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Abstract. Satellite and surface carbon monoxide (CO) observations have been widely used to investigate the
sources and variabilities of atmospheric CO. However, comparative analyses to explore the effects of satellite
and surface measurements on atmospheric CO assimilations are still lacking. Here we investigate the assimilated
atmospheric CO over East Asia in 2015–2020, via assimilating CO measurements from the Measurement of
Pollution in the Troposphere (MOPITT) instrument and Ministry of Ecology and Environment of China (MEE)
monitoring network. We find noticeable inconsistencies in the assimilations: the adjusted CO columns (Xco) are
about 162, 173 and 172 ppb by assimilating surface CO measurements, in contrast to 138–144, 149–155 and
144–151 ppb by assimilating MOPITT CO observations over East China, the North China Plain (NCP), and the
Yangtze River Delta (YRD), respectively. These inconsistencies could be associated with possible representation
errors due to differences between urban and regional CO backgrounds. Furthermore, the adjusted surface CO
concentrations are about 631, 806, and 657 ppb by assimilating surface CO measurements, in contrast to 418–
427, 627–639 and 500–509 ppb by assimilating MOPITT CO observations over East China, NCP, and YRD,
respectively; assimilations of normalized surface CO measurements (to mitigate the influences of representation
errors) indicate declines of CO columns by about 2.2, 2.1, and 1.8 ppb yr−1, in contrast to 0.63–0.86, 0.97–1.29,
and 1.0–1.27 ppb yr−1 by assimilating MOPITT CO measurements over East China, South Korea, and Japan,
respectively. These discrepancies reflect the different vertical sensitivities of satellite and surface observations in
the lower and free troposphere. This work demonstrates the importance of integrating information from satellite
and surface measurements to provide a more accurate evaluation of atmospheric CO changes.

1 Introduction

Atmospheric CO is one of the most important pollutants and
plays a key role in tropospheric chemistry. Sources of at-
mospheric CO include fossil fuel combustion, biomass burn-
ing, and oxidation of hydrocarbons. The importance of atmo-
spheric CO has made it an essential target of global emission
controls. Satellite measurements have been used to investi-
gate atmospheric CO changes (Han et al., 2018; Hedelius
et al., 2021; Gaubert et al., 2020). Inverse analyses based
on satellite measurements have further improved our under-
standing of CO sources. For example, Jiang et al. (2017) con-

strained global CO emissions in 2001–2015 by assimilating
MOPITT CO observations. Zheng et al. (2018a) constrained
East Asian CO emissions in 2005–2016 using MOPITT CO
observations. Müller et al. (2018) assimilated Infrared Atmo-
spheric Sounding Interferometer (IASI) CO observations to
assess the impacts of hydroxyl radical (OH) on derived CO
emissions.

A major advantage of satellite measurements is the global
covered observations. In addition, the pixel-based observa-
tions allow convenient comparison with grid-based model
simulations. However, the limited vertical resolution im-
plies that the retrieved lower tropospheric CO is affected by
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free tropospheric CO (Jiang et al., 2013; Buchholz et al.,
2017; Hedelius et al., 2021), despite the joint retrieval of
near-infrared (NIR) and thermal infrared (TIR) spectral data,
which can enhance the sensitivity to lower tropospheric CO
(Worden et al., 2010; Deeter et al., 2017). In contrast to lower
tropospheric CO, free tropospheric CO is more susceptible to
influences from factors such as long-range transport. Conse-
quently, interpretation of satellite CO measurements requires
disentangling the influences from local and nonlocal sources.

Besides satellite observations, surface in situ CO mea-
surements have been used to analyze atmospheric CO vari-
abilities (Bouarar et al., 2019; Kong et al., 2020; Squires
et al., 2020). There are also recent advances to assess CO
sources via assimilating surface CO measurements provided
by air quality stations, particularly in China. For example,
Peng et al. (2018) assimilated surface CO observations to
optimize CO emissions in October 2014. Ma et al. (2019)
assimilated surface CO observations to optimize CO emis-
sions in September 2016. Feng et al. (2020) constrained CO
emissions in December 2013 and 2017. In contrast to satel-
lite measurements, surface CO observations have rapid re-
sponses to local CO emissions. Consequently, the interpre-
tation of surface CO observations is less affected by nonlo-
cal sources and sinks. However, the sparse distributions of
surface stations have dimmed the importance of surface CO
observations. In addition, it is challenging to match in situ
surface measurements with grid-based model simulations be-
cause of noticeable representation errors (Schutgens et al.,
2017) and possible uncertainties in the planetary boundary
layer (PBL) mixing (Castellanos et al., 2011).

