data (Fig. 6a), the pre-QC data also exhibit significant
bias in AI across the sensor rows, with the lower scan lines
near the Russian coast having generally higher AI than the
higher scan lines over the Arctic Ocean. After applying the
screening method to the AI data, the screened data (Fig. 6b)

retain the AI signal north of Alaska while removing the bi-
ased rows with an azimuth angle less than 100◦; however,
the data volume is significantly reduced. Figure 6c shows
the binned climatological values associated with the SZA,
VZA, AZM, ALB, and SFCT values in each pixel from the
swath. The climatological values reveal the row bias seen in
the lower scan lines as well as the SFCT-induced bias over
the coastal regions in northern Russia. Possible row anomaly
effects are also seen in the mid-range scan lines, with several
rows in the middle of the Arctic Ocean having slightly higher
AI than the nearby rows. Figure 6d shows the perturbed AI
data, calculated by subtracting the climatological AI values
shown in Fig. 6c from the raw AI values shown in Fig. 6a.
The AI signal over Alaska, as well as weak signal from the
Russian coast, is retained, while the row- and SFCT-induced
biases are removed. One downside of this approach is that the
resulting cleaned dataset consists of AI perturbations. Thus,
this approach is better suited to identifying the seasonal be-
havior and frequency of Arctic aerosol plumes.

4.2 OMI sensor drift check

It is necessary to explore potential signal drift and signal
degradation in OMI AI data for trend analysis. To determine
if any signal drift is present in the OMI AI dataset, monthly
averages of AI are calculated for a remote-ocean region (0–
40◦ S, 180–140◦W) using the screening approach and with
daily bad rows removed, as identified by the bad-row algo-
rithm; total observation counts in the region for each month
are tracked as well. The remote-ocean region is used as this
region is assumed to be free from major aerosol pollution
(e.g., Zhang and Reid, 2010). To reduce sampling bias, only
data from rows 56 through 60 are included in this analysis.
The observation counts (Fig. 7a, orange) decrease slightly
from 2005 to 2012, with local minima in counts in 2009 and
2011, which reveals that at least one of the six rows used in
the second analysis was contaminated for a short amount of
time between 2009 and 2011; this confirms the row anomaly
timeline reported by Torres et al. (2018). The average AI
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Figure 6. Results of applying the screening and perturbing QC methods to an OMI swath from 22 April 2008 at 21:59:00 UTC. (a) The raw,
pre-QC OMI AI data. (b) The screened OMI AI data. (c) The binned climatological values associated with the SZA, VZA, AZM, ALB, and
ground type values of each pixel from this swath. (d) The cleaned, perturbed AI data calculated after subtracting the climatology values from
the pre-QC AI values.

(Fig. 7a, blue) shows a similar dip between 2009 and 2011,
but like the observation counts, it returns to the original av-
erage value of about 0.3 by 2012 and remains at about the
same value until 2020, when a slight increase is found. We
suspect that the increase in 2020 could be a result of the large
Australian wildfires that occurred that year that spread smoke
aerosols over the southern Pacific Ocean. No obvious sig-
nal drift is found in the data as shown in Fig. 7a between
2008 and 2019. To remove the effects of the seasonal cycle
on the AI time series, we deseasonalize the monthly average
AI data. While there is slight variation in the deseasonalized
AI data from 2005 to 2020, shown in Fig. 7b most notably
with the local minima in 2008 and the increase in 2020, these
variations are generally small (less than 0.1 AI) and further
show that there is no significant sensor drift in the OMI AI
data.

