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Abstract. Atmospheric aqueous chemistry can have profound effects on our environment. The importance of
chemistry within the atmospheric aqueous phase started gaining widespread attention in the 1970s as there was
growing concern over the negative impacts on ecosystem health from acid deposition. Research at mountain-
top observatories including Whiteface Mountain (WFM) showed that gas phase sulfur dioxide emissions react
in cloud droplets to form sulfuric acid, which also impacted air quality by increasing aerosol mass loadings.
The current study updates the long-term trends in cloud water composition at WFM for the period 1994–2021,
with special consideration given to samples that have traditionally been excluded from analysis due to inor-
ganic charge imbalance. We emphasize three major findings: (1) a growing abundance of total organic carbon
(TOC), with annual median concentrations more than doubling since measurements began in 2009, (2) a growing
imbalance between the measured inorganic cations and anions, consistent with independent rain water observa-
tions, implying that a substantial fraction of anions are no longer being measured with the historical suite of
measurements, and (3) a growing number of samples exhibiting greater ammonium concentrations than sulfate
plus nitrate concentrations, which now routinely describes over one-third of samples. Organic acids are identi-
fied as the most likely candidates for the missing anions, since the measured inorganic ion imbalance correlates
strongly with measured TOC concentrations. An “inferred cloud droplet pH” is introduced to estimate the pH
of the vast majority of cloud droplets as they reside in the atmosphere using a simple method to account for
the expected mixing state of calcium and magnesium containing particles. While the inferred cloud droplet pH
closely matches the measured bulk cloud water pH during the early years of the cloud water monitoring program,
a growing discrepancy is found over the latter half of the record. We interpret these observations as indicating
a growing fraction of cloud droplet acidity that is no longer accounted for by the measured sulfate, nitrate and
ammonium concentrations. Altogether, these observations indicate that the chemical system at WFM has shifted
away from a system dominated by sulfate to a system controlled by base cations, reactive nitrogen species and
organic compounds. Further research is required to understand the effects on air quality, climate and ecosystem
health.
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1 Introduction

Whiteface Mountain (WFM) has been an important site for
cloud water chemistry measurements dating back to the
1980s (Falconer and Falconer, 1980; Mohnen and Vong,
1993), with routine summertime cloud water monitoring be-
ginning in 1994. Through field experiments at WFM and
other locations in the eastern US, researchers established that
gas phase sulfur dioxide (SO2), originating largely from fos-
sil fuel combustion, can dissolve in cloud droplets and un-
dergo aqueous oxidation to form sulfate (SO2−

4 ). This chem-
istry has contributed substantially to particulate mass, posing
significant health risks and contributing to cooling effects
on the climate (Kiehl and Briegleb, 1993; Pope and Dock-
ery, 2006; Myhre et al., 2013). Sulfate and nitrate (NO−3 )
are also the major causes behind acid deposition, a pro-
cess that can have detrimental ecosystem effects such as de-
creased aquatic biodiversity, calcium depletion from soils, re-
lease of toxic aluminum (Gorham, 1998; Likens et al., 1998;
Driscoll et al., 2001; Menz and Seip, 2004) and deteriora-
tion of building materials (Xie et al., 2004; Bravo et al.,
2006). These growing societal and environmental problems
helped influence and shape amendments to the Clean Air Act
in the 1990s focusing on the criteria air pollutants SO2 and
NOx . Starting in 1994, the U.S. Environmental Protection
Agency (EPA) formed a network of the mountaintop sites
in the eastern US through the mountain acid deposition pro-
gram (MADPro) to begin monitoring the progress of Clean
Air Act amendments (Baumgardner et al., 2003). Regulation
of these emissions proved to be successful, as SO2 and to
a lesser extent NOx have decreased for several decades in
the US (US EPA, 2019), leading to decreases in acid rain
throughout the eastern US, including New York state (Rat-
tigan et al., 2017). Substantial decreases were also observed
in cloud water acidity at WFM (Dukett et al., 2011), corre-
sponding to decreases in particulate matter concentrations of
SO2−

4 and NO−3 (Schwab et al., 2016b). Many ecosystems
in the Adirondacks previously impacted by acid deposition
have shown signs of recovery (Driscoll et al., 2016).

Routine long-term measurements of cloud water or fog
water are not widely available, but other locations world-
wide have seen similar long-term reductions in SO2−

4 and/or
NO−3 concentrations with concomitant decrease in acidity,
including California’s central valley (Herckes et al., 2015),
Pennsylvania (Straub, 2017), New Hampshire (Murray et al.,
2013), the UK (Cape et al., 2015), Italy (Giulianelli et al.,
2014), France (Deguillaume et al., 2014) and Japan (Yam-
aguchi et al., 2015; Watanabe et al., 2022). A thorough re-
view of both long-term and short-term cloud and fog chem-
istry studies has been recently compiled by Isil et al. (2022).

The significant reductions in SO2−
4 and NO−3 , and there-

fore cloud water acidity, at WFM indicate a dramatically
changed chemical system, with a growing contribution from
less well-understood and more labile analytes such as organic
compounds and ammonium (NH+4 ). Organic compounds are

found ubiquitously throughout the atmosphere, playing key
roles in ozone formation and aerosol physicochemical prop-
erties such as hygroscopicity, optical properties and reactiv-
ity (Jimenez et al., 2009). During a 2 week pilot study at
WFM in 2017, organic matter was shown to comprise as
much as 93 %, and an average of 78 %, of submicron aerosol
mass (Zhang et al., 2019). Similarly, total organic carbon
(TOC), the sum of soluble and insoluble OC, is a major
component within cloud and fog droplets (Herckes et al.,
2013). Organic compounds are chemically complex, contain-
ing thousands of compounds, all with different chemical and
physical properties spanning orders of magnitude in volatil-
ity and solubility, which dictates the chemical pathways they
can take part in (Jimenez et al., 2009), making their iden-
tification and potential environmental effects challenging to
determine (Thornton et al., 2020). The controlling factors for
TOC concentrations in cloud droplets are highly uncertain
(Ervens, 2015). Organic compounds can also interact with
inorganic ions within cloud droplets to form compounds like
organic salts, organic nitrogen and organic sulfur compounds
(McNeill, 2015).

Reactive nitrogen deposition, from both reduced and ox-
idized forms, has also been gaining increased attention
(Kanakidou et al., 2016; Stevens et al., 2018). While nitro-
gen can act as a nutrient in ecosystems that are nitrogen lim-
ited, excess deposition can lead to harmful environmental
effects such as soil acidification by leaching out buffering
base cations like calcium (Ca2+), magnesium (Mg2+) and
potassium (K+), and through nitrification, potentially mobi-
lizing toxic metals such as aluminum (Lawrence and David,
1997; Tian and Niu, 2015). Nitrogen deposition, when com-
bined with other factors, can also contribute to harmful al-
gal blooms, which threaten aquatic ecosystems and human
health (Paerl and Otten, 2013). A significant fraction of to-
tal nitrogen (TN) in cloud and rain water is organic nitro-
gen (ON), typically comprising ∼ 30 % of water soluble ni-
trogen (Cape et al., 2011). Much like organic carbon, the
sources of organic nitrogen, as well as the chemical aging,
deposition and ecosystem effects, are highly uncertain and
require more research. Ammonia (NH3) is the primary atmo-
spheric base in Earth’s atmosphere, and an unregulated gas
phase pollutant with increasingly recognized importance to
atmospheric chemistry. Despite emissions of NH3 in the US
largely decreasing prior to 2015 (US EPA, 2019), since then
atmospheric concentrations of NH3 appear to be increasing
(Warner et al., 2017; Liu et al., 2019; Yu et al., 2018). At the
same time, across New York state, aerosol NH+4 concentra-
tions have steadily decreased and wet precipitation NH+4 con-
centrations have remained relatively constant (Rattigan et al.,
2017), suggesting that complex long-term shifts in NH3 par-
titioning are taking place.

This paper provides an updated review of trends in sum-
mertime cloud water composition at WFM using data ob-
tained from MADPro (1994–2000), the long-term monitor-
ing conducted by the Adirondack Lake Survey Corporation
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(ALSC) (2001–2017) and recent measurements conducted
under the oversight of the Lance Lab at the Atmospheric Sci-
ences Research Center (ASRC) (2018–2021). While ASRC
conducted the cloud water sampling in recent years, the ma-
jority of the chemical analysis was conducted by the Adiron-
dack Watershed Institute (AWI) in 2018 and 2019 and by
ALSC in 2020 and 2021. A detailed review of the sample
collection methods and laboratory analyses over this period
are also discussed, with a focus on major system changes that
have not been fully described in previously published sci-
entific papers. Previous works have reported trends in bulk
cloud water composition at WFM up to 2013, largely focus-
ing on analytes most relevant for acid deposition (Aleksic
et al., 2009; Dukett et al., 2011; Schwab et al., 2016b). Here,
a critical review of past data analysis methodologies is pre-
sented, alongside a thorough assessment and justification for
modifications to these methodologies, which have resulted in
significant changes to the long-term trends. In this paper, we
also report the first long-term trends in cloud water TOC at
WFM.

