Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7287-2022
https://doi.org/10.5194/acp-22-7287-2022
Research article
 | 
07 Jun 2022
Research article |  | 07 Jun 2022

Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic

Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell

Related authors

Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020,https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC
Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Chem. Phys., 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020,https://doi.org/10.5194/acp-20-9547-2020, 2020
Short summary
Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements
Marta Tecla Falconi, Annakaisa von Lerber, Davide Ori, Frank Silvio Marzano, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 3059–3079, https://doi.org/10.5194/amt-11-3059-2018,https://doi.org/10.5194/amt-11-3059-2018, 2018
Short summary
Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland
Jussi Tiira, Dmitri N. Moisseev, Annakaisa von Lerber, Davide Ori, Ali Tokay, Larry F. Bliven, and Walter Petersen
Atmos. Meas. Tech., 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016,https://doi.org/10.5194/amt-9-4825-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023,https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023,https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002, https://doi.org/10.5194/acp-23-1987-2023,https://doi.org/10.5194/acp-23-1987-2023, 2023
Short summary
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023,https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023,https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res.-Atmos., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998. a
Adhikari, A., Liu, C., and Kulie, M. S.: Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM Observations, J. Climate, 31, 3731–3754, https://doi.org/10.1175/JCLI-D-17-0012.1, 2018. a
Akkermans, T., Böhme, T., Demuzere, M., Crewell, S., Selbach, C., Reinhardt, T., Seifert, A., Ament, F., and van Lipzig, N.: Regime-dependent evaluation of accumulated precipitation in COSMO, Theor. Appl. Climatol., 108, 39–52, https://doi.org/10.1007/s00704-011-0502-0, 2012. a, b
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Glisan, J., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiéma, O., Scinocca, J. F., Sein, D., Sobolowski, S., Winger, K., and Zhang, W.: Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX), J. Geophys. Res.-Atmos., 123, 2537–2554, https://doi.org/10.1002/2017JD027703, 2018. a
Akperov, M., Rinke, A., Mokhov, I. I., Semenov, V. A., Parfenova, M. R., Matthes, H., Adakudlu, M., Boberg, F., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiéma, O., Sein, D., Sobolowski, S., Winger, K., and Zhang, W.: Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 182, 103005, https://doi.org/10.1016/j.gloplacha.2019.103005, 2019. a
Download
Short summary
Snowfall is an important climate indicator. However, microphysical snowfall processes are challenging for atmospheric models. In this study, the performance of a regional climate model is evaluated in modeling the spatial and temporal distribution of Arctic snowfall when compared to CloudSat satellite observations. Excellent agreement in averaged annual snowfall rates is found, and the shown methodology offers a promising diagnostic tool to investigate the shown differences further.
Altmetrics
Final-revised paper
Preprint