
Supplement of Atmos. Chem. Phys., 23, 1619–1639, 2023
https://doi.org/10.5194/acp-23-1619-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Long-term monitoring of cloud water chemistry at Whiteface Mountain:
the emergence of a new chemical regime
Christopher E. Lawrence et al.

Correspondence to: Sara Lance (smlance@albany.edu)

The copyright of individual parts of the supplement might differ from the article licence.



1 
 

Supplemental Figures for “Long-Term Monitoring of Cloud Water Chemistry 

at Whiteface Mountain: The Emergence of New Chemical Regime” 

 

Section S1. Summary of Laboratory Methods for the Cloud Water Monitoring Program 

 

Anions were measured using ion chromatography according to the EPA 300.1 method.  Metals were 

measured by Inductively Coupled Argon Plasma Spectrometry or Inductively Coupled Plasma-Atomic 

Emission Spectrometry following the EPA 200.7 method. TOC was measured according to the EPA 

450.1 method using a Tekmar Dorhmann Phoenix 800 Carbon Analyzer from 2009 to 2015. In April 

2015, the system was replaced with a Teledyne Tekmar TOC Fusion Carbon Analyzer. pH and 

conductivity were measured according to the EPA's Aquatic Effects Research Program methodology in 

the Handbook of Methods for Acid Deposition Studies (US EPA Handbook, 1987). For the first two years 

of MADPro, pH and conductivity were measured directly in the field and at the Harding ESE Laboratory 

for quality assurance purposes. In 1996, the central laboratory began to only measure every 10th sample 

for pH and conductivity while the field measurements remained unchanged, to reduce redundancy but still 

retain quality assurance data. For a subset of cloud water samples collected in 2019, pH and conductivity 

intercomparisons were conducted between ALSC and AWI (25 cloud water samples), with slope of 1.01 

± 0.01 and R2 = 0.77 for pH measurements and slope of 1.04 ± 0.023 with R2 = 0.93 for conductivity 

measurements. Intercomparisons between ALSC and AWI for the full suite of inorganic anions, cations 

and TOC (10 cloud water samples) were also conducted in 2019, with SO4
2- (slope = 1.13 ± 0.087, R2 = 

0.96), NH4
+ (slope = 1.05 ± 0.030, R2 = 0.85), NO3

- (slope = 0.901 ± 0.0053, R2 = 0.99) and TOC (slope = 

0.998 ± 0.059, R2 = 0.703). 

 

Table S1. Summary of laboratory methods and associated method detection limits, precision and accuracy 

estimates used by 3 different laboratories during the cloud water monitoring program. 

 

Mountain Acid Deposition Program (1994-2000) 

Species Method Method 

Detection 

Limit 

Precision Accuracy 

pH pH probe NA 5% 85-115% 

Conductivity Conductivity probe 0.2 uS cm-1 5% 85-115% 

SO4
2- Ion Chromatography 0.04 mg L-1 5% 90-105% 

NO3
-
 Ion Chromatography 0.008 mg L-1 5% 95-105% 

Cl- Ion Chromatography 0.02 mg L-1 5% 95-105% 

NH4
+ Automated Phenolate 0.02 mg N L-1 5% 90-110% 

Ca Inductively Coupled Argon 

Plasma Spectrometry 

0.003 mg L-1 10% 90-110% 

Mg Inductively Coupled Argon 

Plasma Spectrometry 

0.003 mg L-1 10% 90-110% 

K Inductively Coupled Argon 

Plasma Spectrometry 

0.005 mg L-1 10% 90-110% 

Na Inductively Coupled Argon 

Plasma Spectrometry 

0.005 mg L-1 10% 90-110% 
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Adirondack Lake Survey Corp (2001-2017, 2020-2021) 

Species Method Method 

Detection 

Limit (mg/L)  