2 Collection history, methods, laboratory procedure
and data analysis

2.1 Site description and collection methods

Whiteface Mountain (WFM) is located in the “High Peaks”
Region of the Adirondacks Mountains in Upstate, NY, with
summit elevation of 1483 m. The WFM site history is de-
scribed in detail by Schwab et al. (2016a, b). It should be
noted that the first cloud water TOC measurements at WFM
were conducted for a handful of cloud events in 1987, along
with the first published organic acid measurements in cloud
water at WFM. This powerful seminal study showed that
potential sources of organic carbon including organic acids
could share similar sources with SO2−

4 and NO−3 (Khwaja
et al., 1995). Water soluble organic carbon (WSOC) mea-
surements were also previously obtained for a selection of
cloud water samples at WFM from 1990 to 1992 (Anastasio
et al., 1994).

All of the bulk cloud water data reported in this paper
used a Mohnen omni-directional passive cloud water collec-
tor (Mohnen, 1980) (Fig. 1). The collector contains two disks
with 0.035–0.04 mm Teflon strings strung vertically between
the disks. As cloud droplets pass through the collector and
collide with the Teflon strings, water beads up and eventually
drips down the strings. The cloud water is then funneled by
gravity through a tube and fed into a high density polyethy-
lene vessel called an accumulator. At regular intervals, the
accumulator then dumps into 1 L sample bottles contained
in a carousel within a refrigerator below the accumulator
(Baumgardner et al., 1997).

Deployment of the collector was automated starting in
1994 during the MADPro campaign, and, since that time,
the following meteorological parameters have been used to

trigger deployment of the collector: (1) liquid water con-
tent (LWC) above 0.05 g m−3 measured by a Gerber parti-
cle volume (PVM) (Gerber, 1991), indicating the presence
of a cloud, (2) temperature above 2 ◦C to prevent damage to
the collector from riming, (3) presence of rain not detected,
limiting measurements to non-precipitating clouds. An Ae-
rochem gridded rain sensor was used from 1994 to 2014,
which was updated in 2015 to a CAPMoN heated grid rain
sensor (Mekis et al., 2018), (4) and lastly, wind-speed above
2 m s−1, as measured using a RM Young anemometer, allow-
ing cloudy air to pass through the collector. If all of these me-
teorological parameters are met for at least 1 min, the collec-
tor is raised from its protective housing, exposing the Teflon
strings to the passing airflow. If the state meteorological pa-
rameters are not met for at least 1 min, the collector returns
to its protective housing. A rain valve in line with the ac-
cumulator is instantaneously activated (within 1 s) if rain is
detected, sending rain water to waste. Figure 1 summarizes
the major events and changes to the cloud water collection at
WFM.

The automated collection system originally deployed the
cloud water collector using an electric garage door opener
motor, which was upgraded in 2005 to a pneumatic system to
increase deployment and retraction speed. A pressurized tank
of deionized water also replaced the manual electric pump
spray system in 2005. To monitor for potential contamina-
tion, blanks and rinses of the cloud collector were obtained
regularly throughout each summer and assessed for the same
analytes as the cloud water samples. The collector was rinsed
with deionized water for at least 15 s between samples, ex-
cept when sample changes occurred while deployed in cloud.

Cloud water samples were refrigerated at temperatures of
4 ◦C for up to 3 d within the carousel refrigerator and then
transported to a laboratory for subsequent chemical analy-
sis. From 1994–2006, the accumulator dumped into a sam-
ple bottle every hour, and the carousel advanced to the next
bottle. Starting in 2007, samples were dumped every hour
and later pooled together into 3 h composite samples prior to
analysis. In 2014, the 1 h samples were pooled together into
12 h composite samples. Then, starting in 2015, the 1 L accu-
mulator was replaced with a 12 L accumulator to accumulate
cloud water over 12 h periods, providing up to one daytime
and one nighttime sample per day. The new 12 L accumula-
tor was housed in a separate refrigerator above the carousel
refrigerator with the intent of preventing microbial degrada-
tion prior to freezing the sample, and a measurement of the
accumulator weight was added to continuously monitor the
volume of cloud water collected.

Control of the cloud water collection system is accom-
plished through four pinch valves, three of which divert the
sample stream one of two ways under different conditions,
and a pneumatic “Dump valve” to start or stop flow out of
the accumulator. The “Collector valve” diverts flow to waste
whenever the collector is not actively deployed, primarily for
the purpose of diverting cleansing spray water to the waste
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Figure 1. Timeline of major events in cloud water collection at WFM for the routine long-term dataset analyzed in this paper (1994–
2021), with sampling conducted by the mountain acid deposition program (MADPro) 1994–2000, the Adirondack Lake Survey Corporation
(ALSC) 2001–2017 and the Atmospheric Sciences Research Center (ASRC) 2018–2021, and two major system overhauls in 2005 and
in 2015. While ASRC conducted the cloud water sampling in recent years, the majority of the chemical analysis was conducted by the
Adirondack Watershed Institute (AWI) in 2018 and 2019 and by ALSC in 2020 and 2021. The same basic protocols, cloud water collector
and liquid water content sensor were used throughout this entire measurement period, but sampling frequency decreased from hourly to
3-hourly to 12-hourly, necessitating a larger accumulator vessel and an additional refrigerator to house it. Automated filtering began in 2018.
Photos documenting the manual rinsing process and the original accumulator were obtained from Eric Hebert, Environmental Engineering
and Measurement Services, Inc.

stream. The “Drain valve” diverts flow to waste after 1 L has
been collected in sample bottles within the carousel (since
bottles in the carousel can only hold 1 L). The “Rain valve”
operates at a higher frequency than the 1 min timescale of
the “Collector valve” and diverts flow to waste when the rain
sensor detects rain but the collector has not yet retracted back
into its housing.

Starting in 2018, an automated filtering system with in-
line peristaltic pump was added just prior to the accumulator
(Fig. 2). This change in protocol was introduced in an at-
tempt to further safeguard samples for subsequent analysis
of the organic constituents, since organics now comprise a
major fraction of aerosol and cloud water solute mass, and
their chemical and physical properties remain poorly under-
stood. Automated filtering could be important for preserving
some organic compounds for up to 3 d within the carousel re-
frigerator, since some microbes are known to both consume
and produce organic compounds even at temperatures as low
as 0 ◦C (Šantl Temkiv et al., 2022). Note that for TOC, mi-
crobial degradation is only important if it leads to organic
compounds volatilizing out of solution. For the first year of
automated filtering, only a few samples were filtered dur-
ing collection, and field tests were conducted to verify that

the filter used did not introduce measurement artifacts. It
should be noted that after automated filtering commenced,
TOC could no longer be measured, as filtration removes in-
soluble organic carbon, and measurements of water soluble
organic carbon (WSOC) were obtained, instead. To evaluate
the potential impact of this change in protocol, both TOC and
WSOC were measured for a subset of samples in 2018 and
2019, and these results indicated on average 15 % insoluble
organic carbon (Fig. S2 in the Supplement), consistent with
previous studies at other locations (Herckes et al., 2013).

As used by Khwaja et al. (1995), a pre-washed 0.4 µm
track-etched polycarbonate filter was selected, to limit po-
tential degradation of organics but with low enough pressure
drop to attain reliable operation of the automated filtering ap-
paratus. The in-line filter was housed within the accumulator
refrigerator to further limit microbial growth on the filter sub-
strate. Since pressures in excess of 40 psig could occur under
high particulate load on the filter, PTFE reinforced silicone
peristaltic pump tubing (GORE STA-PURE PCS) was used
to prevent tubing rupture, and filters were replaced during ev-
ery site visit, nominally every 3 d. The peristaltic pump was
also triggered to only turn on during cloud events when the
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Figure 2. Schematic of the physical components of the current
cloud water collection system inside the research observatory at the
summit of WFM. A series of valves control where the collected
cloud water is directed at specific times, with multiple opportuni-
ties to be directed to a waste stream marked “Drain”. Up to 1 L is
collected in each bottle within the carousel. The two refrigerated
parts of the system house the Accumulator and the Carousel, where
the sample is stored for up to 3 d before delivery to an analytical
laboratory for analysis.

collector was deployed, to prevent unnecessary wear and tear
on the peristaltic pump tubing.