4.3 OMI trend analysis

Trends are calculated for both the screened and the perturbed
OMI AI data. Monthly averages of both the screened and
perturbed OMI data are first calculated on a 1× 1◦ latitude–
longitude grid. Then, monthly trends are calculated at each

latitude–longitude grid point by performing linear regression
on all averages from the month being analyzed; for exam-
ple, if the May monthly trend is being calculated for a grid
point, linear regression is applied to fit a line to the monthly
averages from May of every year from 2005 through 2020.
After the regression line is fitted to the data, the slope of the
trend line is multiplied by the number of years in the study
period to determine the AI trend over the study period. It is
worth noting that the linear regression trend method may not
be the most appropriate option in the case that the trends are
driven by extrema, and the derived trend analyses may be
sensitive to the choice of model for trend construction. To
partially mitigate the issue, trend analyses are constructed on
a monthly basis. Overall trend significance for each monthly
trend at each grid box is calculated using a Wald t test (Wald,
1943), and trends are considered statistically significant if the
p value from the Wald slope hypothesis test is less than 0.05,
which denotes significance at the 95 % confidence level. The
standard error of the trend (slope), which is a byproduct of
the linear regression analysis, is also derived under the as-
sumption of residual normality (Montgomery et al., 2021).
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Figure 7. (a) Monthly average AI (blue) and total observation
counts (orange) in a remote-ocean region in the southern Pacific
Ocean (0–40◦ S, 180–140◦W), calculated using the screening cri-
teria and removing bad rows identified by the bad-row detection
algorithm. (b) As in panel (a) but with deseasonalized monthly av-
erage AI.

5 Arctic OMI AI climatology, trend, and extreme
event statistics

5.1 Monthly climatology and trend of Arctic OMI AI

The screened and perturbed OMI data are applied to Arctic
AI monthly summer climatology and trends for the time pe-
riod from 2005 through 2020, as shown in Fig. 8. The first
column in Fig. 8 shows the April, May, June, July, August,
and September monthly AI climatology calculated without
applying either of the QC methods, with only the original
row anomaly check (Xtrack flag equal to 0) applied. A con-
siderable ring effect is found in all six monthly climatologies,
with the strongest ring effect found in August and September.
The second column shows the same climatologies calculated
using the screened OMI AI data. Not only is the overall cli-
matological average significantly reduced, but also most of
the AI ring found in the original climatologies is removed.

The monthly trends calculated using the pre-QC OMI data,
shown in the third column in Fig. 8, are very noisy, with an
overall positive AI trend found across nearly the entire Arc-
tic region in all analyzed months, as well as a ring of strong
positive trend found north of approximately 80◦ N. However,
after applying both the screening (Fig. 8, fourth column) and
perturbing (Fig. 8, fifth column) methods to the AI data, the
overall positive AI trend is removed, with widespread statis-
tically significant negative AI trends over the Arctic region
found in the April and May monthly trends. The June and
July monthly trends reveal increasing AI over northeastern

Russia and Alaska, with the positive AI trends over Russia
being statistically significant, while the August trends re-
veal increasing AI over north-central Russia and northern
Canada, with the Russian positive AI trends being statis-
tically significant. These results agree with aerosol optical
depth (AOD) trend statistics simulated by chemical trans-
port models assisted with MODIS, MISR, and CALIOP data
analysis by Xian et al. (2022a), who found decreasing Arctic
region AOD in the spring months and increasing Arctic re-
gion AOD in the summer months (Xian et al., 2022a). Maps
of the standard error of the trend (found in the Supplement)
corroborate the statistical significance shown in Fig. 8. The
perturbed-trend standard errors are, overall, much lower than
the screened-trend standard errors, and regions with statisti-
cally significant trends as shown in Fig. 8 are mostly associ-
ated with small trend standard errors.

Over the Arctic Ocean, mostly negative AI trends are
found in June and July, with some areas of an increasing
AI trend found over the Chukchi Sea (northwest of Alaska)
in the July trends. A disagreement between the screened
and perturbed trends exists in June and July, with the per-
turbed trends reporting a half circle of positive AI in the Kara
and Greenland seas (north of Norway and northwest Rus-
sia) that is not found in the screened trends. This is likely
due to the significant data coverage differences between the
screened and perturbed datasets, with a single OMI swath
in the perturbed dataset having much wider data coverage
than the screened dataset. The consistently negative AI trends
over the Greenland landmass for all months appear non-
meteorological, as these negative trends are surrounded on
all sides by positive AI trends over the ocean water. Due to
the stark difference in trend between the oceanic and land-
based trends over Greenland and the climatologically low AI
over Greenland found in the screened AI climatology shown
in Fig. 8, the negative AI trends over Greenland are suspected
to be caused by issues of the lower boundary conditions and
are not meteorological.