Precision Accuracy 

pH Orion 8102BNUWP pH probe NA 5% 98-102% 

Conductivity YSI Model 3402 conductivity 

probe 

0.35 uS cm-1 10% 95-105% 

SO4
2- Ion Chromatography 0.010 mg L-1 10% 90-110% 

NO3
-
 Ion Chromatography 0.024 mg L-1 10% 90-110% 

Cl- Ion Chromatography 0.012 mg L-1 10% 90-110% 

NH4
+ Automated Phenolate 0.039 mg L -1 10% 90-110% 

Ca Inductively Coupled Argon 

Plasma Spectrometry 

0.012 mg L-1 10% 90-110% 

Mg Inductively Coupled Argon 

Plasma Spectrometry 

0.002 mg L-1 10% 90-110% 

K Inductively Coupled Argon 

Plasma Spectrometry 

0.005 mg L-1 10% 90-110% 

Na Inductively Coupled Argon 

Plasma Spectrometry 

0.005 mg L-1 10% 90-110% 

TOC (WSOC 

for most 

samples in 

2020-2021) 

UV/Persulfate  Oxidation 0.029 mgC L-1 10% 90-110% 

 

   Adirondack Watershed Institute (2018-2019)* 

Species Method Method 

Detection Limit 

Precision Accuracy 

pH Mettler Toledo InLab 

Routine Pro electrode 

NA 5% 98-102% 

Conductivity 731 Mettler Toledo InLab 

Conductivity Probe 

0.02 5% 90-110% 

SO4
2- Ion Chromatography 0.09 mg/L 5% 90-110% 

NO3
-
 Cadmium Reduction 0.9 μg N/L 5% 90-110% 

Cl- Ion Chromatography 0.05 mg/L 10-15% 90-110% 

NH4
+ Semipermeable membrane+ 

pH indicator photometry 

0.01 mg/L 5% 90-110% 

Ca Inductively Coupled Plasma-

Atomic Emission 

Spectrometry 

0.023 mg/L 

 

5% 90-110% 

Mg Inductively Coupled Plasma-

Atomic Emission 

Spectrometry 

0.001 mg/L 

 

5% 90-110% 

K Inductively Coupled Plasma-

Atomic Emission 

Spectrometry 

0.025 mg/L 

 

5% 90-110% 

Na Inductively Coupled Plasma-

Atomic Emission 

Spectrometry 

0.012 mg/L 5% 90-110% 

WSOC UV/Persulfate Oxidation 0.291 C mg/L 5% 90-110% 
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*pH measurements in 2018 were found to suffer from a low bias compared to the measured 

conductivity. Archived samples were reanalyzed in the Lance Lab using separate pH (Orion 

8157BNUMD ROSS Ultra pH/ATC) and conductivity (Orion 013005MD) probes, and the 

resulting measurements were found to be internally consistent with the other measured analytes, 

as shown in Figure S1. However, reanalysis could only be done on 69 of the 101 samples, due to 

insufficient sample volume. Thus, conductivity and pH measurements for only a subset of the 

2018 samples are reported in this paper.  In 2019, AWI purchased a new probe with lower 

detection limit, which prevented this problem from recurring. 

 

 
 

Figure S1. Predicted conductivity based on all measured inorganic cations and anions versus measured 

conductivity, colored by year that the cloud water sample was collected.  Original AWI measurements of 

pH and conductivity for 2018 samples in black (left) and ASRC re-analyzed measurements of pH and 

conductivity for 2018 samples with sufficient remaining sample volume (right). See Section S9 for more 

information on the predicted conductivity calculation. 
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Section S2. Fraction of Measured Organic Carbon that is Water Soluble 

 

Due the AWI filtering cloud water samples before conducting TOC analysis and the in-line cloud water 

filtering in 2020 and 2021, samples collected from 2018-2021 have WSOC rather than TOC reported. In 

order to estimate the fraction of WSOC/TOC, 38 samples collected from 2018-2019 that were analyzed 

for both WSOC and TOC were compared. 28 sample were measured by the Lance Lab using a Sievers 

900 Portable TOC Analyzer while 10 other samples were measured by ALSC using the same 

methodology described in Section S1. Figures S2 plots WSOC vs TOC using an ordinary least squares 

regression. The slope of the regression line is 0.84 indicating the 84% of TOC is water soluble. The slope 

is used to estimate TOC for the trend analysis used in Figures 3 and 6.  

