Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1619-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1619-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term monitoring of cloud water chemistry at Whiteface Mountain: the emergence of a new chemical regime
Christopher E. Lawrence
Atmospheric Sciences Research Center (ASRC), University at Albany, SUNY ETEC building, 1220 Washington Ave, Albany NY 12226, USA
Paul Casson
Atmospheric Sciences Research Center (ASRC), University at Albany, SUNY ETEC building, 1220 Washington Ave, Albany NY 12226, USA
Richard Brandt
Atmospheric Sciences Research Center (ASRC), University at Albany, SUNY ETEC building, 1220 Washington Ave, Albany NY 12226, USA
James J. Schwab
Atmospheric Sciences Research Center (ASRC), University at Albany, SUNY ETEC building, 1220 Washington Ave, Albany NY 12226, USA
James E. Dukett
Adirondack Lake Survey Corporation (ALSC), 1115 NYS Rt.86, P.O. Box 296, Ray Brook NY 12977, USA
Phil Snyder
Adirondack Lake Survey Corporation (ALSC), 1115 NYS Rt.86, P.O. Box 296, Ray Brook NY 12977, USA
Elizabeth Yerger
Paul Smith's College Adirondack Watershed Institute (AWI), P.O. Box 265, Routes 86 and 30, Paul Smiths NY 12970, USA
Daniel Kelting
Paul Smith's College Adirondack Watershed Institute (AWI), P.O. Box 265, Routes 86 and 30, Paul Smiths NY 12970, USA
Trevor C. VandenBoer
Department of Chemistry, York University, Toronto, Ontario, M3J 1P3, Canada
Atmospheric Sciences Research Center (ASRC), University at Albany, SUNY ETEC building, 1220 Washington Ave, Albany NY 12226, USA
Related authors
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Alexandra M. Catena, Mackenzie L. Smith, Lee T. Murray, Eric M. Leibensperger, Jie Zhang, Margaret J. Schwab, and James J. Schwab
Earth Syst. Sci. Data, 17, 4555–4568, https://doi.org/10.5194/essd-17-4555-2025, https://doi.org/10.5194/essd-17-4555-2025, 2025
Short summary
Short summary
Methane and carbon dioxide emission rates were calculated for facilities across several sectors in New York State using aerial observations. Of the sampled facilities, landfills dominated the methane emission rates, while combustion facilities had the highest carbon dioxide emission rates, followed by landfills. The self-reported Environmental Protection Agency (EPA) inventory mostly underestimates landfill methane emissions, apart from a few facilities with comparable numbers.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Brian L. Boys, Randall V. Martin, and Trevor C. VandenBoer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2994, https://doi.org/10.5194/egusphere-2024-2994, 2024
Short summary
Short summary
A widely used dry deposition parameterization for NO2 is updated by including a well-known heterogeneous hydrolysis reaction on deposition surfaces. This mechanistic update eliminates a large low bias of -80 % in simulated NO2 nocturnal deposition velocities evaluated against long-term eddy covariance flux observations over Harvard Forest. We highlight the importance of canopy surface area effects as well as soil NO emission in formulating and evaluating NO2 dry deposition parameterizations.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Christopher J. Hennigan, Michael McKee, Vikram Pratap, Bryanna Boegner, Jasper Reno, Lucia Garcia, Madison McLaren, and Sara M. Lance
Atmos. Chem. Phys., 23, 14437–14449, https://doi.org/10.5194/acp-23-14437-2023, https://doi.org/10.5194/acp-23-14437-2023, 2023
Short summary
Short summary
This study characterized the optical properties of light-absorbing organic compounds, called brown carbon (BrC), in atmospheric cloud water samples. In all samples, light absorption by BrC increased linearly with increasing pH. There was variability in the sensitivity of the absorption–pH relationship, depending on the degree of influence from fire emissions. Overall, these results show that the climate forcing of BrC is quite strongly affected by its pH-dependent absorption.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Cited articles
Akpo, A. B., Galy-Lacaux, C., Laouali, D., Delon, C., Liousse, C., Adon, M.,
Gardrat, E., Mariscal, A., and Darakpa, C.: Precipitation chemistry and wet
deposition in a remote wet savanna site in West Africa: Djougou
(Benin), Atmos. Environ., 115, 110–123,
https://doi.org/10.1016/j.atmosenv.2015.04.064, 2015. a
Aleksic, N. and Dukett, J. E.: Probabilistic relationship between liquid water
content and ion concentrations in cloud water, Atmos. Res., 98,
400–405, https://doi.org/10.1016/j.atmosres.2010.08.003, 2010. a, b
Aleksic, N., Roy, K., Sistla, G., Dukett, J., Houck, N., and Casson, P.:
Analysis of cloud and precipitation chemistry at Whiteface Mountain,
NY, Atmos. Environ., 43, 2709–2716,
https://doi.org/10.1016/j.atmosenv.2009.02.053, 2009. a, b
Anastasio, C., Faust, B., and Allen, J.: Aqueous phase photochemical formation
of hydrogen peroxide in authentic cloud waters, J. Geophys.