5.2 Arctic smoke plume frequency analysis

The perturbed AI dataset allows for a unique study of the
frequency of aerosol events over the Arctic (70–80◦ N) and
high Arctic (north of 80◦ N) that cannot be provided by other
sensors. To study the Arctic aerosol event frequency, the
perturbed AI dataset is averaged into daily 0.25◦ latitude–
longitude grids, and the total area of the 0.25◦ grid boxes
with average perturbed AI data beyond a threshold value is
calculated for each day between 1 April 2005 and 30 Septem-
ber 2020. For this study, a threshold value of 1.0 for perturbed
AI data is used to remove any residual non-meteorological
noise from the data (note that results do not change signifi-
cantly if the threshold is changed to a higher value such as 1.5
or 2.0). Figure 9a shows the time series of the daily total area
of 0.25◦ latitude–longitude grid boxes with perturbed AI data
greater than 1.0 between 70 and 80◦ N. Most Arctic aerosol
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Figure 8. April (first and top row), May (second row), June (third row), July (fourth row), August (fifth row), and September (sixth and
bottom row) monthly climatologies of pre-QC OMI AI data (first column) and screened AI data (second column), as well as trends in the
non-quality-controlled AI data (third column), the screened AI data (fourth column), and the perturbed AI data (fifth column). Climatology
and trend are calculated between 2005 and 2020. The dotted regions in the right two columns denote trends that are statistically significant
at the 95 % confidence level.

events occur in July and August, with June having the next
most aerosol events. Cool-colored lines in the figure indi-
cate events occurring in the early portions of the study period
(2005–2011), while warm-colored lines indicate events in the
later portions of the study period. As shown, most of the large
aerosol events between 2005 and 2020 occurred within the
later portions of the study period. Additionally, this time se-
ries analysis of the gridded perturbed AI data allows for the
identification of individual Arctic aerosol events, including a
large BB aerosol plume that extended from Russia over the
Arctic Ocean on 11 August 2019, shown in the Aqua MODIS
true-color imagery found in Fig. 9b. The daily 0.25◦ gridded

perturbed AI data, shown in Fig. 9c, reveal a region of highly
perturbed AI data across northern Russia, with a plume ex-
tending across the Arctic Ocean that closely matches the pat-
tern found in the MODIS true-color imagery. The number of
0.25◦ grid boxes north of Greenland that contain daily av-
erage AI values is much lower than in the regions over and
south of Greenland because of the reduced coverage of OMI
AI data from each swath caused by the row anomaly. Only
the last five OMI rows in each swath provide coverage north
of Greenland, while rows 1–22 provide additional coverage
in the regions over and south of Greenland.
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Figure 9. (a) Daily total area of 0.25◦ latitude–longitude grid boxes between 70 and 80◦ N with perturbed AI data greater than or equal to 1.0
between April 2005 and September 2020, with each time series colored by year. (b) MODIS Aqua true-color composite (obtained from the
NASA Worldview site at https://worldview.earthdata.nasa.gov/, last access: 28 October 2022) imagery of an 11 August 2019 smoke plume
extending from northern Russia into the Arctic Ocean. (c) The 0.25◦ gridded perturbed OMI AI data for the 11 August 2019 BB aerosol
event.