 

 
Figure S2. Measured Water Soluble Organic Carbon (WSOC) concentrations vs measured Total Organic 

Carbon (TOC) concentrations 38 WFM cloud samples collected in 2018 and 2019 where these 

measurements were obtained. WSOC is consistently 80-90% of TOC, with an average of 84%. The slope 

of the regression line is determined by an ordinary least squares regression. 
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Section S3. Seasonality of “Invalid” Samples 

 

 
Figure S3. Percentage of cloud water samples classified as “Invalid” based on ion-balance criteria for a 

given month and year. 
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Section S4. Solubility of Ca and Mg 

 

To assess the soluble fraction of Ca and Mg measured by Inductively Coupled Argon Plasma 

Spectrometry (ICAPS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-

AES), a Metrohm 761 Compact Cation Chromatography System was used with a Metrostep C 

Supp 2- 150/4 cation column to re-analyze ten unfiltered cloud samples that were archived from 

2018-2020.  These samples were re-analyzed twice; once unfiltered and once filtered through a 

0.4 µm polycarbonate filter. The detection limits were 0.05 mg L-1 and 0.025 mg L-1 for Ca2+ and 

Mg2+ respectively, with a precision of 10% and an accuracy of 90-110%. The Ion 

Chromatography (IC) system used a 2.5 mmol L-1 HNO3 eluent with 50 µg L-1 of RbNO3. Figure 

S4 compares the concentrations of the unfiltered Ca2+ 
 and Mg2+ versus the filtered Ca2+ and 

Mg2+. The slope of the regression lines for both analytes are approximately 1, indicating that 

filtering did not have a major impact on these ion concentrations. Figure S5 shows similar 

regression slopes when comparing the filtered IC analysis with the original elemental Ca and Mg 

measurements made by ICP-AES or ICAPS, over a wide range in bulk cloud water pH. This 

figure provides evidence that the elemental Ca and Mg measurements were also not impacted by 

filtering (supporting our hypothesis that Ca and Mg are soluble in WFM cloud water). 

 

 

 

Figure S4. Comparisons of unfiltered and filtered Ca2+ (left) and Mg2+ (right) concentrations from the 

cation IC analysis. Agreement between these two measurements indicates that filtering did not have a 

major impact on the measured Mg2+ or Ca2+ ion concentrations. 
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Figure S5. Comparison of filtered IC and unfiltered ICP-AES or ICAPS concentrations of Calcium (Ca, 

left) and Magnesium (Mg, right) concentrations, colored by the bulk cloud water pH measurements. The 

excellent agreement between these measurements, with pH values ranging from 4.5 to 6.4, indicates that 

the unfiltered Ca and Mg measurements well represent the filtered Ca2+ and Mg2+ concentrations, since all 

re-analyzed samples lie near to or above the 1:1 line. 

 

The major particulate form of Ca2+ and Mg2+ are expected to be CaCO3 and MgCO3, which have 

a pH dependent solubility. The solubility of CaCO3 or MgCO3 can be calculated by: 

[𝑋] =
[𝐶𝑂3

2−]

𝐾𝑠𝑝
 

[X] is the molar concentration of Ca2+ or Mg2+ and Ksp is the solubility product of CaCO3 (Ksp = 

4.67x10-9) or MgCO3 (Ksp = 6.82x10-6).  [CO3
2-] can be estimated using the partial pressure of 

atmospheric CO2 and the equations from the carbonate equilibrium: 

[𝐻2𝐶𝑂3] =  
𝐾𝐻

𝑃𝐶𝑂2
 

𝐾𝑎1 =  
[𝐻+][𝐻𝐶𝑂3

−]

[𝐻2𝐶𝑂3]
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𝐾𝑎2 =  
[𝐻+][𝐶𝑂3

2−]

[𝐻𝐶𝑂3
−]

 

 

Where KH
 (3.4x10-2) is the Henry’s law constant of CO2, and PCO2 is the partial pressure of CO2 

(assumed to be 410 ppm), Ka1 is the acid dissociation constant of H2CO3 (4.37x10-7), and Ka2 

(5.01x10-11) is the acid dissociation of HCO3
-. All constants are assumed to be at 25 ºC 