Res.-Atmos., 99, 8231–8248, https://doi.org/10.1029/94JD00085, 1994. a, b
Baumgardner, R. E., Kronmiller, K. G., Anderson, J. B., Bowser, J. J., and
Edgerton, E. S.: Development of an automated cloud water collection system
for use in atmospheric monitoring networks, Atmos. Environ., 31,
2003–2010, https://doi.org/10.1016/S1352-2310(96)00325-1, 1997. a
Baumgardner, R. E., Isil, S. S., Lavery, T. F., Rogers, C. M., and Mohnen,
V. A.: Estimates of cloud water deposition at Mountain Acid Deposition
Program sites in the Appalachian Mountains, J. Air Waste
Manage., 53, 291–308,
https://doi.org/10.1080/10473289.2003.10466153, 2003. a
Bravo, A. H., Soto, A., R., Sosa, E. R., Sánchez, A. P., Alarcón, J. A. L.,
Kahl, J., and Ruíz, B. J.: Effect of acid rain on building material of the
El Tajín archaeological zone in Veracruz, Mexico, Environ.
Pollut., 144, 655–660, https://doi.org/10.1016/j.envpol.2005.12.052, 2006. a
Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Facchini, M. C., and Mazzoleni, L. R.: Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol, Atmos. Chem. Phys., 18, 13197–13214, https://doi.org/10.5194/acp-18-13197-2018, 2018. a
Budhavant, K., Rao, P., Safai, P., Granat, L., and Rodhe, H.: Chemical
composition of the inorganic fraction of cloud-water at a high altitude
station in West India, Atmos. Environ., 88, 59–65,
https://doi.org/10.1016/j.atmosenv.2014.01.039, 2014. a, b
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen
in the atmosphere – Where does it come from? A review of sources and
methods, Atmos. Res., 102, 30–48,
https://doi.org/10.1016/j.atmosres.2011.07.009, 2011. a
Cape, J. N., Smith, R. I., Fowler, D., Beswick, K., and Choularton, T.:
Long-term trends in rain and cloud chemistry in a region of complex
topography, Atmos. Res., 153, 335–347,
https://doi.org/10.1016/j.atmosres.2014.09.003, 2015. a
Chapman, P. J., Clark, J. M., Reynolds, B., and Adamson, J. K.: The influence
of organic acids in relation to acid deposition in controlling the acidity of
soil and stream waters on a seasonal basis, Environ. Pollut., 151,
110–120, https://doi.org/10.1016/j.envpol.2007.03.001, 2008. a
Cook, R. D., Lin, Y.-H., Peng, Z., Boone, E., Chu, R. K., Dukett, J. E., Gunsch, M. J., Zhang, W., Tolic, N., Laskin, A., and Pratt, K. A.: Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water, Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, 2017. a, b, c
Coury, L.: Conductance Measurements Part 1: Theory, Current Separations, 3, p. 6, 1999. a
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014. a
Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C., and Young, C. J.:
Composition of Size-Resolved Aged Boreal Fire Aerosols: Brown
Carbon, Biomass Burning Tracers, and Reduced Nitrogen, ACS Earth
Space Chem., 2, 278–285, https://doi.org/10.1021/acsearthspacechem.7b00137,
2018. a
Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S.,
Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., and Weathers,
K. C.: Acidic Deposition in the Northeastern United States: Sources
and Inputs, Ecosystem Effects, and Management Strategies: The
effects of acidic deposition in the northeastern United States include
the acidification of soil and water, which stresses terrestrial and aquatic
biota, BioScience, 51, 180–198,
https://doi.org/10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2, 2001. a
Driscoll, C. T., Driscoll, K. M., Fakhraei, H., and Civerolo, K.: Long-term
temporal trends and spatial patterns in the acid-base chemistry of lakes in
the Adirondack region of New York in response to decreases in acidic
deposition, Atmos. Environ., 146, 5–14,