When restricting the analysis to latitudes only north of
80◦ N, for latitudes and conditions that can largely only be
sampled by OMI, a novel analysis into high-Arctic aerosol
events may be completed. Figure 10a shows similar daily
time series of total areas containing high values of perturbed
AI as in Fig. 9 but using only 0.25◦ grid boxes north of 80◦ N.
The number of large and small peaks is much smaller than in
Fig. 9a, but as in Fig. 9a, the majority of the aerosol events
occur in July and August. As indicated by the warm coloring
of the small number of large peaks observed north of 80◦ N
in July and August, all high-Arctic aerosol events occurred
in the latter portion of the study period. An example of one
of these high-Arctic BB aerosol events is shown in Fig. 10b,
which shows Aqua MODIS true-color imagery of a plume
extending over the Arctic sea ice near the North Pole; the
plume is seen as a darkened region over the sea ice north
of Greenland. In the daily 0.25◦ gridded perturbed AI data
(Fig. 10c), the high-Arctic plume signal can be seen in the
same region as the plume in the MODIS true-color imagery,
but because the high-Arctic regions are only sampled by five
OMI sensor rows, the spatial resolution is much lower.

To investigate patterns in the daily AI area time series
shown in Figs. 9 and 10, the number of peaks in the daily AI
area time series are calculated for each year, with the areas of
each peak binned into size ranges. Figure 11a shows the to-
tal time series of high-AI (greater than 1.0) areas between 70
and 80◦ N, with the x symbols indicating locations of peaks
larger than 105 km2 in each year, while Fig. 11b shows the
counts of high-AI peaks in each size range per year. As indi-
cated by the number of x symbols in Fig. 11a and confirmed
in the histogram shown in Fig. 11b, the number of high-AI
peaks per year in the latter half of the study period (2014–
2020) is much larger than the number of high-AI peaks per
year in the earlier half of the study period (2005–2013). With
the exception of 2016, every year between 2014 and 2020
saw at least three high-AI area peaks, while no year between
2005 and 2013 saw more than two high-AI area peaks. The
size of the high-AI events also increased throughout the study
period from 2005 through 2020. Aside from the very large
high-AI event in 2006, all high-AI events in the first half of
the study period were smaller than 5× 105 km2, with only
one reaching between 3× 105 and 5× 105 km2 and reaching
the second size bin. In the second half of the study period,
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Figure 10. (a) As in Fig. 9 but for 0.25◦ latitude–longitude grid boxes north of 80◦ N. (b) MODIS Aqua true-color composite (obtained from
the NASA Worldview site at https://worldview.earthdata.nasa.gov/) imagery of an 18 August 2017 smoke plume extending from northern
Canada over the Arctic Ocean. (c) The 0.25◦ gridded perturbed OMI AI data for the 18 August 2017 BB aerosol event.

many events occurred that were in the larger size bins. The
high-AI area peaks north of 80◦ N show similar results to
the peaks north of 70◦ N but with far fewer total events than
in Fig. 11a and b. Figure 11c shows the daily total area of
perturbed AI data higher than 1.0 north of 80◦ N, with sev-
eral large peaks found between 2014 and 2019. Unlike in
Fig. 11a, in which there were several large BB aerosol events
between 70 and 80◦ N in the early half of the study period,
there were no large-scale BB aerosol events in the first half
of the study period north of 80◦ N; this is further visualized
in the histogram of peak size ranges shown in Fig. 11d. It is
worth noting that it is difficult to draw clear conclusions on
high-Arctic BB aerosol event trends from the results north of
80◦ N due to the small sample size of only five large-scale
BB events, but we still report that all large BB aerosol events
in the high Arctic (north of 80◦ N) between 2005 and 2020
occurred in the second half of the study period, between 2014
and 2020.

6 Conclusions

In this study, the feasibility of using OMI AI for study-
ing spatiotemporal distributions of UV-absorbing aerosols
was investigated. Issues in OMI AI data over the Arctic re-

gions were studied, and two quality-controlled (QC) meth-
ods were developed for reducing bias and noise in OMI
AI data for aerosol climate studies over the Arctic region.
Lastly, quality-controlled OMI AI data from both methods
were used for studying the spatiotemporal variations in UV-
absorbing aerosols over the Arctic region for the study period
of 2005–2020. We found the following.