The total amount of CaCO3 and MgCO3 that dissolves at equilibrium with the atmosphere as 

function of pH can then be calculated as 

[𝑋] =
𝐾𝑠𝑝[𝐻+]2

𝐾𝑎1𝐾𝑎2𝐾𝐻𝑃𝐶𝑂2
 

 

Figure S6 shows the solubility of Ca and Mg vs pH. These calculations indicate that even at the 

highest measured concentrations of Ca and Mg and the highest measured pH values (which do 

not occur on the same date), CaCO3 and MgCO3 are expected to be fully dissolved. Other known 

alkaline Earth metal salts, like CaNO3, CaCl2 or CaSO4 are even more soluble than CaCO3.  

 

 
Figure S6. Solubility of CaCO3 and MgCO3 as a function of pH. The solid red and blue lines represent the 

total amount of Ca2+ and Mg2+ that can be dissolved at a given pH while the dashed blue and red lines 

represent the maximum concentrations of Ca2+ and Mg2+ measured in WFM cloud water and the dashed 

black line represents the highest ever measured pH value. 
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Based on both the comparisons of filtered IC measurements of Ca2+ and Mg2+ concentrations 

with unfiltered ICP-AES and ICAPS measurements of total Ca and Mg (over a very wide range 

in pH) and the equilibrium calculations shown above, we assume that the historical 

measurements of Ca and Mg concentrations are in their ionic forms and can be included in the 

overall ion balance calculations, as has been done by other researchers for many years. 

 

 

Section S5. Calculating an average cloud LWC for each cloud water sample 

 

An average LWC was recorded in the long-term cloud water dataset for each bulk cloud water 

sample. However, the details behind how this value was determined were not recorded. There is 

some indication that these average LWC values were calculated by including all LWC values ≥ 

0.05 g m-3. However, This calculation may lead to a high bias by including rain events, during 

which the collector was not actually deployed. To ensure that LWC values measured during rain 

events aren’t included in the LWC averaging, we recalculate the average LWC from 2009 to 

2021 based on the available hourly meteorology data. The cloud water data prior to 2009 does 

not include when the collector was deployed, making measurements prior to 2009 subject to 

greater uncertainty. In our recalculation, hourly LWC values were only included in the 3 or 12 

hour average if: 1) LWC ≥ 0.05 g m-3, 2) the cloud water collector was deployed > 25% of the 

time and 3) rain was detected < 15% of the time.  

 

The performance of this algorithm was tested using 1-minute resolution data available for the 

2016 collection season. Figure S7 compares the recalculated average LWC values to the average 

LWC determined from the 1-minute resolution LWC data for every minute the cloud collector 

was deployed. This demonstrates that accounting for deployment time and rain detection reduces 

bias and random error of the LWC values. Recalculated average LWC values that follow the 

criteria above are colored red, while blue data points represent the cloud water samples that 

would be excluded from the CWL. Using this methodology, approximately 29% of cloud water 

samples are removed from analysis due to the inclusion LWC values while the collector was not 

deployed. 
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Figure S7. 12 hourly averaged LWC recalculated based on the hourly LWC data reported by ALSC in 

2016 vs 12 hourly averaged LWC calculated based on 1-minute LWC measurements only when the cloud 

water collector was deployed. Blue points represent LWC averages when LWC > 0.05 g m-3 while the red 

points represent LWC averages when all conditions of:LWC > 0.05 g m-3, the cloud collector is deployed 

for > 25% of the time, and rain is detected < 15% of the time are met. When accounting for time when the 

cloud water collector isn’t deployed in addition to LWC improves the relationship between the ALSC 

reported LWC and minute resolution LWC.  In addition, LWC values with values above 2 g m-3 were not 

included in the LWCsamp calculation based on the reasonable assumption of rain.  
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Section S6. Comparing “Valid” versus “Invalid” data sets 

 

Another consideration for assessing measurement validity based on ion balance criteria alone is 

that complete chemical analysis requires a minimum volume of water (100-250mL). If a given 

analyte could not be measured due to inadequate sample volume, the sample would be 

considered “Invalid” by default simply because ion balance could not be assessed. This protocol 

resulted in observational bias for samples where sufficient cloud water was collected for full 

analysis, which typically correspond to clouds with higher liquid water content (LWC) and/or 

longer collection intervals.   