https://doi.org/10.1016/j.atmosenv.2016.08.034, 2016. a
Dukett, J. E., Aleksic, N., Houck, N., Snyder, P., Casson, P., and Cantwell,
M.: Progress toward clean cloud water at Whiteface Mountain New York,
Atmos. Environ., 45, 6669–6673,
https://doi.org/10.1016/j.atmosenv.2011.08.070, tex.ids= dukettProgressCleanCloud2011,
2011. a, b, c, d
Elbert, W., Hoffmann, M. R., Krämer, M., Schmitt, G., and Andreae, M. O.:
Control of solute concentrations in cloud and fog water by liquid water
content, Atmos. Environ., 34, 1109–1122,
https://doi.org/10.1016/S1352-2310(99)00351-9, 2000. a, b
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in
Clouds and Fogs, Chem. Rev., 115, 4157–4198,
https://doi.org/10.1021/cr5005887, 2015. a
Falconer, R. E. and Falconer, P. D.: Determination of cloud water acidity at a
mountain observatory in the Adirondack Mountains of New York State,
J. Geophys. Res.-Oceans, 85, 7465–7470,
https://doi.org/10.1029/JC085iC12p07465, 1980. a
Feng, J., Vet, R., Cole, A., Zhang, L., Cheng, I., O'Brien, J., and Macdonald,
A.-M.: Inorganic chemical components in precipitation in the eastern U.S.
and Eastern Canada during 1989–2016: Temporal and regional trends of
wet concentration and wet deposition from the NADP and CAPMoN
measurements, Atmos. Environ., 254, 118367,
https://doi.org/10.1016/j.atmosenv.2021.118367, 2021. a, b
Gerber, H.: Direct measurement of suspended particulate volume concentration
and far-infrared extinction coefficient with a laser-diffraction instrument,
Appl. Optics, 30, 4824–4831, https://doi.org/10.1364/AO.30.004824, 1991. a
Giulianelli, L., Gilardoni, S., Tarozzi, L., Rinaldi, M., Decesari, S.,
Carbone, C., Facchini, M. C., and Fuzzi, S.: Fog occurrence and chemical
composition in the Po valley over the last twenty years, Atmos.
Environ., 98, 394–401, https://doi.org/10.1016/j.atmosenv.2014.08.080, 2014. a
Gorham, E.: Acid deposition and its ecological effects: a brief history of
research, Environ. Sci. Policy, 1, 153–166,
https://doi.org/10.1016/S1462-9011(98)00025-2,
1998. a
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006. a, b
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Herckes, P., Marcotte, A. R., Wang, Y., and Collett, J. L.: Fog composition in
the Central Valley of California over three decades, Atmos.
Res., 151, 20–30, https://doi.org/10.1016/j.atmosres.2014.01.025, 2015. a
Isil, S., Mohnen, V. A., Lovett, G., Miller, E., Anderson, J. G., Lavery, T.,
and Baumgardner, R.: Mountain Acid Deposition Program (MADPro)
Cloud Deposition to the Appalachina Mountains 1994 to 1999 Report,
Tech. Rep. EPA/600/R–01/016, U.S, Environmental Protection Agency (EPA),
Office of Research and Development, Washington, DC, 2000. a
Isil, S., Collett, J., Lynch, J., Weiss-Penzias, P., and Rogers, C. M.: Cloud
and fog deposition: Monitoring in high elevation and coastal ecosystems.
The past, present, and future, Atmos. Environ., 274, 118997,
https://doi.org/10.1016/j.atmosenv.2022.118997, 2022. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun,
Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
E., Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams,
P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S.,
Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami,
A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M.,
Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic
Aerosols in the Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009. a, b, c
Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes,
A., Baker, A. R., Tsigaridis, K., and Mihalopoulos, N.: Past, Present and
Future Atmospheric Nitrogen Deposition, J. Atmos.