To sufficiently understand CO variabilities, people may
take advantage of information from both satellite and surface
measurements. For example, Chen et al. (2020) found de-
creasing trends in atmospheric CO concentrations from both
MOPITT and surface CO measurements over the Yangtze
River Delta (YRD). However, comparative analyses to inves-
tigate the effects of satellite and surface CO measurements
in data assimilation systems are still lacking, which poses a
significant barrier to integrating the information provided by
satellite and surface measurements in data assimilation ap-
plications. In this work, we investigate the assimilated atmo-
spheric CO over East Asia in 2015–2020, via assimilating
CO measurements from the MOPITT and Ministry of Ecol-
ogy and Environment (MEE) surface observations, to explore
the methodology of assimilating two types of measurements,
as well as the impacts of CO emission declines in China on
atmospheric CO over East Asia. This paper is organized as
follows: in Sect. 2, we describe the CO observations, GEOS-
Chem model, and the Kalman filter approach used in this
work. In Sect. 3, we investigate the performances of satellite
and surface measurements in Kalman filters. Our conclusions
follow in Sect. 4.

2 Data and methodology

2.1 MOPITT CO measurements

The MOPITT instrument was launched on 18 Decem-
ber 1999 on the NASA/Terra spacecraft. The satellite is in
a sun-synchronous polar orbit of 705 km and crosses the
Equator at 10:30 local time. The instrument makes mea-
surements in a 612 km cross-track scan with a footprint of
22 km× 22 km and provides global coverage every three
days. The MOPITT data used here were obtained from the
joint retrieval (V8J) of CO from thermal infrared (TIR,
4.7 µm) and near-infrared (NIR, 2.3 µm) radiances using an
optimal estimation approach (Worden et al., 2010; Deeter et
al., 2017). The retrieved volume mixing ratios (VMRs) are
reported as layer averages of 10 pressure levels (surface, 900,
800, 700, 600, 500, 400, 300, 200, and 100 hPa).

Following Jiang et al. (2017), we reject MOPITT data with
CO column amounts of less than 5× 1017 molec. cm2 and
with low cloud observations. Since the NIR channel mea-
sures reflected solar radiation, only daytime data are consid-
ered. As shown in Fig. 1a, CO columns provided by MOPITT
indicate decreasing trends over East Asia in 2015–2020, con-
sistent with reported CO variability (Zheng et al., 2018a;
Chen et al., 2020; Hedelius et al., 2021). In addition, the ver-
tical columns are converted to column-averaged dry-air mole
fractions (Xco) in this work.

2.2 MEE surface CO measurements

We use MEE surface in situ hourly CO concentration data
(https://quotsoft.net/air/, last access: 14 June 2022) for the
period of 2015–2020. These real-time monitoring stations
have the ability to report hourly concentrations of critical
pollutants from over 1670 sites in 2020, which have been
widely used to investigate the sources and changes of at-
mospheric CO in China (Peng et al., 2018; Ma et al., 2019;
Feng et al., 2020). Concentrations were reported by the MEE
in units of mg m−3 with a precision of 0.001 mg m−3, un-
der standard temperature (273 K) until 31 August 2018. This
reference state was changed on 1 September 2018 to 298 K.
We converted CO concentrations to ppb and rescaled post-
August 2018 concentrations to standard temperature (273 K)
to keep consistency in the trend analysis. To ensure the re-
liability of the data before assimilation, we screened the
data on the numerical range and the time range. In the first
step, we removed data with CO concentrations higher than
6000 ppb (∼ 7.5 mg m−3), and the selection of this empirical
value is relatively close to the 7 mg m−3 selected by Feng et
al. (2020). In the second step, to ensure the rationality of the
daily variation of the assimilation results, we eliminated 327
sites with missing data for more than 14 consecutive days,
accounting for 19.5 % of the total number of sites. Figure 1b
shows the trends of surface CO concentrations provided by
MEE. There are high-density surface stations in East China
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Figure 1. (a) Trends of MOPITT CO columns (Xco) in 2015–2020 with unit ppb yr−1; (b) trends of MEE surface CO concentrations in
2015–2020 with unit ppb yr−1; (c) modeled (contour, a priori simulation) and observed (dotted) surface CO concentrations in 2019 with
unit ppb; (d) ratios between observed and modeled (a priori simulation) surface CO concentrations in 2019. The black boxes in panel (a)
define the domains (land only) of East China, NCP, YRD, South Korea, and Japan. The areas outside of China are excluded in the East China
domain.

with significant decreasing trends of CO concentrations from
2015 to 2020.