 

Table S2: Theil-Sen regression slopes and associated Mann-Kendall test p-values for the a) valid and b) 

complete cloud water datatsets.   

 
 

 

 
Figure S8.  Comparisons between the so-called “Valid” and “Invalid” data sets for annual median 

concentrations of six analytes of interest, conductivity, pH and LWC.  
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 Some analytical laboratories handle data quality control differently, for example by repeating 

measurements when ion balance for a sample is not attained, and nevertheless classifying the 

data for that sample as valid if the subsequent measurements match the initial measurements. 

Unfortunately, retesting the old cloud water samples collected at WFM is not possible, as the 

samples have not been archived, and repeat testing would again skew the statistics toward 

samples with greater volume of collected cloud water (since repeat testing would not have been 

possible for the lowest volume samples). 

 

Across all years, annual median LWC is higher within the “Valid” data set.  Higher LWC tends 

to correspond to more dilute samples, thereby reducing concentrations (Aleksic et al., 2010). 

Changes in LWC, however, do not explain the divergence in analyte concentrations starting 

around 2006 between the “Valid” and “Invalid” data sets since the LWC trends do not diverge 

and instead remain relatively unchanged. 

 

 

Section S7. Seasonality of TOC Trends  

 

Figure S9 shows the annual median trends of TOC concentrations, split up by month. Theil-sen 

regression analysis reveals that June, July, and September have a statistically significant 

increasing trend of TOC (p = 0.00493, 0.00414, and 0.012 for June, July, and September). June 

and July typically exhibit higher concentrations of TOC than August and September and are the 

main drivers of the increasing TOC trend. 

 

 

Figure S9. Annual median TOC concentrations by month.   
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Section S8. Impact of LWC on total ion content and total organic carbon concentrations 

 

 
Figure S10. Total Ion Concentration (TIC ) and TOC concentrations vs LWC using a similar binning 

procedure as described in Aleksic and Dukett (2010). With the exception of the lowest LWC bins, there is 

a general decrease in TIC and TOC concentrations as LWC increases.  Within each LWC bin, there is 

considerable variability. 
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Table S3. Theil-Sen regression slope and associated Mann-Kendall p-values for cloud water loadings for 

the years 2009-2021.  
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Section S9. Two independent measures that suggest missing analytes are pH dependent 

 

The ratio of measured cations to measured anions tends to increase with measured pH for all years of the 

study (Figure S11), and nearly all samples exhibit more measured cations than anions for pH ≥ 5.5. As 

noted in the manuscript, greater measured cations than anions suggests that there are anions present in 

solution that are not being measured with the current suite of instruments. Within the past decade, the 

Cation/Anion ratio was almost always > 1, even at pH as low as 3.5.  Many of the older samples also 

exhibited Cation/Anion ratios as high as 3 at pH of 5.  The cation and anion concentrations versus pH are 

further explored in Figure S12 and S14.  

 

 

 
Figure S11. Cation/Anion ratio versus pH (top) and Predicted/Measured Conductivity vs pH (bottom) 

colored by the year the sample was collected, for all cloud water samples from 1994-2017. The dotted 

lines show 20% uncertainty in Predicted/Measured conductivity.  

 

Also shown in Figure S11 is the ratio of predicted conductivity to measured conductivity versus 

pH. Predicted conductivity is calculated using the concentrations of measured cations and anions 

and their associated limiting molar conductivities. The first few years of data shows greater 

variability both above and below predicted/measured conductivity of 1, suggesting that the 



16 
 

conductivity measurement uncertainties were higher in the earliest years of the cloud water 

collection program. Note that since at least 2006, nearly all samples with pH > 5.5 exhibited 

higher measured conductivity than predicted from the measured analytes. Systematic 

underprediction of the measured conductivity suggests the presence of ions that are not being 

measured. On the contrary, samples with pH < 4 tended to exhibit lower conductivity than 

predicted from the measured analytes, especially in recent years. Overprediction of conductivity 

might be due to the presence of organic molecules like sugars and starches that can lower the 

conductivity of a salt solution (Kaewthong and Wattanachant, 2018). This potential effect could 

be dampening the impact of missing analytes on the underprediction of conductivity at high pH. 
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Section S10. Potential impact of bicarbonate ion concentrations on ion imbalance 