Sci., 73, 2039–2047, https://doi.org/10.1175/JAS-D-15-0278.1, 2016. a
Keene, W. C. and Galloway, J. N.: Considerations regarding sources for formic
and acetic acids in the troposphere, J. Geophys. Res.-Atmos., 91, 14466–14474, https://doi.org/10.1029/JD091iD13p14466, 1986. a
Khemani, L. T., Momin, G. A., Naik, M. S., Rao, P. S. P., Safai, P. D., and
Murty, A. S. R.: Influence of alkaline particulates on pH of cloud and rain
water in India, Atmos. Environ., 21, 1137–1145,
https://doi.org/10.1016/0004-6981(87)90241-1, 1987. a, b
Khwaja, H. A.: Atmospheric concentrations of carboxylic acids and related
compounds at a semiurban site, Atmos. Environ., 29, 127–139,
https://doi.org/10.1016/1352-2310(94)00211-3, 1995. a
Khwaja, H. A., Brudnoy, S., and Husain, L.: Chemical characterization of three
summer cloud episodes at whiteface mountain, Chemosphere, 31, 3357–3381,
https://doi.org/10.1016/0045-6535(95)00187-D, 1995. a, b, c, d
Kiehl, J. T. and Briegleb, B. P.: The Relative Roles of Sulfate
Aerosols and Greenhouse Gases in Climate Forcing, Science, 260,
311–314, https://doi.org/10.1126/science.260.5106.311, 1993. a
Kim, H., Collier, S., Ge, X., Xu, J., Sun, Y., Jiang, W., Wang, Y., Herckes,
P., and Zhang, Q.: Chemical processing of water-soluble species and formation
of secondary organic aerosol in fogs, Atmos. Environ., 200, 158–166,
https://doi.org/10.1016/j.atmosenv.2018.11.062, 2019. a, b
Lance, S.: Whiteface Mountain Cloud Water Chemical Composition 2018–2021, http://atmoschem.asrc.cestm.albany.edu/~cloudwater/pub/Data.htm, last access: 24 January 2023. a
Lance, S., Zhang, J., Schwab, J. J., Casson, P., Brandt, R. E., Fitzjarrald,
D. R., Schwab, M. J., Sicker, J., Lu, C.-H., Chen, S.-P., Yun, J., Freedman,
J. M., Shrestha, B., Min, Q., Beauharnois, M., Crandall, B., Joseph, E.,
Brewer, M. J., Minder, J. R., Orlowski, D., Christiansen, A., Carlton, A. G.,
and Barth, M. C.: Overview of the CPOC Pilot Study at Whiteface
Mountain, NY: Cloud Processing of Organics within Clouds
(CPOC), B. Am. Meteorol. Soc., 101, E1820–E1841,
https://doi.org/10.1175/BAMS-D-19-0022.1, 2020. a
Lawrence, C.: Plot Code for Long-Term Monitoring of Cloud Water Chemistry at Whiteface Mountain: The Emergence of New Chemical Regime (v1,0.1) Zenodo [code and data set] https://doi.org/10.5281/zenodo.7379622, 2022. a
Lawrence, G. B. and David, M. B.: Response of Aluminum Solubility to
Elevated Nitrification in Soil of a Red Spruce Stand in Eastern
Maine, Environ. Sci. Technol., 31, 825–830,
https://doi.org/10.1021/es960515j, 1997. a
Lee, D. S. and Pacyna, J. M.: An industrial emissions inventory of calcium for
Europe, Atmos. Environ., 33, 1687–1697,
https://doi.org/10.1016/S1352-2310(98)00286-6, 1999. a
Lee, J. Y., Peterson, P. K., Vear, L. R., Cook, R. D., Sullivan, A. P., Smith,
E., Hawkins, L. N., Olson, N. E., Hems, R., Snyder, P. K., and Pratt, K. A.:
Wildfire Smoke Influence on Cloud Water Chemical Composition at
Whiteface Mountain, New York, J. Geophys. Res.-Atmos., 127, e2022JD037177, https://doi.org/10.1029/2022JD037177, 2022. a, b
Likens, G., Driscoll, C., Buso, D., Siccama, T., Johnson, C., Lovett, G.,
Fahey, T., Reiners, W., Ryan, D., Martin, C., and Bailey, S.: The
biogeochemistry of calcium at Hubbard Brook, Biogeochem., 41,
89–173, https://doi.org/10.1023/A:1005984620681, 1998. a
Liu, L., Zhang, X., Wong, A. Y. H., Xu, W., Liu, X., Li, Y., Mi, H., Lu, X., Zhao, L., Wang, Z., Wu, X., and Wei, J.: Estimating global surface ammonia concentrations inferred from satellite retrievals, Atmos. Chem. Phys., 19, 12051–12066, https://doi.org/10.5194/acp-19-12051-2019, 2019. a
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward,
D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014. a
Marinoni, A., Laj, P., Sellegri, K., and Mailhot, G.: Cloud chemistry at the Puy de Dôme: variability and relationships with environmental factors, Atmos. Chem. Phys., 4, 715–728, https://doi.org/10.5194/acp-4-715-2004, 2004. a, b
McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources
and Chemical Processing of Organic Aerosols, Environ. Sci.