2.3 GEOS-Chem model simulations

The GEOS-Chem chemical transport model (http://www.
geos-chem.org (last access: 4 June 2022), version 12–8–1)
is driven by assimilated meteorological data of MERRA-
2. Our analysis is conducted at a horizontal resolution of
nested 0.5◦× 0.625◦, and employs the CO-only simulation in
GEOS-Chem, which uses archived monthly OH fields from
the full chemistry simulation (Fisher et al., 2017). The CO
boundary conditions are updated every 3 h from a global sim-
ulation with 4◦× 5◦ resolution. Emissions in GEOS-Chem
are computed by the Harvard-NASA Emission Component
(HEMCO). Global default anthropogenic emissions are from
the Community Emissions Data System (CEDS) (Hoesly et
al., 2018). Regional emissions are replaced by the Multires-
olution Emission Inventory for China (MEIC) in China and
MIX in other regions of Asia (Li et al., 2017). The total an-
thropogenic CO emissions in the MEIC inventory are further
scaled with linear projections based on Zheng et al. (2018b).
Open fire emissions are from the Quick Fire Emissions
Dataset (QFED) (Darmenov and da Silva, 2015). The bio-
genic emissions of volatile organic compounds (VOCs) are

calculated according to the Model of Emissions of Gases
and Aerosols from Nature (MEGAN v2.1) (Guenther et al.,
2006).

2.4 Kalman filter approach

We employ the suboptimal Kalman filter (Todling and Cohn,
1994) to assimilate MOPITT and surface CO observations.
As a brief description of the assimilation algorithm, the for-
ward model (M) predicts CO concentration (xat) at time t :

xat =Mtxt−1. (1)

The optimized CO concentrations can be expressed as

xt = xat+Gt

(
yt −Ktxat

)
, (2)

where yt is observation, Kt represents operation operator,
which projects CO concentrations from the model space to
observation space. Gt is the Kalman filter gain matrix, which
can be described as

Gt = SatKT
t

(
KtSatKT

t +Sε
)−1

, (3)

where Sat and Sε are model and observation covariance, re-
spectively. The suboptimal Kalman filter has been applied
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in previous studies to provide quick optimization for initial
and boundary atmospheric CO concentrations (Jiang et al.,
2015, 2017). Han et al. (2022) further provided a compar-
ative analysis between suboptimal Kalman filter and a hy-
brid deep learning model to predict surface CO concentra-
tions in China in 2015–2020, and found a good performance
of the Kalman filter in respect to independent observations.
We note that the optimization effect of suboptimal Kalman
filter is expected to be weaker than more complicated meth-
ods such as ensemble Kalman filter, particularly because the
latter can optimize CO emissions and concentrations simul-
taneously (Miyazaki et al., 2017; Feng et al., 2020). For ex-
ample, Ma et al. (2019) indicated that updated anthropogenic
emissions led to improved CO forecast by about 10 % during
the first 36 h of forecasts.

The assimilations were started on 1 July 2014 by assim-
ilating MOPITT or MEE CO observations to produce opti-
mized initial conditions on 1 January 2015. The modeled CO
concentrations are compared with observations and updated
hourly, based on Eq. (2), and then forwarded to Eq. (1) for
the model simulations in the next time step; i.e., the assimi-
lation window is 1 h. We assume fixed model errors (50 %).
The observation errors of satellite data are calculated based
on the MOPITT error covariance matrix. The observation er-
rors of surface observations include measurement errors and
representative errors. The measurement errors are calculated
following Feng et al. (2020): ε0 = ermax+0.005∗50, where
ermax is the base error (6 ppb) and 50 represents the ob-
served CO concentrations. The representation errors are cal-
culated following Elbern et al. (2007) and Tang et al. (2013):
εr = γ ε0

√
1l/L, where γ is a scaling factor (0.5), 1l is the

model resolution (∼ 56 km in this study), and L represents
the range that observation can reflect, which depends on the
station type (2 km for urban, 4 km for suburban). Given the
measurement error ε0 and the representative error εr, the total

observation error is defined as εt =
√
ε2

0 + ε
2
r . Furthermore,

the “super-observation” method was applied in this work to
further reduce the influence of representative error (Miyazaki
et al., 2017; Feng et al., 2020):

ωj = 1/ε2
j (4)

ys =
∑k

j=1
ωjyj/

∑k

j=1
ωj (5)

1/ε2
s =

∑k

j=1
1/ε2

j , (6)

where yj is CO observation of the j th station, ωj represents
the weighting factor of the j th station, ys and εs are the
grid-based CO observations and errors (super-observation),
respectively.

3 Results and discussions

3.1 Kalman filter assimilating MOPITT CO

We firstly assimilate MOPITT CO data with global sim-
ulations (4◦× 5◦ resolution) to optimize East Asian CO
boundary conditions. Similar to Jiang et al. (2017), the MO-
PITT profile and column data are assimilated individually
to produce two types of CO boundary conditions. High-
resolution (0.5◦× 0.625◦) Kalman filter assimilation is per-
formed within the East Asian domain via assimilating MO-
PITT profile and column data individually, and reading the
corresponding CO boundary conditions. As shown in Fig. 2a,
we find marked seasonality in surface CO concentrations:
about 800 ppb in winter and 300 ppb in summer over the
North China Plain (NCP) in 2019. The assimilation of MO-
PITT CO has a small influence on CO concentrations at the
surface level: the mean surface CO concentrations over East
China increased from 268 to 289–296 ppb in 2015–2020 (Ta-
ble 1). This could be associated with the limited sensitivity
of MOPITT to lower tropospheric CO, as well as the revisit
time of satellite measurements; i.e., MOPITT visits an indi-
vidual model grid every 3 d. Thus, the adjustment of surface
CO by Kalman filter can be affected by biased CO emissions
in the forward simulations with a 60 min time step.