2.2 Chemical analysis and data handling

The list of routinely measured analytes for this long-term
dataset is conductivity, pH, SO2−

4 , NO−3 , NH+4 , chloride
(Cl−), sodium (Na), calcium (Ca), magnesium (Mg) and
potassium (K), with TOC measurements beginning in 2009
and WSOC measurements beginning for a subset of samples
in 2018 and the majority of samples 2019–2021. From 1994–
2007, nitrite (NO−2 ) was also measured. However, concen-
trations were rarely above detection limits and, on average,
NO−2 contributed less than 1 µeq L−1 to the ion balance. Due
to these reasons, NO−2 was no longer included in the suite
of measured analytes. The measurement techniques, method
detection limits, precision and accuracy for the MADPro,
ALSC and AWI measurements are summarized in Table S1
in the Supplement and further described by Isil et al. (2000)

and Lee et al. (2022). Measurements conducted by AWI in
2018 and 2019 are described here. Sulfate and Cl− concen-
trations were measured via ion chromatography (IC) using
a Lachat QC 8500 ion chromatograph. A cadmium reduc-
tion technique coupled with a Lachat QC 8500 flow injec-
tion analyzer was used to measure NO−3 , as described by the
EPA 352.2 method. It should be noted that cadmium reduc-
tion measures both NO−2 and NO−3 , potentially biasing NO−3
high. AWI measured NO−2 concentration for a subset of 14
cloud water samples in 2018 using a Dionex Integrion HPIC
system and found that on average NO−2 was still only 2 % of
NO−3 concentrations. For NH+4 measurements, samples were
injected with an alkaline solution of sodium hydroxide, con-
verting all NH+4 to NH3. The NH3 was then separated from
the solution using a hydrophobic semi-permeable membrane,
which was then combined with a solution containing a pH
indicator and measured continuously at 590 nm using a flow
photometer. WSOC was measured using a Shimadzu TOC-
VCPN total organic carbon analyzer. Accuracy was deter-
mined using prepared reference standards and were run ev-
ery 10 cloud samples. Metals including Ca, Mg, Na and K
were measured using inductively coupled plasma - atomic
emissions spectrometry (ICAP-AES).

It is important to note that the methods used by MADPro,
ALSC and AWI measure total metal concentrations rather
than their ionic forms, which could potentially overestimate
the role of metals in the overall charge balance. Samples
for the majority of 2019 and 2020 and all of 2021 were fil-
tered during the collection process, removing potential in-
soluble Ca and Mg larger than 0.4 µm, and yet reductions
in the concentrations of Ca and Mg were not observed, in
spite of the relatively high pH often encountered in recent
years. This suggests that a large fraction of Ca and Mg in
the historical cloud water dataset was also dissolved. The as-
sumption has long been that all measured Ca and Mg were
fully dissolved within cloud water due to the dilute aqueous
solutions that comprise cloud droplets. To evaluate whether
this assumption has merit, 10 unfiltered cloud water samples
collected 2018–2020 were reanalyzed by the Lance Lab us-
ing Metrohm 761 Compact Ion Chromatograph with a Met-
rosep C Supp 2 – 150/4 cation column. The samples were
re-analyzed twice, once unfiltered and once filtered using a
0.4 µm polycarbonate filter. Figure S4 compares the concen-
trations of Ca2+ and Mg2+ before and after filtering, while
Fig. S5 compares the filtered Ca2+ and Mg2+ measurements
to the original unfiltered elemental Ca and Mg concentra-
tions measured by AWI or ALSC. For both sets of figures,
the slopes of the regression lines ranged from 0.971 to 1.08
with linear correlation coefficient 0.94–0.98, indicating that
filtration removed little to no insoluble Ca or Mg. To further
evaluate what fraction of Ca or Mg we expect to be dissolved
in the cloud water, the solubility of CaCO3 and MgCO3 were
calculated as a function of pH (Fig. S6). These calculations
show that for the full range of pH and dilution experienced
by our cloud water samples to date, CaCO3 and MgCO3 are
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expected to be completely dissolved. Only at pH values of
eight and greater do we expect these species to remain in
the solid phase. Other forms of calcium and magnesium, e.g.
CaCl2, Ca(NO3)2 or Ca(OH)2, are even more soluble and
even more likely to be completely dissolved at the pH and
liquid water contents encountered at WFM. Based on the IC
analysis and calculations described above, we therefore as-
sume that the measured metal concentrations are equivalent
to their ionic concentrations, as commonly assumed in past
analyses of this dataset.

Another common practice, made by both MADPro and
ALSC, was to categorize samples based on ion balance cri-
teria according to the relative percent difference (RPD) be-
tween the measured cation and anion concentrations, calcu-
lated as follows:

RPD= 100% ·
∑

Cations−
∑

Anions
(
∑

Cations+
∑

Anions)/2
. (1)

Samples were categorized as valid based on RPD using the
following thresholds: RPD< 100 % when both

∑
Cations

and
∑

Anions< 100 µeq L−1, or RPD< 25 % when either∑
Cations or

∑
Anions> 100 µeq L−1. Samples that did not

match these criteria were considered invalid. Samples with
flagged data due to suspected measurement problems were
also considered invalid, which were extremely rare, only rep-
resenting< 1 % of samples. Samples for which all analytes
could not be measured (for instance, due to insufficient sam-
ple volume) were omitted from our separate analysis of in-
valid and valid datasets, and we refer to these samples as
unclassified since ion balance could not be fully assessed for
these samples. Fewer than 10 % of samples were unclassi-
fied. Previous analyses involving the MADPro and ALSC
datasets typically only used valid data (i.e. those samples that
passed the ion balance criteria and were also not subject to
any known or suspected measurement problems), which has
important implications for the data interpretation and the re-
sulting long-term trends, as will be discussed in the results
section of this work.

Previous studies also often focused on reporting sample
volume-weighted analyte concentrations due to a focus on
wet deposition, whereas we report measured cloud water
concentrations and cloud water loadings, the latter of which
complements measurements of aerosol loadings. Since a typ-
ical cloud droplet is more likely to evaporate than deposit to
the surface at any given time (Seinfeld and Pandis, 2016),
this latter focus on atmospheric loadings is useful for inves-
tigating chemical processes occurring in the atmosphere sep-
arately from the influence of sample dilution at higher LWC.

To account for variability in LWC that potentially affected
cloud water concentrations, cloud water loadings (CWL) are
calculated as follows (Elbert et al., 2000; Marinoni et al.,
2004; Kim et al., 2019):

CWL=
LWCsamp · [Xi] ·mwi

ρw ·Zi
, (2)

where CWL is expressed in µg solute per m3 of air, LWCsamp
is the representative LWC during which the sample was col-
lected expressed in g water per m3 of air, [Xi] is the liquid
concentration of a given solute ion i expressed in µeq solute
per L of water, mwi is the molecular weight of the solute in
g mol−1,Zi is the solute charge and ρw is the density of cloud
water (assumed to be 1 g cm−3). To calculate TOC CWL,
[Xi]/Zi is replaced with molar concentration in µmol C per
L and mwi = 12 g mol−1. While the long-term WFM dataset
included average LWC values for each sample, there is no
record of how these values were determined, and careful
analysis indicates that these values included LWC values dur-
ing periods with drizzle when collected cloud water was be-
ing sent to a waste stream and the collector is not deployed,
a common occurrence during the night. To avoid introducing
bias into the CWL calculation, we recalculated LWCsamp by
removing LWC values from the average when the rain sen-
sor detected rain for > 15 % of a given measurement period
or the collector is deployed for the less < 25 % of a mea-
surement period as described in the supplemental material
(Fig. S7). Since this additional information about the collec-
tor status and meteorological conditions during each hour is
only available starting in 2009, only data from 2009 to 2021
are included in our LWCsamp and CWL calculations.

In the present study, data analysis is performed within the
statistical software R (R Core Team, 2021). Measured an-
alyte concentrations and conductivity exhibit a log-normal
distribution; therefore, median values were used rather than
means for trend analysis, as the median is more robust to
outliers and a better representation of the population. Ad-
ditionally, due to significant variance within the trend data,
Mann–Kendall (MK) trend tests combined with Theil–Sen
slope estimators (Sen, 1968) were employed to obtain a ro-
bust estimate of the slope of the long-term trends in measured
analyte concentrations, with its significance determined by
the calculated p value from MK test.

3 Long-term trends

3.1 Trends in valid data

This section updates the long-term trends in cloud water
composition at WFM that were previously reported by Alek-
sic et al. (2009), Dukett et al. (2011) and Schwab et al.
(2016b), now including data through 2021. Figure 3a shows
annual median analyte concentrations and the slopes of the
linear trend analysis for the valid dataset, while Table S2a
shows the slopes and associated p values for all measured
analytes. Annual median cloud water pH increased from 3.78
in 1994 to 5.34 in 2021, corresponding with a substantial
decrease in conductivity and SO2−

4 concentrations. A simi-
lar trend was found in data reported by Pye et al. (2020) for
cloud water pH from the 1990s to the 2010s while showing
data as far back as the 1970s being highly acidified and re-
maining flat until the 1990s. Meanwhile, NO−3 , NH+4 and Cl−
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Figure 3. Annual median trends in cloud water collected from the summit of WFM. Panels (a) and (b) include valid data, samples achieving
an approximate ion balance, while panels (c) and (d) include the entire available dataset. Annual median trends in major analyte concentra-
tions reported in µeq L−1 for ions on the left axis and µmol C L−1 for TOC on the right axis. Conductivity is measured in µS cm−1 on the
right axis in panels (b) and (d). Measured annual median WSOC for samples collected in 2018–2021 are shown in light green for comparison
to the estimated TOC concentrations in these years. Error bars represent the standard error of the annual mean concentrations. Standard error
of the annual mean were used instead of interquartile range as the large sample to sample spread in the cloud water composition produced
large error bars, making the figures difficult to read.

concentrations exhibited relatively modest decreases, which
leveled off starting in 2006. The remaining ions exhibited no
discernible trends.

