Articles | Volume 22, issue 11
Atmos. Chem. Phys., 22, 7815–7826, 2022
https://doi.org/10.5194/acp-22-7815-2022
Atmos. Chem. Phys., 22, 7815–7826, 2022
https://doi.org/10.5194/acp-22-7815-2022
Research article
16 Jun 2022
Research article | 16 Jun 2022

Discrepancy in assimilated atmospheric CO over East Asia in 2015–2020 by assimilating satellite and surface CO measurements

Zhaojun Tang et al.

Related authors

A comparative analysis for a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China
Weichao Han, Tai-Long He, Zhaojun Tang, Min Wang, Dylan Jones, and Zhe Jiang
Geosci. Model Dev., 15, 4225–4237, https://doi.org/10.5194/gmd-15-4225-2022,https://doi.org/10.5194/gmd-15-4225-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019
Xiang Weng, Grant L. Forster, and Peer Nowack
Atmos. Chem. Phys., 22, 8385–8402, https://doi.org/10.5194/acp-22-8385-2022,https://doi.org/10.5194/acp-22-8385-2022, 2022
Short summary
Potential environmental impact of bromoform from Asparagopsis farming in Australia
Yue Jia, Birgit Quack, Robert D. Kinley, Ignacio Pisso, and Susann Tegtmeier
Atmos. Chem. Phys., 22, 7631–7646, https://doi.org/10.5194/acp-22-7631-2022,https://doi.org/10.5194/acp-22-7631-2022, 2022
Short summary
Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 2: Sensitivity to dry-deposition parameterizations
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022,https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
The impacts of marine-emitted halogens on OH radicals in East Asia during summer
Shidong Fan and Ying Li
Atmos. Chem. Phys., 22, 7331–7351, https://doi.org/10.5194/acp-22-7331-2022,https://doi.org/10.5194/acp-22-7331-2022, 2022
Short summary
Impact of eastern and central Pacific El Niño on lower tropospheric ozone in China
Zhongjing Jiang and Jing Li
Atmos. Chem. Phys., 22, 7273–7285, https://doi.org/10.5194/acp-22-7273-2022,https://doi.org/10.5194/acp-22-7273-2022, 2022
Short summary

Cited articles

Bouarar, I., Brasseur, G., Petersen, K., Granier, C., Fan, Q., Wang, X., Wang, L., Ji, D., Liu, Z., Xie, Y., Gao, W., and Elguindi, N.: Influence of anthropogenic emission inventories on simulations of air quality in China during winter and summer 2010, Atmos. Environ., 198, 236–256, https://doi.org/10.1016/j.atmosenv.2018.10.043, 2019. 
Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones, N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S., Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., and Langerock, B.: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC, Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, 2017. 
Castellanos, P., Marufu, L. T., Doddridge, B. G., Taubman, B. F., Schwab, J. J., Hains, J. C., Ehrman, S. H., and Dickerson, R. R.: Ozone, oxides of nitrogen, and carbon monoxide during pollution events over the eastern United States: An evaluation of emissions and vertical mixing, J. Geophys. Res., 116, D16307, https://doi.org/10.1029/2010jd014540, 2011. 
Chen, Y., Ma, Q., Lin, W., Xu, X., Yao, J., and Gao, W.: Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region, Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, 2020. 
Darmenov, A. S. and da Silva, A.: The Quick Fire Emissions Dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4, NASA Technical Report Series on Global Modeling and Data Assimilation NASA TM-2015-104606, Volume 38, http://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf (last access: 14 June 2022), 2015. 
Download
Short summary
We provide a comparative analysis to explore the effects of satellite and surface measurements on atmospheric CO in data assimilations in 2015–2020 over East Asia. We find possible overestimated enhancements of atmospheric CO by assimilating surface CO measurements due to model representation errors, and a large discrepancy in the derived trends of CO columns due to different vertical sensitivities of satellite and surface observations to lower and free troposphere.
Altmetrics
Final-revised paper
Preprint