In contrast to CO at the surface level, the Kalman filter led
to marked enhancement of CO columns (Fig. 2b). As shown
in Table 1, the modeled CO columns (Xco) over East China
in 2015–2020 were adjusted from about 101 to 121–127 ppb.
The difference in the Kalman filter by assimilating MOPITT
column and profile data is small. Similarly, Fig. 3 exhibits
the CO vertical profiles from model a priori simulations and
Kalman filter. Assimilations of different MOPITT CO data
(blue lines) led to similar enhancement of CO abundances,
except at high altitudes around 100 hPa. Furthermore, Fig. 4
demonstrates the relative differences between modeled and
MOPITT CO columns in 2019. There are pronounced nega-
tive biases in the a priori simulations by about 40 % (Fig. 4a).
By contrast, the differences are dramatically mitigated by as-
similating MOPITT CO column data (Fig. 4b). As shown
in Table 2, the modeled CO columns (smoothed with MO-
PITT averaging kernels and sampled at MEE locations) in-
creased from 97 to 124–128 ppb over East China in 2015–
2020. The good agreement between assimilations and MO-
PITT CO observations (129 ppb, Table 2) confirms the effi-
ciency of Kalman filter assimilation in this work.

3.2 Kalman filter assimilating surface CO

Figure 2c (black line) shows MEE surface CO observations
over NCP in 2019. The blue line shows the model a priori
surface CO concentrations, which are lower than observed
CO concentrations. The underestimated surface CO concen-
trations have been reported in recent studies; for example,
Peng et al. (2018) found that modeled surface CO concen-
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Figure 2. (a) Surface CO concentrations over NCP in 2019 from a priori simulation and Kalman filter by assimilating MOPITT CO; (b)
same as panel (a), but for CO columns; (c) surface CO concentrations from a priori simulation and MEE observations; (d) surface CO
concentrations from a priori simulation, MEE observations and Kalman filter by assimilating MEE CO; (e) surface CO concentrations from
a priori simulation, MEE observations and Kalman filter by assimilating normalized MEE CO.

trations by WRF-Chem (752 µg m−3) are about 40 % lower
than MEE surface CO (1318 µg m−3) in NCP in October
2014. Bouarar et al. (2019) indicated an underestimation of
surface CO concentrations in WRF-Chem (about 1000 ppb)
than surface observations (about 2000 ppb) in Beijing in Jan-
uary 2010. Feng et al. (2020) demonstrated high MEE sur-
face CO in December 2013, i.e., 2.18 and 1.66 mg m−3 in

contrast to 0.86 and 0.73 mg m−3 in WRF/CMAQ simula-
tions over NCP and East China, respectively.

We then assimilate MEE surface CO measurements to in-
vestigate the impacts of assimilations on atmospheric CO. In
contrast to Kalman filter by assimilating MOPITT data, the
CO boundary conditions here are from a priori simulations.
Figure 2d (orange line) shows the optimized surface CO con-
centrations in NCP in 2019. The assimilation of surface CO
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Table 1. Averages and trends of surface (T 1.1) and column (T 1.2) CO concentrations in 2015–2020. The domain definitions are shown in
Fig. 1a. The East Asian CO boundary conditions are provided by global a priori simulations, except Kalman filters, by assimilating MOPITT
CO, while the boundary conditions are provided by global assimilations of MOPITT CO. The “MEE normalized and MOPITT column” is
performed simultaneously by assimilating both MOPITT CO and normalized surface CO measurements.

T1.1 Surface CO concentrations (ppbv or ppbv yr−1)

E. China NCP YRD South Korea Japan

Mean Trend Mean Trend Mean Trend Mean Trend Mean Trend

Observations MOPITT profile surface layer 222.9 −0.95 338.3 −6.29 356.3 0.26 254.6 −1.58 168.1 −0.21
MEE 781.4 −43.55 880.6 −79.85 700.1 −23.34 – – – –

Model a priori surface layer 267.8 −0.57 444.8 −2.60 417.6 −6.13 173.5 −1.78 150.5 −1.68
Kalman filter by assimilating MOPITT profile 295.8 −1.40 479.9 −4.11 446.6 −6.98 204.5 −2.59 175.5 −2.54