TOC is the only analyte that shows evidence of an increas-
ing trend (plotted on the right axis in Fig. 3a). This is the first
reported long-term trend for cloud water TOC at WFM. It
should be noted that for 2009, the first year of routine TOC
measurements, TOC analysis was only conducted on 20 sam-
ples in total, compared to 80–285 samples per year with TOC
measurements from 2010–2021. In spite of the small samples
size for 2009, these data are included in the trend analysis as
there is no evidence of measurement error or bias, and their
inclusion does not strongly impact the resulting trend. Since
TOC concentrations could not be measured for samples when
automated filtering was performed during collection (as ap-
plied for samples 2018–2021), annual median TOC concen-
trations for these 4 years were estimated based on the average
85 % WSOC /TOC ratio observed for the subset of samples
from 2018 and 2019 where both WSOC and TOC were mea-
sured (Fig. S2). Both WSOC and TOC concentrations are
shown in Fig. 3a for these 4 years, but only the estimated
TOC concentrations are used in the trend analysis.

Figure 4. Annual percentage of cloud water samples considered
invalid according to ion balance criteria [invalid/(invalid + valid)]
(black, left axis) and total number of samples (valid + invalid +
unclassified) in each year (grey, right axis).

3.2 The growing influence of invalid data

Review of the cloud water measurements obtained at WFM
shows that the proportion of so-called invalid samples has in-
creased substantially over the past several years, increasing
from 9.3 % in 1994 to 47 % in 2021 and peaking at 57 % in
2020 (Fig. 4). While there is a seasonality to the percentage
of invalid samples, every summer month shows an increas-
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ing slope (Fig. S3). This classification, based on ion balance
criteria, was originally intended to reduce the impact from
measurement error, as it is assumed that positively charged
cations should be balanced by negatively charged anions in
any natural bulk water systems. Implicit in this characteri-
zation is the assumption that the majority of ions are be-
ing analyzed for. This growing ion imbalance in cloud wa-
ter coincides with increasing cation / anion ratios observed
in rain water collected by the National Atmospheric Deposi-
tion Program (NADP) over the same time period throughout
NY State (Rattigan et al., 2017) and more broadly across the
eastern US and Canada (Feng et al., 2021), based upon the
same standard suite of inorganic analytes. Since the rain wa-
ter observations are entirely independent of the cloud water
measurements, it is highly unlikely that the growing num-
ber of invalid samples is due to a measurement artifact. Cru-
cially, aside from ion imbalance, there is no evidence that the
so-called invalid cloud water samples were subject to mea-
surement bias and should be discarded. We hypothesize, in-
stead, that the growing ion imbalance is due to unmeasured
ions like organic acids that are growing in abundance, as also
hypothesized by Dukett et al. (2011) and Feng et al. (2021).
Since organic acids are known to comprise a significant frac-
tion of TOC (Herckes et al., 2013), the measured trend in
TOC concentrations at WFM supports this hypothesis.

Since the invalid dataset now comprises nearly half of the
samples, it is worth analyzing this dataset separately. These
samples are potentially representing a chemically distinct
subset of samples that are encountered more frequently in re-
cent years. To summarize, invalid samples are considerably
less acidic (0.5–1 pH units) and exhibit higher concentrations
of NH+4 , TOC, Ca2+ and K+ (Fig. S8), and the trends are
significantly different as well. After around 2006, trends in
the invalid dataset appear to begin diverging from the valid
dataset. On average, LWC is higher within the valid dataset,
which tends to dilute samples and thus reduce all analyte con-
centrations. However, there is not a growing divergence be-
tween the trends of valid and invalid LWC; therefore, LWC
trends alone do not explain the divergence between valid and
invalid concentrations. These observations show that while
the invalid samples have been growing more common, the
composition of the invalid samples has also grown more con-
centrated in TOC, NH+4 , NO−3 and Ca2+ over the past decade.

3.3 Trends of the complete dataset

Including valid, invalid and unclassified data, the trends
still exhibit significant reductions in conductivity, SO2−

4 ,
NO−3 and NH+4 concentrations (Fig. 3b and Table S2b).
However, the reductions are lower in magnitude compared
to only the valid data. For instance, the slope of the re-
gression line for SO2−

4 concentrations decreases from 5.14
to 4.13 µeq L−1 yr−1. Notably, the reactive nitrogen species
(NH+4 and NO−3 ) exhibit a more noticeable uptick in con-
centration from 2007 to 2014 before decreasing again. This

Figure 5. (a) Annual median measured H+ concentrations and neu-
tralization of SO2−

4 and NO−3 by NH+4 , and (b) annual median
cation / anion ratios in cloud water collected from the summit of
WFM (complete dataset).

apparent inflection point in the trends, starting around 2006,
appears to signify the emergence of a new chemical regime
that has been growing in importance along with the growing
fraction of invalid samples. The biggest impact of includ-
ing the invalid data in our analysis is a stronger increasing
trend in TOC concentrations, which more than doubles from
2009 to 2021. TOC shows a strong seasonality, typically with
June and July exhibiting the highest concentrations for the
year (Fig. S9). Theil–Sen regression analysis reveals a sta-
tistically significant increasing trend for TOC in the months
of June, July and September. No other analyte measured in
WFM cloud water exhibits any significant seasonality dur-
ing any month. Annual median concentrations for the com-
plete dataset show that NH+4 has been increasingly capable
of neutralizing SO2−

4 and NO−3 , which is well matched by
a decreasing trend in measured H+ (Fig. 5). Note that for
individual cloud water samples, NH+4 concentrations can be
greater than both SO2−

4 and NO−3 concentrations combined
(in terms of µeq L−1), which occurred for 1203 out of 9429
cloud water samples from 1994 to 2021.

The increasing trend in annual median cation / anion ra-
tios within cloud water over the entire record is 1.97 % yr−1

(p =< 0.001), including only samples where cations and an-
ions for all measured analytes are reported. Emergence of a
new chemical regime within the past decade is further sup-
ported by these observations, with annual median ion imbal-
ance< 20 % prior to 2009, after which median ion imbalance
has exceeded 20 % in every subsequent year except 2018.
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Figure 6. Linear trends in annual median cloud water loadings
(CWLs) for the major inorganic ions and TOC between 2009–2021
for the complete dataset, using the meteorology criteria outlined in
the Supplement, Sect. S5 to calculate average in-cloud LWC values
associated with each sample.

4 Relationship between cloud chemistry and liquid
water content

The analysis so far has focused on cloud water concentra-
tions, which can be impacted by changes in meteorological
parameters like LWC that are unrelated to changes in chem-
istry or emissions. Previous works have investigated the role
of LWC on analyte concentrations (Elbert et al., 2000; Alek-
sic and Dukett, 2010; van Pinxteren et al., 2016), finding
a weak non-linear negative relationship between total ion
concentration (TIC) and LWC, with considerable variance
within the data. Aleksic and Dukett (2010) used a proba-
bilistic technique to describe the relationship between binned
LWC and TIC, with TIC showing a negative exponential re-
lationship with LWC. When using this type of LWC binning
technique for TOC, a similar probabilistic relationship can
be found (Fig. S10), where a decreasing trend is observed
in TOC as LWC increases, but exhibiting large variability
within each bin, similar to what has been found previously at
other locations (Herckes et al., 2013).

An alternate way to report cloud and precipitation compo-
sition is to weight by sample volume (Schwab et al., 2016a;
Rattigan et al., 2017), which provides a means for determin-
ing the net accumulation of a particular analyte in the en-
vironment. Sample volume for cloud water is dependent on
the collection efficiency of the cloud water collector, which
is influenced by wind speed, LWC and updraft, complicating
the relationship between sample volume and cloud composi-
tion. In our analysis, instead of sample volume, samples are
weighted by liquid water content (LWC) to determine cloud
water loadings (CWLs), also referred to as air-equivalent
concentrations (Marinoni et al., 2004; Wang et al., 2016; Kim
et al., 2019), which has the added advantage of being directly
comparable to aerosol loadings.

Figure 6 and Table S3 show the trends and the associated
p values in median CWL for 2009–2021, a time period for
which meteorological data were available for calculating the
average in-cloud LWC for each cloud water sample within
the complete dataset. Focusing on this date range has the
added advantage of focusing on a time period that is chem-
ically distinct from the earlier half of the long-term record
(e.g. with NH+4 concentrations growing in abundance rela-
tive to both SO2−

4 and NO−3 and changing trends in all the
major analytes, as shown in Fig. 3c). Using the same analysis
method as in previous sections, increasing trends in Ca, Mg,
Na, Cl− and K CWL since 2009 are observed. The trends
in Ca and Mg CWL imply increased influence from mineral
or soil dust, while the increasing trends in Na and Cl− sug-
gest increasing influence from sea spray or playa dust. The
increasing K trend could indicate increased influence from
wildfires (Simoneit, 2002; Pachon et al., 2013), though K
can also be found in mineral dust. Meanwhile, there is no
statistically significant trend in LWC, SO2−

4 , NH+4 , NO−3 or
TOC CWL over this time period. This surprising result indi-
cates that the large increasing trend in TOC concentrations
since 2009 reported in Fig. 3c is not statistically significant
when accounting for LWC, despite the positive slope of the
TOC CWL regression line. Additional measurement uncer-
tainty introduced by the LWC measurements may partly ac-
count for the higher p value and reduced significance of the
TOC CWL trend, but complex relationships between LWC
and TOC concentrations (e.g. dilution and partitioning of sol-
uble organic gases and/or drier air masses associated with
greater biomass burning emissions) could also be playing a
role.