  

 

  
Figure S12. Anions vs Cations when including HCO3

- within the ion balance for the entire dataset (top) 

and for samples that have measured bulk cloud water pH values > 6 (bottom). There are virtually no 

changes in ion balance for the vast majority of samples, but for pH values > 6 there is a slight impact. 
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Section S11. Ion Imbalance relationship with TOC 

 
Figure S13. Measured TOC concentrations versus Ion Imbalance, i.e. measured Cations - Anions, for all 

cloud water samples from 2009 to 2021. Regression lines are calculated using ordinary least squares 

regression. A strong positive relationship between TOC and ion imbalance suggests that unmeasured 

organic compounds are a significant contributor to ion balance. There are 4 potential outliers with > 

400eq/L ion imbalance that could lead to a low bias in the slope of the regression. To account for this, 

regression lines were calculated including and excluding these potential outliers. The inclusion of the 

outliers led to a slightly decreased slope, and had virtually no change in the R2 value, indicating that the 

outliers had little impact on the regression line. 
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Figure S14. Anions vs Cations, split into 6 pH bins for Valid and Invalid cloud water samples collected 

from 1994-2021. As pH increases, there is a clear drop in the slope of the line. The largest decreases in 

slope occur in the bin of 3.98-4.76 and 4.76-5.53, which coincides with the pKas of formic and acetic acid 

(3.74 and 4.75 respectively), the two most common organic acids for in cloud water samples. As the pH 

increases, the fraction of these acids that are in their anionic forms increases. The increasing ion 

imbalance as pH increases could be evidence of greater fraction of organic acids existing in their ionic 

form, thus contributing to a growing ion imbalance. 
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Section S12. Abundance of organic acids required to reconcile observed ion imbalance, 

versus likely abundance of organic acids given observed OC 

 

Figure S15 shows a potentially growing fraction of TOC that is ionic (p = 0.0327), based on the 

inorganic ion imbalance divided by the measured TOC concentrations, applying various 

assumptions for the carbon to charge (C/z) ratio of dissolved organic molecules (ranging from 

one to five carbon atoms on average per organic acid functional group).  The calculated 

contribution of organic ions to TOC peaks in 2020 where 12%-58.0% of TOC is estimated to be 

ionic. These results suggest that not only is TOC increasing in cloud water at WFM but an 

increasing fraction of TOC may be ionic. 

 

 
 

Figure S15. The annual median percent of TOC that is ionic as a function of the carbon to charge ratio 

(C/z) 
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Section S13. Size-resolved Aerosol Composition 

Aerosol composition as a function of dry particle size is needed to better interpret the cloud 

water dataset.  Since this information is not currently available from the summit of WFM, nor 

was this information available when the long-term cloud water data set was obtained, we looked 

for size resolved aerosol composition measurements conducted within the region.  Measurements 

conducted mostly in Toronto, Ontario were referenced several times in the paper, as they show 

both the base cation mass distributions and organic acid mass distributions with respect to the 

dry aerosol (VandenBoer et al., 2011). These measurements were obtained during the 

measurement period of the current study.  This dataset was re-evaluated for our specific 

purposes. As noted in the manuscript, 65-95\% of the total aerosol Ca2+ mass and 78-99 of Mg2+ 

were within super micron (> 1 um) aerosol in 2009-2010 when those measurements were 

conducted (VandenBoer et al., 2011). However, > 99% of the total number of aerosol were found 

in sub-micron particles.  