MOPITT column 289.2 −0.74 469.2 −2.82 438.1 −6.23 195.5 −2.08 170.6 −1.96
MEE raw 429.8 −18.31 630.1 −43.92 598.4 −19.17 236.3 −8.37 183.5 −5.51
MEE normalized 283.7 −10.79 505.0 −32.47 418.0 −14.69 186.5 −5.30 157.2 −3.59
MEE normalized (morning) 270.8 −6.67 462.8 −22.13 412.2 −10.02 177.5 −3.92 152.4 −2.80
MEE normalized and MOPITT profile 290.6 −10.28 511.4 −32.10 421.1 −14.41 195.8 −4.37 166.0 −2.40

T1.2 CO Columns (Xco ppbv or ppbv yr−1)

Observations MOPITT column 110.5 −0.86 128.4 −2.04 132.9 −0.84 115.9 −0.92 106.5 −0.71
Model a priori Column 100.6 −0.53 114.0 −1.06 121.9 −0.59 92.5 −0.89 87.3 −0.94
Kalman filter by assimilating MOPITT profile 127.0 −0.63 141.7 −1.17 147.5 −0.76 117.6 −0.97 111.2 −1.00

MOPITT column 120.9 −0.86 136.7 −1.46 141.1 −0.90 113.0 −1.29 106.6 −1.27
MEE raw 131.9 −3.51 154.1 −6.73 167.9 −4.12 114.9 −3.13 104.2 −2.63
MEE normalized 105.5 −2.21 125.4 −4.40 130.6 −2.80 97.1 −2.08 90.4 −1.83
MEE normalized (morning) 101.7 −1.52 117.4 −3.24 123.9 −1.75 93.8 −1.56 88.1 −1.42
MEE normalized and MOPITT column 113.0 −2.29 134.5 −4.49 137.5 −2.81 105.4 −2.16 98.0 −1.86

Figure 3. CO profiles over NCP in 2019 from a priori simulations
(black line), Kalman filter by assimilating MOPITT CO (column:
blue solid line; profile: blue dashed line) and MEE CO (raw data:
red solid line; normalized data: red dashed line).

measurements significantly improved the agreement between
observations and model simulations. As shown in Table 1,
the modeled surface CO concentrations in 2015–2020 in-
creased from 268 to 430 ppb over East China, 445 to 630 ppb
over NCP and 418 to 598 ppb over YRD. The correlations be-
tween modeled and observed surface CO are enhanced from
0.707 to 0.865 over NCP in 2019. The enhancement of sur-

face CO concentrations due to assimilating surface CO mea-
surements has been reported in recent studies. For example,
Peng et al. (2018) demonstrated enhancement of surface CO
from 752 to 1418 µg m−3 in NCP in October 2014. Feng et
al. (2020) exhibited enhancement of surface CO from 0.73
to 1.62 mg m−3 in December 2013 over East China. Further-
more, as shown in Table 2, the assimilation led to an increase
in surface CO concentrations from 397 to 631 ppb over East
China in 2015–2020, exhibiting better agreement with MEE
observations (781 ppb).

3.3 Discrepancy in assimilated CO by assimilating
satellite and surface data

As shown in Fig. 3, the modeled CO profile by assimilating
MEE surface CO (red solid line) is higher than MOPITT-
based CO concentrations (blue lines) in the lower tropo-
sphere. It indicates a possible discrepancy in the adjusted CO
concentrations by assimilating satellite and surface observa-
tions. As shown in Table 2, the adjusted surface CO concen-
trations by assimilating MEE CO measurements are higher
than those by assimilating MOPITT data in 2015–2020: 631
and 417–427 ppb over East China; 806 and 627–639 ppb over
NCP; 657 and 500–509 ppb over YRD. Similarly, the ad-
justed CO columns (Xco) by assimilating MEE CO measure-
ments are higher than those by assimilating MOPITT data in
2015–2020 (Table 2): 162 and 138–144 ppb over East China;
173 and 149–155 ppb over NCP; 172 and 144–151 ppb over
YRD. However, the adjusted CO columns by assimilating
MEE CO measurements are comparable with those by as-
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Table 2. Averages, correlations and trends of surface (T 2.1) and column (T 2.2 and T 2.3) CO concentrations in 2015–2020, sampled at the
locations of MEE stations. The domain definitions are shown in Fig. 1a. The correlations between simulations and MOPITT observations in
T 2.3 are not shown because MOPITT averaging kernels are not applied.