5 Potential missing ions

Two independent measures (cation / anion ratio and predict-
ed/measured conductivity) imply that as pH increases, there
is a growing abundance of analytes that are not being mea-
sured, particularly above 4.5 pH (Fig. S11). The measured
ion imbalance suggests that more of the missing analytes are
anions than cations. Here, we discuss potential missing an-
ions responsible for the increasing trend in cation / anion ra-
tios in WFM cloud water.

5.1 Bicarbonate

Due to increasing cloud water pH, bicarbonate (HCO−3 ) is
hypothesized to have a growing contribution to ion balance.
The dissolution of CO2 is a major source of HCO−3 by par-
titioning into cloud droplets and hydrolyzing to form car-
bonic acid (H2CO3) with an acid dissociation constant of
4.37× 10−7 (pKa= 6.36). This contribution of HCO−3 from
CO2 increases as pH increases until it reaches its pKa of
10.3, where the relative contribution of CO2−

3 becomes more
important. Highly alkaline dust particles containing calcium
and magnesium carbonate (CaCO3 and MgCO3) can also be
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a major source of HCO−3 . Cloud water collection sites that
are heavily influenced by mineral dust often report pH val-
ues above seven (Khemani et al., 1987; Budhavant et al.,
2014), leading to relatively acid-buffered cloud water. While
the suite of measurements at WFM did not include HCO−3 , it
can be estimated using pH dependent equilibrium equations
for an aqueous system open to the atmosphere, calculated as
follows:

[HCO−3 ] =
PCO2 ·HCO2 ·Ka1

[H+]
, (3)

where PCO2 represents the partial pressure of CO2, assumed
to be 410 ppm, HCO2 = 3.2× 10−2 M atm−1 is the Henry’s
law constant of CO2, and Ka1 is the acid dissociation con-
stant of CO2 (Sander, 2015). Temperature was also assumed
to be 298 K. There is virtually no change to the overall ion
balance when including estimated HCO−3 (Fig. S12). Even
for pH values above six (approximately the pKa of H2CO3),
there are only modest improvements in overall ion balance.
Based on these estimates, it is unlikely that HCO−3 is a ma-
jor driver of ion imbalance in the WFM cloud water observa-
tions. Importantly, these are only estimates of HCO−3 concen-
trations based on equilibrium with the atmosphere. There has
been significant discussion on the validity of Henry’s Law
constants for cloud drop distributions, as several field stud-
ies note significant departures of measurements from gas–
aqueous phase partitioning (Pandis and Seinfeld, 1991; Wini-
warter et al., 1994; Straub, 2017). It is plausible that some de-
viations could also exist for the carbonate system, thus lead-
ing to inaccurate HCO−3 concentration estimates. One fog
water monitoring site in Pennsylvania found similar anion
deficiency in their system and hypothesized HCO−3 as one
potentially missing anion. For better estimates, they used in-
organic carbon measurements from a TOC analyzer and as-
sumed all inorganic carbon was part of the carbonate system.
They then used the pH of the fog water to calculate the frac-
tion of HCO−3 . This led to around a 2.4× greater concentra-
tions of HCO−3 on average than predictions based on Henry’s
Law, improving overall ion balance (Straub, 2017). It should
be noted that the fog water exhibited considerably greater
pH values than WFM cloud water, however, and only fog
water samples with pH> 6.0 showed appreciable ion imbal-
ance, reinforcing our assessment that HCO−3 concentrations
are likely negligible for the majority of cloud water samples
from WFM.

5.2 Organic anions

Organic anions such as formate, acetate and oxalate are
known to be present in cloud and rain water, including at
WFM (Khwaja et al., 1995; Chapman et al., 2008; Herckes
et al., 2013; Akpo et al., 2015). A strong correlation between
TOC and ion imbalance (R2

= 0.55, p < 0.001) implies that
an important fraction of missing anions are likely organic
(Fig. S13). Further evidence for missing organic acids is re-

vealed when investigating ion balance as a function of pH. At
low pH, the ratio of measured cations to anions is approxi-
mately 1, approaching ion balance. As pH increases, the ratio
decreases, reaching a minimum of 0.69 for pH 5.5–6.3, with
large decreases in the ratio at pH bins of 4.0–4.8 and 4.8–
5.5 (Fig. S14). These pH bins are close to the pKa values
of formic and acetic acid (3.74 and 4.75, respectively), often
the most abundant organic acids found in cloud water (Her-
ckes et al., 2013). As pH increases, a greater fraction of these
acids, and others, are expected to exist in their anionic form
and contribute more significantly to charge balance. Increas-
ing cloud water pH also increases the fraction of volatile and
semi-volatile organic acids that reside in the aqueous phase,
contributing further to the ion imbalance (Seinfeld and Pan-
dis, 2016). Similarly, Fig. S11 shows that the ratio of predict-
ed/measured conductivity decreases as pH increases, indicat-
ing a missing source of ions within the system that could be
organic in nature.

Assuming that the missing anions are carboxylates, the
contribution of organic acids to TOC can be approximated.
We introduce the value of a carbon to charge ratio (C/z) to
represent how many carboxylic acid functional groups are
associated with every carbon atom in an organic molecule.
Figure S15 shows the annual median faction of organic acids
to TOC for four different C/z ratios of 1, 2, 3, and 5.
C/z= 1 represents the smallest mono and dicarboxylic acids
formic and oxalic acid. C/z= 2 represents slightly larger
but commonly found compounds like acetic and succinic
acid. C/z= 3 represents compounds like propionic and lac-
tic acid. Lastly, C/z= 5 is used to represent large organic
compounds like humic-like substance (HULIS), a class of
compounds that are not well defined but often represent a
large fraction of WSOC (Perminova et al., 2003; Graber
and Rudich, 2006; Spranger et al., 2020). A representative
HULIS compound with a molecular weight of 360 g mol−1,
an organic matter/organic carbon ratio of 2 and three car-
boxylic acid functional groups indicates a molecule with 15
carbon atoms and a C/z value of five. These values are esti-
mated based on available literature (Perminova et al., 2003;
Graber and Rudich, 2006; Salma and Láng, 2008; Brege
et al., 2018; Cook et al., 2017; Qin et al., 2022). Ionic organic
compounds represent an important fraction of TOC, which
we estimate range from 4.81 %–24.0 % in 2009 to 7.28 %–
36.4 % in 2021, and potentially peaking at 58.0 % in 2020.
There is also strong evidence that this fraction is increasing
as indicated by Theil–Sen regression (p = 0.0327), indicat-
ing that not only is TOC increasing but organic ions are also
increasing. There is very little data to constrain high molec-
ular weight organic compounds in WFM cloud water. One
study by Cook et al. (2017) measured high molecular weight
organic compounds for eight cloud water samples collected
at WFM in 2014 using electrospray ionization coupled with
Fourier transform ion cyclotron resonance mass spectrom-
etry (FTICR-MS). This work found that the distribution of
the carbon numbers were largely centered around 15 atoms,
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which is in rough agreement with our estimate of three car-
boxylic acid groups and a molecular weight of 360 g mol−1.
Therefore, the C/z ratios of 1 and 5 may serve as useful
lower and upper estimates for the fraction of TOC that is
ionic. More detailed chemical analysis is required to better
estimate the contribution of organic anions to the chemical
system.