 

 
 

Figure S16. a) Normalized mass distributions of Ca2+ (red), NO3
- 

(blue) and K+ (green) as a function of 

particle diameter based on measurements in Toronto, Dorset, Lambton Shores, and Egbert in 2009 

(VandenBoer et al., 2011). These observations show that the vast majority of Ca2+ mass is contained in 

aerosol with diameters > 1 μm, while K+ exhibits a bimodal distribution, with significant proportions of 
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mass contained in diameters above and below 1 μm. NO3
- is also largely contained in aerosol with 

diameters > 1 μm in the plot above, but with substantial variability sample to sample. b) Calculated 

percent of total aerosol number as a function of particle diameter, based on the total measured aerosol 

mass and an estimate for the particle density. 

 

A wide range (11-71%) of K+ was found to reside in super micron aerosol, suggesting that while 

a significant fraction of K+ can be associated with mineral dust, an important fraction can also 

come from non-dust sources like biomass burning. The fraction of NO3
- within coarse mode 

aerosol was also found to be highly variable, ranging from 21-93\%. While NO3
- often resides 

within fine mode aerosol, gaseous HNO3 can react with coarse mode aerosol containing alkaline 

species like CaCO3 and MgCO3 (Hansen et al., 2010, Hrdina et al., 2021) resulting in a 

significant amount of coarse mode aerosol NO3
- (Fig. S16).   
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Section S14. Impact of pH proxies in Linear vs. Nonlinear Regimes 

The large and growing discrepancy between bulk cloud water pH, pHTD and pHBU over the past decade 

coincides with a growing fraction of samples being characterized in the Non-Linear Regime. We propose 

that, with SO4
2 concentrations decreasing at the same time TOC and base cation concentrations have been 

increasing, the major influences on cloud droplet pH are also changing. When we segregate individual 

cloud water samples by the Linear and Non-Linear regimes (Fig. S17, left and right, respectively), we can 

more clearly see how the different pH proxies compare. Within the Linear Regime, [H+]BU (plotted on the 

x-axis) shows a strong correlation with measured bulk cloud water [H+], with slight (11%) overprediction 

from SO4
2-, NO3

- and NH4
+ concentrations. Removing the influence of coarse mode aerosols by including 

Ca2+ and Mg2+ in the [H+]TD calculation improves the agreement to a nearly 1:1 relationship between 

[H+$]TD and [H+]BU. Within the Non-Linear Regime, [H+]BU greatly overpredicts measured bulk cloud 

water acidity. When removing the influence of course mode aerosol, the correlation improves 

substantially, with slight underprediction (14%) from SO4
2-, NO3

- and NH4
+ concentrations. As noted 

previously, [H+]BU can only include samples where [SO4
2-]+[NO3

-] > [NH4
+], which removes a growing 

fraction of samples from the analysis, potentially underestimating the fraction of acidity from unmeasured 

ions in the system. A Theil-Sen Regression was used to provide a robust estimate of the slope between 

[H+]BU and measured bulk cloud water [H+] and [H+]TD. This method was used to reduce the impact from 

outlier samples on the regression line, particularly within the Non-Linear regime. 

 

 
Figure S17. Measured [H+] and estimated cloud droplet [H+] versus [SO4

2-]+[NO3
-]-[NH4

+] for the Linear 

and Non-Linear regimes (left and right, respectively). Slopes of the regression lines are calculated using a 

Theil-Sen regression. The dashed line represents a 1:1 line, when [SO4
2-]+[NO3

-]-[NH4
+] perfectly 

predicts H+. Only samples where [SO4
2-]+[NO3

-]-[NH4
+] > 0 are used in the regression. 

 

In the Linear Regime, SO4
2- + NO3

- - NH4
+ is a useful predictor for both measured bulk cloud 

water pH and estimated cloud droplet pH. In the Non-Linear Regime, the relationship with 

measured pH is very weak. The relationship improves when using inferred cloud droplet pH, but 

underpredicts measured cloud droplet pH. This analysis reveals a missing source of acidity that 

correlates with TOC, which needs to be accounted for as a majority of cloud water samples are 

now within the Non-Linear Regime.   