T2.1 Surface CO sampled at MEE locations (ppbv or ppb yr−1)

E. China NCP YRD

Mean R Trend Mean R Trend Mean R Trend

CO observations MEE CO 781.4 1.00 −43.55 880.6 1.00 −79.85 700.1 1.00 −23.34
Model a priori surface CO 397.0 0.85 −1.07 602.7 0.69 −1.66 479.6 0.69 −7.43
Kalman filter by assimilating MOPITT CO profile (10 levels) 426.5 0.86 −2.12 639.0 0.69 −3.40 508.8 0.70 −8.25

MOPITT CO column 417.9 0.85 −1.21 627.0 0.69 −1.88 500.1 0.69 −7.53
MEE CO 631.2 0.98 −30.58 805.9 0.96 −62.24 656.7 0.95 −21.01
MEE CO (normalized) 410.3 0.97 −18.61 677.9 0.96 −50.96 463.0 0.95 −18.23
MEE normalized (morning) 398.4 0.90 −12.55 623.8 0.81 −32.77 469.2 0.76 −13.58
MEE normalized and MOPITT profile 414.1 0.97 −18.24 681.7 0.96 −50.71 465.3 0.95 −18.01

T2.2 CO columns sampled at MEE locations and smoothed with MOPITT Aks (Xco ppbv or ppbv yr−1)

Mean R Trend Mean R Trend Mean R Trend

CO observations Column CO of MOPITT 128.6 1.00 −1.14 136.6 1.00 −2.62 136.6 1.00 −1.22
Model a priori Column CO 97.4 0.43 −0.20 95.2 0.40 −0.13 104.4 0.34 0.21
Kalman filter by assimilating MOPITT CO profile (10 levels) 128.2 0.55 −0.49 134.6 0.55 −1.60 134.8 0.42 0.17

MOPITT CO column 124.1 0.56 −0.47 131.9 0.56 −1.55 131.1 0.44 0.26
MEE CO 126.5 0.40 −2.98 128.8 0.55 −5.07 136.2 0.30 −1.54
MEE CO (normalized) 105.3 0.42 −2.17 107.6 0.50 −3.18 113.1 0.33 −1.45
MEE normalized (morning) 99.2 0.44 −1.14 98.6 0.43 −1.80 106.4 0.36 −0.28
MEE normalized and MOPITT column 119.8 0.51 −1.48 131.2 0.57 −2.62 126.8 0.38 −0.80

T2.3 CO columns sampled at MEE locations (Xco ppbv or ppbv yr−1)

Mean – Trend Mean – Trend Mean – Trend

Model a priori Column CO 117.7 −0.51 126.7 −1.08 125.1 −0.61
Kalman filter by assimilating MOPITT CO profile (10 levels) 143.9 −0.69 154.7 −1.26 150.6 −0.78

MOPITT CO column 137.6 −0.83 149.3 −1.49 144.2 0.93
MEE CO 161.6 −4.90 172.6 −8.11 172.2 −4.14
MEE CO (normalized) 125.1 −3.07 141.0 −5.50 134.0 −2.90
MEE normalized (morning) 119.5 −2.09 130.9 −3.98 127.1 −1.83
MEE normalized and MOPITT column 136.4 −0.96 150.6 −2.14 147.2 0.10

similating MOPITT data after the application of MOPITT
averaging kernels (Table 2), which could be associated with
the weaker sensitivity of MOPITT to lower free tropospheric
CO.

MOPITT CO retrievals have been sufficiently evaluated.
For example, Deeter et al. (2017) indicated that the bias in
MOPITT CO column data was about 3 % in respect to NOAA
flask measurements. The higher CO columns by assimilating
MEE CO measurements thus indicate possible overestimated
enhancements on free tropospheric CO. Similarly, Feng et
al. (2020) suggest a 186 % enhancement of CO emissions
over East China via assimilating surface CO measurements.
By contrast, the MOPITT-based CO emission estimates are
comparable with a priori emissions in China (Elguindi et
al., 2020). In addition, as shown in Fig. 4a, the modeled
CO columns from the boundary conditions are biased low
by about 40 %, which was not removed when assimilating
MEE surface CO. While the influence from boundary con-
ditions on surface CO concentrations over East China could
be limited, it is expected to have a noticeable influence on
free tropospheric CO over East China. It further confirms the

overestimated enhancements on free tropospheric CO by as-
similating MEE CO measurements, because potential nega-
tive biases due to the usage of a priori boundary conditions
have been completely covered.

Figures 1c and 1d exhibit the model a priori simulation
and observed surface CO, as well as the ratios between ob-
served and model a priori surface CO in 2019. The ratios
are about 1.5 over high polluted areas such as NCP and 2–6
over low polluted areas (Fig. 1d). Because most MEE sta-
tions are urban air quality sites, the regional discrepancy in
the ratios reveals possible influences from representation er-
ror; i.e., the regional CO backgrounds are lower than obser-
vations from urban stations, and the influences are stronger
over low polluted areas. Despite representation errors having
been considered in the covariance matrix in the Kalman filter
(Sect. 2.4), it seems that the mitigation of representation er-
rors is limited. This is not surprising, because the covariance
matrix is supposed to contain random errors with Gaussian
distribution, whereas representation errors due to differences
between urban and regional backgrounds are systematic bi-
ases. In addition, insufficient parameterized processes such
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Figure 4. (a) Relative difference between a priori simulation and
MOPITT in 2019, calculated by (Model - MOPITT)/MOPITT; (b)
same as panel (a), but with Kalman filter by assimilating MOPITT
CO column data; (c) same as panel (a), but with Kalman filter by
assimilating MOPITT CO profile data.

as PBL mixing can further contribute to the underestima-
tion of modeled surface CO concentrations (Castellanos et
al., 2011).