6 A new chemical regime

6.1 Changing relationship between H+ and conductivity

While our analysis of the long-term cloud water dataset at
WFM illuminates important differences from previous anal-
yses, there is no doubt that significant progress has been
made in reducing ambient concentrations of criteria pol-
lutants across the US and at WFM since the 1990s, re-
sulting in significant decreases in SO2−

4 and NO−3 con-
centrations, with associated increases in cloud water pH
and decreases in conductivity. These overall trends high-
light that, generally, conductivity is controlled by H+ con-
centrations, due to the high limiting molar conductivity of
H+ (3+ = 349.5 S cm2 mol−1) compared to other analytes
(e.g. 160.0 S cm2 mol−1 for SO2−

4 and 73.5 S cm2 mol−1 for
NH+4 ) (Coury, 1999). In recent years, this relationship is di-
minishing. Figure 8a shows the relationship between conduc-
tivity and pH for individual cloud water samples through-
out the entire 28 year record (1994–2021). pH values range
from< 3 to nearly as high as 7, and conductivity values like-
wise span nearly three orders of magnitude. Many samples
exhibit a strong linear relationship between H+ and conduc-
tivity, especially in more acidified cloud samples. However,
beginning at pH values above 4, many samples deviate from
this linear relationship, with higher conductivity values than
expected for samples with high pH. To reach these same
conductivity values, the cloud water samples requires much
higher concentrations of other ions such as NH+4 and Ca2+.
The emergence of this new “non-linear regime” with both
high pH and high conductivity implies that one cannot as-
sume that samples with higher pH are “cleaner”, as was typ-
ically the case in decades past at WFM. To better investigate
this non-linear relationship between conductivity and H+, we
propose a new method of classifying cloud water data as fol-
lows:

RCond =
HCond

MCond
, (4)

where MCond is the measured specific conductivity and
HCond is the conductivity from the H+ ion, calculated from

HCond =3
+
[H+], (5)

where 3+ is the limiting molar conductivity of the H+ ion
at infinite dilution arising from the auto-ionization of pure
water. If RCond < 0.35, less than 35 % of the total conduc-
tivity of the sample can be explained by H+. For samples

with RCond > 0.35, to the left of the dashed line on Fig. 7a, a
linear relationship between conductivity and pH is observed,
and for samples with RCond < 0.35 this linear relationship
breaks down. The following section will compare differences
in chemistry between the two regimes.

6.2 Linear regime vs non-linear regime

There are many similarities between the valid/invalid and
linear/non-linear classifications. Figure 7b shows that a
growing fraction of samples are in the non-linear regime,
peaking at over 90 % of samples in 2020. Table 1 uses a
Dunn test to compare median concentrations between the
linear and non-linear regimes (averaged over all years for
which data are available, i.e. 1994–2021 for all analytes ex-
cept for TOC, which was averaged over 2009–2021). Con-
ductivity and SO2−

4 are nearly double and cloud water pH is
1 unit lower in the linear dataset compared to the non-linear
dataset, highlighting the dominance of SO2−

4 and H+ in the
linear regime. There is no obvious difference in NO−3 con-
centrations between the two datasets, implying that the con-
trolling factors for NO−3 are unrelated to the relationship be-
tween H+ and conductivity. Every other measured ion shows
higher concentrations in the non-linear dataset than the lin-
ear dataset, with considerably higher concentrations of TOC,
Ca2+ and Mg2+, and in addition, an overall greater ion im-
balance. Therefore, the linear regime can be characterized as
a highly acidified system controlled by SO2−

4 , and the non-
linear regime is a system with greater TOC, NH+4 and base
cations. The non-linear regime is becoming the predominate
system in WFM cloud water.

6.3 Is cloud water representative of cloud droplets?

With the reductions in SO2−
4 and NO−3 , species such as Ca2+

have grown in relative importance to ion balance, conductiv-
ity and pH. Sources of atmospheric Ca2+ can include fos-
sil fuel combustion in the form of fly ash (Lee and Pacyna,
1999), but the dominant source is generally thought to be
mineral dust particles containing bases like calcium carbon-
ate (CaCO3) and calcium oxide (CaO) (Reff et al., 2009).
These particles typically raise the pH of cloud and rain wa-
ter, particularly evident in observations from India (Khemani
et al., 1987; Budhavant et al., 2014). Within WFM cloud
water, there is a considerably higher concentration of Ca2+

for samples within the non-linear regime, contributing to the
higher measured pH values.

Due to the mechanism by which they are lofted into the at-
mosphere, mineral dust aerosols are known to exist primarily
in the coarse mode (i.e. with dry particle diameter > 1 µm)
(Seinfeld and Pandis, 2016). While these aerosol particles
can make up a substantial fraction of the overall aerosol mass
concentration, they generally represent a very small fraction
of the aerosol number concentration (Mahowald et al., 2014).
Therefore, even if these particles are hygroscopic, only a
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Figure 7. (a) Conductivity and pH for individual cloud water samples from 1994 to 2021. The linear and non-linear regimes are distinguished
with a dashed line that indicates H+ contribution to the measured conductivity is exactly 35 %. To the right of this line, H+ contributes less
to the measured conductivity, and we refer to this as the non-linear regime, since conductivity and pH no longer exhibit a clear linear
relationship. The dotted line represents the conductivity if H+ is the only ion present. (b) Percent of samples in the non-linear regime for
each year of sampling at WFM.

Table 1. Linear versus non-linear regime median concentrations for all measured analytes and associated p values for the Dunn test.

Chemical species Non-linear Linear Difference % Difference p value Non-linear Linear
median median n n

Ion balance (µeq L−1) 37.5 7.00 30.5 81.3 % < 0.001 1823 6172
NH+4 (µeq L−1) 77.8 55.5 22.3 28.6 % < 0.001 1873 6357
SO2−

4 (µeq L−1) 42.9 86.6 −43.8 −102 % < 0.001 1823 6377
NO−3 (µeq L−1) 33.3 36.4 −3.07 −9.22 % 0.823 1874 6377
Ca2+(µeq L−1) 28.2 5.72 22.5 79.7 % < 0.001 1866 6350
Mg2+(µeq L−1) 6.14 1.81 4.33 70.5 % < 0.001 1865 6329
Cl−(µeq L−1) 2.96 2.43 0.536 18.1 % < 0.001 1862 6354
Na+(µeq L−1) 1.74 0.968 0.772 44.4 % < 0.001 1852 6342
K+(µeq L−1) 1.54 0.928 0.612 39.7 % < 0.001 1853 6291
pH 5.28 4.19 1.09 20.7 % < 0.001 1879 6431
Conductivity (µS cm−1) 21.2 40.6 −19.4 −91.4 % < 0.001 1879 6431
TOC (µmol C L−1) 425 236 188 44.4 % < 0.001 745 836
LWC (g m−3) 0.425 0.570 −0.145 −34.1 % < 0.001 1811 5976

small fraction of activated cloud droplets are likely affected
by coarse mode aerosol, even at a remote location like WFM
where aerosol concentrations are relatively low. During a pi-
lot study at WFM in 2017, cloud droplets intercepted at the
summit of WFM were shown to be primarily comprised of
cloud condensation nuclei with 100–300 nm dry diameter
(Lance et al., 2020), consistent with this general understand-
ing.

When the rare alkaline cloud droplets, formed on coarse
mineral dust aerosol, are collected by the cloud water collec-
tion system, they can have an out-sized impact on the bulk
cloud water sample, which may no longer well represent the
majority of cloud droplets as they existed in the cloud. This
is supported by work from Moore et al. (2004) using a mul-
tistage cloud collector at WFM, which found that Ca2+ and
Mg2+ concentrations were 2–30 and 2–58 times greater, re-

spectively, in large droplets than small droplets. Size resolved
aerosol composition data in nearby Ontario, Canada (Van-
denBoer et al., 2011) indicate that 65 %–95 % of the total
aerosol Ca2+ mass and 78 %–99 % of Mg2+ were within su-
per micron (> 1 µm) aerosol in 2009–2010 when those mea-
surements were conducted, while> 99 % of the total number
of aerosol were found in sub micron particles (Fig. S16).

Based on this general understanding of coarse mode
aerosol, as discussed above, we expect that bulk collection
of cloud water is often no longer representative of the vast
majority of cloud droplets as they existed in the atmosphere
and could bias our understanding of cloud droplet pH. In an
attempt to better account for this potential bias, a new cal-
culation for inferred pH of a typical cloud droplet (pHTD) is
introduced:

pHTD =−log10([H+] + [Ca2+
] + [Mg2+

]), (6)
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Figure 8. Annual median bulk cloud water pH (black) compared
to estimated cloud droplet pH calculated from the bulk cloud water
pH and measured Ca2+ and Mg2+ concentrations (pHTD, blue) and
estimated cloud droplet pH calculated from measured SO2−

4 , NO−3
and NH+4 concentrations (pHBU, orange).

where [H+], [Ca2+] and [Mg2+] are the measured concen-
trations in units of eq L−1 within bulk cloud water. We re-
fer to this as the “top down” (TD) approach for estimating
acidity of the majority of cloud droplets because it is based
on the measured bulk cloud water pH, which is assumed to
provide the cumulative impact from all dissolved ions (iden-
tified or not). By accounting for measured Ca2+ and Mg2+

concentrations, this calculation is an attempt to remove the
influence of mineral dust particles on the bulk cloud wa-
ter pH, assuming that measured Ca and Mg concentrations
are associated with dissolved alkaline compounds such as
CaCO3 or MgCO3 in equilibrium with atmospheric CO2, and
that a very small number of droplets contain these minerals
at all. These assumptions are supported by the assessment
of Ca and Mg soluble fractions reported in Sect. S4 of the
Supplement and the size-resolved aerosol composition mea-
surements described in Sect. S13 of the Supplement. Addi-
tional measurements (e.g. size resolved aerosol and/or cloud
droplet residual composition collocated with the cloud water
measurements) would be needed to better constrain the cloud
droplet pH estimate. While the measured pH of bulk cloud
water is relevant for wet deposition, we propose that pHTD is
more relevant for processes occurring within the majority of
cloud droplets as they existed in the atmosphere.