Technol., 49, 1237–1244, https://doi.org/10.1021/es5043707, 2015. a
Mekis, E., Donaldson, N., Reid, J., Zucconi, A., Hoover, J., Li, Q., Nitu, R.,
and Melo, S.: An Overview of Surface-Based Precipitation
Observations at Environment and Climate Change Canada,
Atmos.-Ocean, 56, 71–95, https://doi.org/10.1080/07055900.2018.1433627,
2018. a
Menz, F. C. and Seip, H. M.: Acid rain in Europe and the United States:
an update, Environ. Sci. Policy, 7, 253–265,
https://doi.org/10.1016/j.envsci.2004.05.005, 2004. a
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015. a
Mohnen, V. A.: Cloud water collection from aircraft, Atmos. Technol., United
States, 12,
https://www.osti.gov/biblio/6320448-cloud-water-collection-from-aircraft (last access: 8 April 2021),
1980. a
Mohnen, V. A. and Vong, R. J.: A climatology of cloud chemistry for the eastern
United States derived from the mountain cloud chemistry project,
Environ. Rev., 1, 38–54,
1993. a
Moore, K. F., Eli Sherman, D., Reilly, J. E., Hannigan, M. P., Lee, T., and
Collett, J. L.: Drop size-dependent chemical composition of clouds and fogs.
Part II: Relevance to interpreting the aerosol/trace gas/fog system,
Atmos. Environ., 38, 1403–1415,
https://doi.org/10.1016/j.atmosenv.2003.12.014, 2004. a
Murray, G. L. D., Kimball, K. D., Hill, L. B., Hislop, J. E., and Weathers,
K. C.: Long-Term Trends in Cloud and Rain Chemistry on Mount
Washington, New Hampshire, Water Air Soil Pollut., 224, 1653,
https://doi.org/10.1007/s11270-013-1653-7, 2013. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Zhang, H., Aamaas, B., Boucher, O., Dalsøren, S. B.,
Daniel, J. S., Forster, P., Granier, C., Haigh, J., Hodnebrog, O., Kaplan,
J. O., Marston, G., Nielsen, C. J., O’Neill, B. C., Peters, G. P.,
Pongratz, J., Ramaswamy, V., Roth, R., Rotstayn, L., Smith, S. J., Stevenson,
D., Vernier, J.-P., Wild, O., Young, P., Jacob, D., Ravishankara, A. R., and
Shine, K.: Anthropogenic and Natural Radiative Forcing, IPCC, 5, p. 82, 2013. a
Pachon, J. E., Weber, R. J., Zhang, X., Mulholland, J. A., and Russell, A. G.:
Revising the use of potassium (K) in the source apportionment of PM2.5,
Atmos. Pollut. Res., 4, 14–21, https://doi.org/10.5094/APR.2013.002, 2013. a
Paerl, H. W. and Otten, T. G.: Harmful cyanobacterial blooms: causes,
consequences, and controls, Microb. Ecol., 65, 995–1010,
https://doi.org/10.1007/s00248-012-0159-y, 2013. a
Pandis, S. N. and Seinfeld, J. H.: Should bulk cloudwater or fogwater samples
obey Henry's law?, J. Geophys. Res.-Atmos., 96,
10791–10798, https://doi.org/10.1029/91JD01031, 1991. a
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011. a
Perminova, I. V., Frimmel, F. H., Kudryavtsev, A. V., Kulikova, N. A.,
Abbt-Braun, G., Hesse, S., and Petrosyan, V. S.: Molecular Weight
Characteristics of Humic Substances from Different Environments
As Determined by Size Exclusion Chromatography and Their
Statistical Evaluation, Environ. Sci. Technol., 37,
2477–2485, https://doi.org/10.1021/es0258069,
2003. a, b
Pope, A. and Dockery, D. W.: Health Effects of Fine Particulate Air
Pollution: Lines that Connect, J. Air Waste Manage., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006. a
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020. a, b, c
Qin, J., Zhang, L., Qin, Y., Shi, S., Li, J., Gao, Y., Tan, J., and Wang, X.:
pH-Dependent Chemical Transformations of Humic-Like Substances
and Further Cognitions Revealed by Optical Methods, Environ.