3.4 Kalman filter assimilating normalized surface CO

The possible systematic biases imply it may not be a good
idea to assimilate surface CO measurements to optimize free
tropospheric CO directly. Alternatively, considering the high
capability of models to capture the observed CO variabilities,
we can scale surface CO measurements using the ratios be-
tween observations and models. In the following discussion,

the MEE surface CO measurements will be scaled using the
ratios shown in Fig. 1d. The actual effect of this adjustment
is normalizing modeled and observed surface CO concentra-
tions in 2019; hence Kalman filter, by assimilating the nor-
malized surface CO measurements, can reflect the variabili-
ties (i.e., trends) instead of magnitudes of CO concentrations.
It should be noted that the ratios are expected to be affected
by interannual variabilities of meteorological conditions as
well as possible land usage changes. The land usage changes
are supposed to be insignificant due to the limited studied pe-
riod (i.e., 2015–2020). More efforts are needed in the future
to evaluate the possible influence of meteorological condi-
tion changes on the inconsistency between observations and
simulations.

Figure 2e (orange line) shows surface CO concentrations
in NCP in 2019 by assimilating normalized surface CO mea-
surements. The magnitudes of model a priori (blue line) and
Kalman filter (orange line) are consistent in Fig. 2e due to
the normalization of surface CO measurements. As shown
in Table 1, the adjusted surface and column CO concentra-
tions by assimilating normalized MEE CO measurements are
closer to the a priori simulations in 2015–2020. The correla-
tion between modeled and observed surface CO is 0.874 over
NCP in 2019, which is comparable with the correlation by as-
similating raw surface CO measurements. Furthermore, we
performed sensitivity assimilation to evaluate the effects of
MOPITT pass time by assimilating MEE CO measurements
only in the morning. As shown in Table 1, the assimilation of
morning data led to lower surface and column CO concentra-
tions, and thus, the discrepancy in the CO columns (Sect. 3.3)
is not driven by different temporal resolutions between satel-
lite and surface CO observations.

3.5 Assimilated atmospheric CO over East Asia in
2015–2020

Here we expand our analysis to investigate the assimilated
atmospheric CO over East Asia in 2015–2020. As shown in
Fig. 5a, Kalman filter, by assimilating raw surface CO mea-
surements, reveals wide declines in surface CO concentra-
tions over East China. The declines of surface CO resulted
in decreases of CO columns (Fig. 5b, via assimilating nor-
malized surface CO measurements) by about 2.2, 2.1 and
1.8 ppb yr−1 in 2015–2020 over East China, South Korea,
and Japan, respectively. By contrast, the decreasing trends
in the MOPITT-based assimilations (Fig. 5c–d) are weaker:
0.63–0.86, 0.97–1.29 and 1.00–1.27 ppb yr−1 in 2015–2020
over East China, South Korea, and Japan, respectively. It
should be noted that the decreasing trends in the MOPITT-
based assimilations are more affected by the a priori simula-
tions and are thus, weaker than those of MOPITT observa-
tions, as exhibited by the neutral changes over central China
in Fig. 5c–d. In addition, Fig. 5e demonstrates the trends of
CO columns by assimilating both MOPITT CO column and
normalized surface CO measurements simultaneously; the
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Figure 5. Trends of surface CO concentrations in 2015–2020 by assimilating (a) raw MEE CO and trends of CO columns in 2015–2020 by
assimilating (b) normalized MEE CO, (c) MOPITT CO column data, (d) MOPITT CO profile data and (e) normalized MEE CO+MOPITT
CO column data.

decreasing trends are about 2.3, 2.2 and 1.9 ppb yr−1 over
East China, South Korea, and Japan, respectively.

As shown in Fig. 6, the a priori simulations with fixed an-
thropogenic CO emissions in 2010 (black lines) predict sta-
ble surface CO concentrations in 2015–2020. By contrast,
Kalman filter, by assimilating raw surface CO measurements
(red solid lines), demonstrates declines in surface CO con-
centrations by about 43.9, 19.2, and 18.3 ppb yr−1 over NCP,
YRD, and East China, respectively. The difference between
the a priori simulations (black lines) and assimilations (red
solid lines) indicates the impacts of successful CO emission
controls in China. In addition, Kalman filter, by assimilating
normalized surface CO measurements (red dashed lines), in-
dicates declines of surface CO concentrations by about 32.1,
14.4, and 10.3 ppb yr−1 over NCP, YRD, and East China, re-
spectively.