Figure 8 shows the annual median estimated cloud droplet
pH (pHTD, blue) and measured bulk cloud water pH (black).
During the first ∼ 10 years of the cloud water monitoring
program, pHTD increases in parallel with pHbulk, but the in-
fluence of base cations on measured pH has grown over time.
Despite measured pH continuing to increase, there has been
little change in pHTD since∼ 2010. In 2020, Ca2+ and Mg2+

are calculated to have increased the median cloud water pH

from 4.3 to 6.2, resulting in nearly two orders of magnitude
decrease in H+ concentrations.

To further evaluate the causative factors behind the grow-
ing discrepancy between the measured bulk cloud water pH
and estimated cloud droplet pH, we also calculate one of
the simplest pH proxies based on measured SO2−

4 , NO−3 and
NH+4 concentrations (Pye et al., 2020):

pHBU =−log10([SO2−
4 ] + [NO−3 ] − [NH+4 ]). (7)

This “bottom up” (BU) approach includes the major inor-
ganic species known to form through secondary processes,
which are typically found in fine aerosol and are therefore
typically found in the vast majority of cloud condensation nu-
clei. Gas phase NH3 and/or HNO3 that dissolved into cloud
droplets are also included with this proxy method. Entirely
neglected in this approach are contributions from organic
acids within fine aerosols, or partitioning of organic acid
gases to the aqueous phase after cloud droplet activation.
Also, as noted previously, a substantial fraction of cloud wa-
ter samples exhibit greater [NH+4 ] than [SO2−

4 ] + [NO−3 ],
which corresponds to negative values for [H+]BU. This is a
significant limitation for this proxy method in recent years,
when over 40 % of cloud water samples exhibit this condition
(Fig. 9). Since negative H+ values cannot be included in the
pHBU calculation, only the samples traditionally expected to
be acidic (i.e. those with relatively high SO2−

4 and/or NO−3 )
are included in the annual average pHBU in Fig. 8. If cloud
droplets are more acidic than pHBU, this implies that other
ions within cloud droplets (other than SO2−

4 or NO−3 ) are
making significant contributions to the cloud droplet acidity.

Early in the cloud water monitoring program, annual me-
dian pHBU tracked pHTD well, indicating that SO2−

4 , NO−3
and NH+4 concentrations alone were able to capture the
estimated cloud droplet pH (within 0.2 pH units through
2009). In recent years, a growing discrepancy between an-
nual median pHBU and pHTD is observed, with as much as
0.61 pH difference observed in 2016. These results indicate
that SO2−

4 , NO−3 and NH+4 are increasingly unable to explain
the estimated cloud droplet pH.

In calculating pHTD, it is important to note that even
though pH can shift dramatically when accounting for the
influence from rare alkaline droplets, the cation / anion ra-
tio remains exactly the same as it was for bulk cloud water
since the increased H+ is exactly balanced by the removal
of the two base cation species (Ca2+ and Mg2+). There-
fore, the reassessment of bulk cloud water data in terms of
inferred cloud droplet acidity does not resolve the ion imbal-
ance problem.

The top down and bottom up approaches described above
provide two independent estimates for cloud droplet pH. By
comparing these two proxies, we then infer the fraction of
cloud droplet acidity that is unexplained by the major inor-
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Figure 9. Fraction of cloud water samples where [NH+4 ]> [SO2−
4 ]

+ [NO−3 ] (left axis) and annual median missing acid fraction (right
axis).

ganic ions. We define the missing acid fraction (MAF) as

MAF=
[H+]TD− [H+]BU

[H+]TD
. (8)

When MAF is zero, the measured SO2−
4 , NO−3 and NH+4

concentrations are sufficient to explain 100 % of the inferred
cloud droplet acidity, and when MAF is 1.0, the measured
SO2−

4 , NO−3 and NH+4 concentrations explain 0 % of the in-
ferred cloud droplet acidity. Figure 9 shows the annual me-
dian MAF with two different ways of handling samples with
negative values for [H+]BU. First, samples with negative val-
ues for [H+]BU were excluded from the calculation (plot-
ted in grey). Out of concern that a majority of cloud water
samples now exhibit [NH+4 ] > [SO2−

4 ] + [NO−3 ], another
calculation for MAF was performed by setting [H+]BU to
zero for this subset of samples, as SO2−

4 and NO−3 are com-
pletely neutralized by NH+4 under these conditions (plotted in
black). Prior to∼ 2008, [SO2−

4 ]+ [NO−3 ]− [NH+4 ] was able
to capture the inferred cloud droplet acidity typically within
about 20 %. Since then, a rapid increase in the contribution
of unmeasured ions to cloud droplet acidity is inferred from
this dataset, with more than half of the inferred cloud droplet
acidity left unexplained in the last several years.

6.4 Implications for cloud droplet pH

The large and growing discrepancy between estimated cloud
droplet pH and measured SO2−

4 , NO−3 and NH+4 concentra-
tions over the past decade in cloud water at WFM coincides
with a growing number of samples with higher conductiv-
ity than can be explained with the measured inorganic an-
alytes (Fig. S11) and a growing abundance of cloud water
organic carbon. Altogether, these independent measures pro-
vide strong support for the hypothesis that organic acids are

growing in importance and now have a significant impact on
cloud droplet acidity (further discussed in Sect. S14 of the
Supplement). This is a major departure from the original in-
tent of the collection site to monitor and investigate inorganic
acid deposition.

In addition to increasing TOC concentrations, there is ev-
idence that a growing fraction of TOC is ionic since the ion
imbalance is growing faster than the increase in TOC con-
centrations (Fig. S15). Given that the proportion of organic
acids in their deprotonated state is dependent on pH, and yet
the estimated cloud droplet pH has been relatively flat for the
past 15 years, the increasing ion imbalance suggests that or-
ganic acids could be increasing in total concentration as well
as relative importance. Finally, annual median cloud droplet
pH averages 4.4 for the years 2009 to 2021, which is close
to the pKa for formic acid and acetic acid (pKa = 3.74 and
4.75, respectively). These two organic acids have been found
to be the most abundant organic acids in cloud and rain wa-
ter (Khwaja, 1995; Keene and Galloway, 1986; Paulot et al.,
2011; Herckes et al., 2013; Millet et al., 2015; Pye et al.,
2020), but will contribute much less to ion balance at a pH
of 4.4 than the annual median bulk cloud water pH of > 5.5
in recent years would suggest. Measured concentrations for
a larger range of organic acids than typically analyzed for
may be necessary to capture the important chemical species
controlling cloud droplet pH.

A number of assumptions must be recognized when in-
terpreting results from this simple analysis. For a more pre-
cise estimate of typical cloud droplet acidity, other ions as-
sociated with coarse mode aerosol, like NO−3 , would also
be included in the pHTD calculation. However, given that
NO−3 may be found predominantly in coarse or fine aerosol
at different times (VandenBoer et al., 2011), the contribu-
tion from coarse mode NO−3 is not sufficiently constrained
by the measurements available. To the degree that NO−3 is
present in coarse mode aerosol along with Ca2+ and Mg2+,
the calculation for pHTD would be an underestimate for cloud
droplet pH. Similarly, pHBU would be underestimated to the
same degree, since a fraction of NO−3 would not have been
present in cloud droplets that formed on fine aerosol, as had
been assumed. A combination of NOx reductions and poten-
tially increasing mineral dust aerosol within the region may
be changing the fraction of NO3 within fine aerosol, which
would need to be better constrained to improve our pHBU and
MAF estimates.

Also implicitly assumed is that LWC associated with
coarse mode aerosol is negligible for both the pHTD and
pHBU proxies of cloud droplet pH. We argue that this is a
decent assumption since, while the coarse mode aerosol can
contribute significant aerosol mass in spite of extremely low
number concentrations due to their much larger size (1–2 or-
ders of magnitude larger diameter for the coarse mode than
the accumulation mode), the relative contribution of liquid
water from cloud droplets formed on coarse mode aerosol is
much lower due to the inverse relationship between conden-
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sational growth rate and droplet diameter (i.e. droplets orig-
inating from the coarse and accumulation modes are likely
to have diameters within a factor of two of each other, for
non-precipitating clouds (Seinfeld and Pandis, 2016)).

Conversely, we argue that using the bulk cloud water pH
as a constraint for simulations of gas/droplet partitioning and
aqueous chemistry, without accounting for the aerosol mix-
ing state, can lead to substantial biases for the vast major-
ity of cloud droplets as they existed in the atmosphere. Size-
resolved measurements of Ca2+, Mg2+ and NO−3 in aerosol
and/or cloud droplet residuals are required to confirm the va-
lidity of the pHTD estimates reported here in order to con-
fidently and accurately evaluate these types of atmospheric
processes. But, inferring cloud droplet pH as we do in this
paper may yield a much better representation of a typical
cloud droplet than the bulk cloud water measurements do in
the present day.