Sci. Technol., 56, 7578–7587, https://doi.org/10.1021/acs.est.1c07729,
2022. a
Rattigan, O. V., Civerolo, K. L., and Felton, H. D.: Trends in wet
precipitation, particulate, and gas-phase species in New York State,
Atmos. Pollut. Res., 8, 1090–1102,
https://doi.org/10.1016/j.apr.2017.04.007, 2017. a, b, c, d
R Core Team: R: A language and environment for statistical computing,
https://www.R-project.org/, last access: 9 August 2021. a
Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J. D.,
and Houyoux, M.: Emissions Inventory of PM2.5 Trace Elements across
the United States, Environ. Sci. Technol., 43, 5790–5796,
https://doi.org/10.1021/es802930x, 2009. a
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005. a
Salma, I. and Láng, G. G.: How many carboxyl groups does an average molecule of humic-like substances contain?, Atmos. Chem. Phys., 8, 5997–6002, https://doi.org/10.5194/acp-8-5997-2008, 2008. a
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015. a
Šantl Temkiv, T., Amato, P., Casamayor, E. O., Lee, P. K. H., and Pointing,
S. B.: Microbial ecology of the atmosphere, FEMS Microbio. Rev., 46,
fuac009, https://doi.org/10.1093/femsre/fuac009, 2022. a
Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D.,
Demerjian, K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., and
Dukett, J. E.: Atmospheric Chemistry Measurements at Whiteface
Mountain, NY: Cloud Water Chemistry, Precipitation Chemistry,
and Particulate Matter, Aerosol Air Qual. Res., 16, 841–854,
https://doi.org/10.4209/aaqr.2015.05.0344, 2016a. a, b
Schwab, J. J., Wolfe, D., Casson, P., Brandt, R., Demerjian, K. L., Husain, L.,
Dutkiewicz, V. A., Civerolo, K. L., and Rattigan, O. V.: Atmospheric
Science Research at Whiteface Mountain, NY: Site Description
and History, Aerosol Air Qual. Res., 16, 827–840,
https://doi.org/10.4209/aaqr.2015.05.0343, 2016b. a, b, c, d
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's
Tau, J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.2307/2285891, 1968. a
Shrestha, B., Brotzge, J. A., and Wang, J.: Observations and Impacts of
Long-Range Transported Wildfire Smoke on Air Quality Across
New York State During July 2021, Geophys. Res. Lett., 49,
e2022GL100216, https://doi.org/10.1029/2022GL100216, 2022. a
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for smoke
from incomplete combustion, Appl. Geochem., 17, 129–162,
https://doi.org/10.1016/S0883-2927(01)00061-0, 2002. a
Spranger, T., van Pinxteren, D., and Herrmann, H.: Atmospheric “HULIS” in
Different Environments: Polarities, Molecular Sizes, and Sources
Suggest More Than 50 % Are Not “Humic-like”, ACS Earth
Space Chem., 4, 272–282, https://doi.org/10.1021/acsearthspacechem.9b00299, 2020. a
Stevens, C. J., David, T. I., and Storkey, J.: Atmospheric nitrogen deposition
in terrestrial ecosystems: Its impact on plant communities and consequences
across trophic levels, Funct. Ecol., 32, 1757–1769,
https://doi.org/10.1111/1365-2435.13063,
2018. a
Straub, D. J.: Radiation fog chemical composition and its temporal trend over
an eight year period, Atmos. Environ., 148, 49–61,
https://doi.org/10.1016/j.atmosenv.2016.10.031, 2017. a, b, c
Thornton, J. A., Mohr, C., Schobesberger, S., D’Ambro, E. L., Lee, B. H., and
Lopez-Hilfiker, F. D.: Evaluating Organic Aerosol Sources and
Evolution with a Combined Molecular Composition and Volatility
Framework Using the Filter Inlet for Gases and Aerosols
(FIGAERO), Accounts Chem. Res., 53, 1415–1426,
https://doi.org/10.1021/acs.accounts.0c00259,
2020. a