Finally, we analyze the interannual variabilities of CO
columns by assimilating MOPITT and surface CO measure-
ments. As shown in Fig. 7, Kalman filter, by assimilating
normalized surface CO measurements (red dashed lines),
demonstrates declines of CO columns by about 4.4, 2.8 and
2.2 ppb yr−1 in 2015–2020 over NCP, YRD, and East China,
respectively. Kalman filter, by assimilating raw surface CO
measurements (red solid lines), leads to overestimated CO
columns. Kalman filter, by assimilating MOPITT observa-

tions (blue lines), exhibits smaller changes in CO columns:
1.2–1.5, 0.76–0.9 and 0.63–0.86 ppb yr−1 in 2015–2020 over
NCP, YRD, and East China, respectively. Kalman filter, by
assimilating both MOPITT CO column and normalized sur-
face CO measurements simultaneously (purple lines), ex-
hibits decreasing trends of CO columns by about 4.5, 2.8,
and 2.3 ppb yr−1 in 2015–2020 over NCP, YRD, and East
China, respectively.

4 Conclusions

A comparative analysis is provided in this work to explore
the effects of satellite and surface measurements on atmo-
spheric CO assimilations over East Asia in 2015–2020. We
find possible inconsistencies by assimilating satellite and sur-
face CO measurements: the adjusted CO columns (Xco) are
about 161, 173, and 172 ppb by assimilating surface CO
measurements, in contrast to 138–144, 149–155, and 144–
151 ppb by assimilating MOPITT CO observations in 2015–
2020 over East China, NCP, and YRD, respectively. This dif-
ference is larger than the reported uncertainties in MOPITT
CO columns (Deeter et al., 2017) and similar to the reported
discrepancy in the derived CO emissions based on MOPITT
and surface CO measurements (Elguindi et al., 2020; Feng et
al., 2020). In addition, we find large regional discrepancies in
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Figure 6. Surface CO concentrations in 2015–2020 from a pri-
ori simulations (black line), Kalman filter, by assimilating raw (red
solid line) and normalized (red dashed line) MEE CO.

the ratios between observed and model a priori surface CO:
about 1.5 over high polluted areas such as NCP, and 2–6 over
low polluted areas (Fig. 1d). These inconsistencies could be
associated with possible representation errors due to differ-
ences between urban and regional CO backgrounds, which
cannot be effectively contained via adjusting the covariance
matrix in the assimilations.

Assimilations of raw surface CO measurements indicate
declines in surface CO concentrations by about 43.9, 19.2,
and 18.3 ppb yr−1 over NCP, YRD, and East China in 2015–
2020. Assimilations of normalized surface CO measure-
ments further indicate declines of CO columns (Xco) by
about 2.2, 2.1, and 1.8 ppb yr−1 over East China, South Ko-
rea, and Japan in 2015–2020, respectively. This demonstrates
the important impacts of CO emission controls in China on
East Asian atmospheric CO changes. By contrast, assimila-
tions of MOPITT CO measurements suggest small trends in
CO columns: 0.63–0.86, 0.97–1.29, and 1.00–1.27 ppb yr−1

over East China, South Korea, and Japan in 2015–2020, re-
spectively. These discrepancies reflect the different vertical
sensitivities of satellite and surface observations to CO con-

Figure 7. CO columns (Xco) in 2015–2020 from a priori simu-
lations (black line), Kalman filter, by assimilating MOPITT CO
columns (blue line), MEE CO (raw data: red solid line; normal-
ized data: red dashed line) and MOPITT CO column + normalized
MEE CO (purple line).

centrations in the lower and free troposphere. While the nor-
malized CO measurements in this work are supposed to pro-
vide a better representation of atmospheric CO in the free
troposphere, Kalman filter, by assimilating raw CO measure-
ments, is closer to real urban CO concentrations at the sur-
face level. More efforts to analyze the effects of meteorolog-
ical variabilities on observed and modeled surface CO con-
centrations are helpful for better assimilation of surface CO
observations, and more accurate evaluation of atmospheric
CO changes.

Data availability. The MEE CO data can be downloaded from
https://quotsoft.net/air/ (Wang, 2014). The MOPITT CO data can be
downloaded from https://asdc.larc.nasa.gov/data/MOPITT/ (NASA
Earth Data, 2022). The GEOS-Chem model (version 12.8.1) can
be downloaded from http://wiki.seas.harvard.edu/geos-chem/index.
php/GEOS-Chem_12#12.8.1 (GEOS-Chem v12.8.1, 2022).
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