While we cannot directly evaluate the validity of our sim-
ple calculation for pHTD with the current suite of measure-
ments, it is encouraging that several important relationships
are substantially simplified when evaluated against pHTD in-
stead of the measured bulk cloud water pH. In particular, the
relationship between pHTD, LWC and SO2−

4 concentrations
is much simpler and easier to explain (Fig. S18). For a given
LWC, there is a clear inverse relationship between SO2−

4 and
pHTD, which maxes out at pHTD ∼ 5.6 at very low SO2−

4
concentrations, coinciding with the pH expected for a pure
water droplet in equilibrium with atmospheric CO2. In con-
trast, SO2−

4 concentrations exhibit a much more chaotic rela-
tionship with measured bulk pH values.

The relationship between TOC concentrations and pHTD
is also substantially simplified. Figure 10 shows that TOC
concentrations are much better correlated with pHTD val-
ues throughout the entire dataset (2009–2021), as compared
to measured bulk cloud water pH. This might imply that,
like SO2−

4 , organic compounds within cloud water are tightly
linked with the cloud droplet pH. This finding may be con-
sistent with the majority of organic aerosol mass being of
secondary origin (Jimenez et al., 2009), since several known
mechanisms for secondary organic aerosol (SOA) forma-
tion include acid dependent reactions (Hallquist et al., 2009;
Tilgner et al., 2021). However, the other major secondary
aerosol species including NH+4 also show simplified relation-
ships with pHTD as compared to measured bulk cloud water
pH (Fig. S19), which may imply that the emissions sources or
formation mechanisms for these chemical species are linked
in other ways, in tandem with their known prevalence in fine
aerosol.

6.5 Driving factors for increasing TOC

The growing abundance of TOC in cloud water (both in rel-
ative and absolute terms) may be at least partially due to an
increase in partitioning of volatile low molecular weight or-
ganic acids to the condensed phase as a result of lower cloud

Figure 10. Measured TOC concentrations for individual samples
2009–2017 (circles) and measured WSOC concentrations for indi-
vidual samples 2018–2021 (stars), versus (a) inferred cloud droplet
pH (pHTD) and (b) measured bulk cloud water pH, colored by
the year that the cloud water sample was collected at WFM. The
exponential curve in both (a) and (b) is the fit to all data in
(a): TOCfit = Aexp(−pH/τ ), A= 1.7193×105

±2.6×104, 1/τ =
1.3934± 0.038.

droplet acidity (Tilgner et al., 2021). However, the strong in-
verse relationship between TOC and estimated cloud droplet
pH (Fig. 10a) appears to undermine this hypothesis. Further-
more, SO2−

4 concentrations and pHTD trends have been rel-
atively flat in recent years, in contrast to the rapid increase
in TOC concentrations, which shows no signs of slowing
down. There is also evidence that cloud water TOC in the late
1980’s and early 1990’s, when cloud droplet acidity was very
high, were similar to concentrations today (Khwaja et al.,
1995; Anastasio et al., 1994), which would also suggest a
decoupling of SO2−

4 and TOC trends.
Another potential driving factor for the increasing TOC

trend is an increase in wildfire smoke, which can be an im-
portant source of both primary and secondary organic mat-
ter in both aerosol and cloud water, even after multiple
days of transport downwind (Cook et al., 2017; Di Lorenzo
et al., 2018; Zhou et al., 2017; Lee et al., 2022). Figure
10a highlights several cloud water samples with exception-
ally high measured WSOC concentrations coinciding with a
haze event across the northeastern US in July 2021, associ-
ated with wildfire smoke originating in south central Canada
and the northwestern US (Shrestha et al., 2022) (further de-
scribed in Sect. S16 of the Supplement). Black carbon and
carbon monoxide measurements from the summit of WFM
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were also unusually high (e.g. as high as 1780 ng m−3, com-
pared to a more typical value of 100 ng m−3 for black car-
bon). The relatively close proximity of some of these fires
to WFM may have been partly responsible for the excep-
tionally high WSOC concentrations and the strong deviation
from the well established correlation with pHTD, possibly
due to an unusually large contribution from freshly emitted
primary organic matter. Episodic events with exceptionally
high concentrations such as these are the reason we report
annual median rather than annual mean concentrations for
the long-term trends. The increasing median trend of K+,
particularly since 2009 (Fig. S8), is potential evidence for
increased smoke influence, as K+ is often used as a passive
biomass burning tracer (Reid et al., 2005).

7 Summary and conclusions

This work updates the long-term trend analysis of cloud
water chemistry monitoring at Whiteface Mountain (WFM)
over the past 28 years, with critical review of past methodolo-
gies resulting in significant changes to the data interpretation
and additional analysis of TOC trends since 2009 when TOC
was first routinely measured at WFM. In the past, many sam-
ples were excluded from analysis if they did not achieve an
approximate ion balance from measured species. Using this
criteria, a growing number of samples were being excluded
from the dataset, peaking at 57 % of the samples in 2020,
with no evidence of measurement error. When evaluating the
complete dataset, decreases in SO2−

4 , NH+4 and NO−3 become
more modest; organic carbon increases at a much faster rate;
and increasing trends in Ca2+ and Mg2+ emerge. The in-
creasing fraction of samples that do not achieve ion balance
is associated with an increasing inorganic cation / anion ra-
tio, implying there are anions that are not being measured
with the long-term measurement suite, which are growing in
abundance. When evaluating changes in cloud water loading
(CWL), the trend in organic carbon is no longer significant,
indicating that much of the trend in TOC was associated with
variability in LWC. The increasing trend in Ca2+ CWL re-
mains significant.

When investigating potential missing anions, HCO−3 and
organic acids were identified as two important candidates.
Estimates of HCO−3 using cloud water pH and atmospheric
CO2 indicate that for most cloud water samples, HCO−3
is negligible. For samples with pH> 6, which are growing
more common, HCO−3 and CO2−

3 could be important. How-
ever, samples with bulk cloud water pH this high are of-
ten likely impacted by externally mixed alkaline droplets
formed on coarse mineral dust aerosol that do not represent
the majority of cloud droplets as they existed in the atmo-
sphere. Organic acids are therefore likely more important
than HCO−3 for explaining ion imbalance for the majority of
cloud droplets originating from fine (submicron) cloud con-
densation nuclei. VandenBoer et al. (2011) found that organic

acids were found predominantly within submicron aerosol,
which supports this hypothesis. The strong correlation be-
tween organic carbon and inorganic ion imbalance also sup-
ports this hypothesis, since organic acids are known to com-
prise a significant fraction of organic carbon.

In the early years of the cloud water monitoring program,
conductivity was largely controlled by H+ due to its high
concentrations and large molar conductivity relative to other
ions in the system. In recent years, conductivity is no longer
linearly proportional to H+ concentrations. We use the break
down of the linear relationship between conductivity and H+

to characterize a new chemical regime that is less acidic but
exhibits relatively high conductivity. A growing fraction of
samples are now being classified in this non-linear regime,
peaking at over 90 % of samples in 2020. The non-linear
regime is characterized by higher concentrations of TOC,
NH+4 and base cations, particularly Ca2+.

Altogether, the reduction of SO2−
4 and NO−3 , and increases

in Ca2+ and Mg2+, have resulted in a situation where bulk
cloud water pH likely does not represent the majority of
cloud droplets as they existed in the atmosphere, since Ca2+

and Mg2+ are believed to primarily reside in coarse aerosol
that only represents a small fraction of cloud droplets. To
account for this bias, we proposed a new calculation for “Es-
timated cloud droplet pH” that accounts for the measured Ca
and Mg concentrations. While measured bulk cloud water pH
has steadily increased for the entire duration of routine cloud
water monitoring program, estimated cloud droplet pH has
remained flat since 2009, implying that much of the increas-
ing cloud water pH in recent years is driven by Ca2+ and
Mg2+ rather than the reductions in SO2−

4 .
A growing number of samples exhibit concentrations of

NH+4 that are greater than the sum of SO2−
4 and NO−3 con-

centrations, providing further evidence for a major missing
source of acidity. For the samples where it is possible to pre-
dict cloud droplet acidity from the measured SO2−

4 , NO−3 and
NH+4 concentrations, a growing discrepancy is found in com-
parison to the estimated cloud droplet pH, with the majority
of the inferred cloud droplet acidity unexplained by the mea-
sured SO2−

4 , NO−3 and NH+4 concentrations in the past sev-
eral years.

Considerable changes have occurred in cloud water at
WFM over the past 28 years of monitoring, from a system
dominated by SO2−

4 to a system controlled by base cations
and organic compounds. Many other regions in the world
are seeing changes as SO2 emissions continue to decrease.
This type of system is considerably less studied, with im-
portant implications for air quality, ecosystem health and cli-
mate. More research, in combination with additional mea-
surements of aerosol and trace gases, are required to better
understand the system. As WFM and potentially other re-
gions of the world enter this new chemical regime, additional
measurements will be needed to study the effect on important
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processes like secondary organic aerosol production and ni-
trogen deposition.
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at http://atmoschem.asrc.cestm.albany.edu/~cloudwater/pub/Data.
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