Tian, D. and Niu, S.: A global analysis of soil acidification caused by
nitrogen addition, Environ. Res. Lett., 10, 024019,
https://doi.org/10.1088/1748-9326/10/2/024019, 2015. a
Tilgner, A., Schaefer, T., Alexander, B., Barth, M., Collett Jr., J. L., Fahey, K. M., Nenes, A., Pye, H. O. T., Herrmann, H., and McNeill, V. F.: Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds, Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, 2021. a, b
VandenBoer, T. C., Petroff, A., Markovic, M. Z., and Murphy, J. G.: Size distribution of alkyl amines in continental particulate matter and their online detection in the gas and particle phase, Atmos. Chem. Phys., 11, 4319–4332, https://doi.org/10.5194/acp-11-4319-2011, 2011. a, b, c
van Pinxteren, D., Fomba, K. W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J. L., and Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, 2016. a
Wang, Z., Mora Ramirez, M., Dadashazar, H., MacDonald, A. B., Crosbie, E.,
Bates, K. H., Coggon, M. M., Craven, J. S., Lynch, P., Campbell, J. R.,
Azadi Aghdam, M., Woods, R. K., Jonsson, H., Flagan, R. C., Seinfeld, J. H.,
and Sorooshian, A.: Contrasting cloud composition between coupled and
decoupled marine boundary layer clouds, J. Geophys. Res.-Atmos., 121, 11679–11691, https://doi.org/10.1002/2016JD025695, 2016. a
Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang,
Q.: Increased atmospheric ammonia over the world's major agricultural areas
detected from space, Geophys. Res. Lett., 44, 2875–2884,
https://doi.org/10.1002/2016GL072305, 2017.
a
Watanabe, K., Ji, J., Harada, H., Sunada, Y., and Honoki, H.: Recent
Characteristics of Fog Water Chemistry at Mt. Tateyama, Central
Japan: Recovery from High Sulfate and Acidity, Water Air Soil
Pollut., 233, 300, https://doi.org/10.1007/s11270-022-05778-4, 2022. a
Winiwarter, W., Fierlinger, H., Puxbaum, H., Facchini, M. C., Arends, B. G.,
Fuzzi, S., Schell, D., Kaminski, U., Pahl, S., Schneider, T., Berner, A.,
Solly, I., and Kruisz, C.: Henry's law and the behavior of weak acids and
bases in fog and cloud, J. Atmos. Chem., 19, 173–188,
https://doi.org/10.1007/BF00696588, 1994. a
Xie, S., Qi, L., and Zhou, D.: Investigation of the effects of acid rain on the
deterioration of cement concrete using accelerated tests established in
laboratory, Atmos. Environ., 38, 4457–4466,
https://doi.org/10.1016/j.atmosenv.2004.05.017, 2004. a
Yamaguchi, T., Katata, G., Noguchi, I., Sakai, S., Watanabe, Y., Uematsu, M.,
and Furutani, H.: Long-term observation of fog chemistry and estimation of
fog water and nitrogen input via fog water deposition at a mountainous site
in Hokkaido, Japan, Atmos. Res., 151, 82–92,
https://doi.org/10.1016/j.atmosres.2014.01.023, 2015. a
Yu, F., Nair, A. A., and Luo, G.: Long-Term Trend of Gaseous Ammonia
Over the United States: Modeling and Comparison With
Observations, J. Geophys. Res.-Atmos., 123,
8315–8325, https://doi.org/10.1029/2018JD028412, 2018. a
Zhang, F., Yu, X., Sui, X., Chen, J., Zhu, Z., and Yu, X.-Y.: Evolution of
aqSOA from the Air–Liquid Interfacial Photochemistry of Glyoxal
and Hydroxyl Radicals, Environ. Sci. Technol., 53,
10236–10245, https://doi.org/10.1021/acs.est.9b03642, 2019. a
Zhou, S., Collier, S., Jaffe, D. A., Briggs, N. L., Hee, J., Sedlacek III, A. J., Kleinman, L., Onasch, T. B., and Zhang, Q.: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol, Atmos. Chem. Phys., 17, 2477–2493, https://doi.org/10.5194/acp-17-2477-2017, 2017. a
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by...
Altmetrics
Final-revised paper
Preprint