24 
 

Section S15. Measured and Estimated Cloud Droplet pH versus LWC, NH4
+ and NO3

-  

 

 
Figure S18. a) Measured bulk cloud water pH, and b) estimated cloud droplet pH as a function of the 

reported average Liquid Water Content (LWC) for all cloud water samples from 1994 to 2021, colored by 

measured sulfate concentrations.  
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Figure S19. Measured NH4
+ and NO3

- concentrations versus a) and b) bulk cloud water pH, and c and d) 

pHTD. Similar to TOC, the relationship between NH4
+ and NO3

- and pH is simplified when accounting for 

the influence coarse mode aerosol, with increasing concentrations of both analytes associated with lower 

pHTD. 
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Section S16. Wildfire Smoke Influence at Whiteface Mountain 

 

A WRF-Chem forecast shows elevated levels of CO attributed to wildfire smoke on July 15, 2021, with 

associated high levels of PM2.5. Five days later, the WRF-Chem forecast shows similar elevated levels of 

wildfire CO and PM2.5 over the Northeastern United States, further indicating an influence of Canadian 

wildfires impacting WFM (Fig. S20). More information about this WRF-Chem forecast can be found in 

Kumar et al. (2021).  5-day ensemble HYSPLIT back-trajectories launched on July 20, 2021 indicate the 

source location of the air mass originated from Eastern Manitoba, Canada, and Northeast North Dakota. 

 

 
 

Figure S20. a) 5 day ensemble HYSPLIT back-trajectories using North American Mesoscale (NAM) 12 

meteorological data launched on July 20th, 2021 at 12:00 UTC. b) WRF-Chem Forecast of carbon 

monoxide (CO) from boundary layer fires and surface PM 2.5 on July 15th, 2021 and on July 20th, 2021. 

A clear source of wildfire smoke emissions over Manitoba, Canada occurred on July 15th that eventually 

impacted air quality in New York on July 20th.  

 

 

 

 

 

 

 



27 
 

     References 

Aleksic, N. and Dukett, J. E., (2010). Probabilistic relationship between liquid water content and 

ion concentrations in cloud water, Atmospheric Research, 98, 400–405, 

https://doi.org/10.1016/j.atmosres.2010.08.003  

 

Hansen, J. C., Woolwine III, W. R., Bates, B. L., Clark, J. M., Kuprov, R. Y., Mukherjee, P., 

Murray, J. A., Simmons, M. A., Waite, M. F., Eatough, N. L., Eatough, D. J., Long, R., and 

Grover, B. D., (2010). Semicontinuous PM2.5 and PM10 Mass and Composition Measurements 

in Lindon, Utah, during Winter 2007. Journal of the Air & Waste Management Association, 60, 

346–355, https://doi.org/10.3155/1047-3289.60.3.346 

 

Hrdina, A., Murphy, J. G., Hallar, A. G., Lin, J. C., Moravek, A., Bares, R., Petersen, R. C., 

Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B. H., Baasandorj, M., and Brown, S. S., 

(2021). The role of coarse aerosol particles as a sink of HNO3 in wintertime pollution events in 

the Salt Lake Valley, Atmospheric Chemistry and Physics, 21, 8111–8126, 

https://doi.org/10.5194/acp-21-8111-2021 

 

Kaewthong, P., & Wattanachant, S. (2018). Optimizing the electrical conductivity of marinade 

solution for water-holding capacity of broiler breast meat. Poultry science, 97(2), 701-708, 

https://doi.org/10.3382/ps/pex334  

 

Kumar, R., Bhardwaj, P., Pfister, G., Drews, C., Honomichl, S., and D’Attilo, G. (2021). 

Description and Evaluation of the Fine Particulate Matter Forecasts in the NCAR Regional Air 

Quality Forecasting System, Atmosphere, 12, 302, https://doi.org/10.3390/atmos12030302  

 

VandenBoer, T. C., Petroff, A., Markovic, M. Z., and Murphy, J. G., (2011). Size distribution of 

alkyl amines in continental particulate matter and their online detection in the gas and particle 

phase, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-4319-2011  

 

https://doi.org/10.1016/j.atmosres.2010.08.003
https://doi.org/10.3155/1047-3289.60.3.346
https://doi.org/10.5194/acp-21-8111-2021
https://doi.org/10.3382/ps/pex334
https://doi.org/10.3390/atmos12030302
https://doi.org/10.5194/acp-11-4319-2011