1. Non-trivial uncertainties in OMI AI data over the Arc-
tic region result in a ring of high AI at about 70◦ N,
surrounding a region of much lower AI over the North
Pole. The uncertainties contributing to this anomalous
ring signature include unflagged-row anomalies as well
as systematic biases introduced by viewing geometry
(e.g., higher bias is found for an azimuth angle less than
100◦) and certain surface types such as the surface type
dry snow.

2. Two methods were developed for quality control of
OMI AI data over the Arctic regions. The screening
method was developed for using only the “best” OMI
AI data from rows 56–60. This method provides unper-
turbed AI estimates, yet the data volume is very limited.
Some biases in OMI AI over the Arctic region are rather
systematic and are functions of observing conditions.
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Figure 11. (a) Total time series of daily total areas of 0.25◦ grid boxes with perturbed AI data greater than 1.0 for grid boxes between 70
and 80◦ N. The black x symbols denote peaks in the perturbed AI data. (b) Yearly counts of peaks in each size range. (c) As in panel (a) but
for grid boxes north of 80◦ N. (d) As in panel (b) but for grid boxes north of 80◦ N. Note that the y-axis values in panel (c) and the coverage
bin areas in panel (d) are an order of magnitude smaller than in panels (a) and (b).

Thus, the perturbing method was developed for estimat-
ing perturbations in OMI AI values from their clima-
tological means. The climatological means of 15 years
of OMI AI over the Arctic region were constructed as
functions of surface conditions and viewing geometry
and were found to contain systematic biases of OMI AI
for given observing conditions.

3. Using quality-controlled OMI AI data from the screen-
ing and the perturbing methods, spatiotemporal varia-
tions in OMI AI values were studied. We found decreas-
ing AI values in spring and increasing AI over much of
the Arctic region in the summer months, most notably in
northern Russia and northern Canada in August, as well
as decreasing AI over the Arctic Ocean north of Canada
in June and July. Regional trends from both methods
are largely consistent, although some differences can be
found that may be due to the sampling differences be-
tween the two methods.

4. Using quality-controlled data from the perturbing
method, we also studied extreme Arctic UV-absorbing
aerosol events (defined by perturbed AI data greater
than 1.0). We found increasing trends in the frequency
and magnitude of high-AI aerosol events over both the
Arctic (70–80◦ N) and high-Arctic (> 80◦ N) regions. In
particular, north of 80◦ N, no significant UV-absorbing
aerosol events are found for the early part of the study
period (2005–2013), yet a non-trivial number of signifi-
cant UV-absorbing aerosol events are found in the latter
part of the study period (2014–2020), mostly in summer
months, indicating intrusions of aerosol plumes near or
above the North Pole in recent years.

While the perturbed AI data generated for this study are
designed for climatological and historical use, ongoing work
is investigating the feasibility of directly assimilating the
single-swath perturbed data into aerosol models for aerosol
prediction over bright surfaces (Zhang et al., 2021). It is
also worth noting that while not used in this study due to
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its relatively short data record, the TROPOspheric Monitor-
ing Instrument (TROPOMI) also provides observations at the
UV and near-UV spectrum with a much finer spatial res-
olution than OMI (3.5× 7 km2 nadir pixel size compared
to OMI’s 13× 24 km2 nadir pixel size) yet without the row
anomaly suffered by OMI (Veefkind et al., 2012). UVAI from
TROPOMI can and should be used for Arctic aerosol studies
in the future.

Code and data availability. The OMI Level 2 UV aerosol
index (UVAI) data used in this study to generate our monthly
gridded analyses were obtained from the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC)
(https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/summary,
https://doi.org/10.5067/Aura/OMI/DATA2004, Torres, 2006).
Gridded quality-controlled monthly OMI data from the screening
and perturbing methods generated from this study and in netCDF4
format are included in the Supplement.
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