Articles | Volume 22, issue 5
Atmos. Chem. Phys., 22, 3391–3407, 2022
Atmos. Chem. Phys., 22, 3391–3407, 2022
Research article
14 Mar 2022
Research article | 14 Mar 2022

A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions

Kalli Furtado and Paul Field

Related authors

The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627,,, 2021
Short summary
Introducing Ice Nucleating Particles functionality into the Unified Model and its impact on the Southern Ocean short-wave radiation biases
Vidya Varma, Olaf Morgenstern, Kalli Furtado, Paul Field, and Jonny Williams
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript not accepted
Short summary
Improving the Southern Ocean cloud albedo biases in a general circulation model
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751,,, 2020
Short summary
The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China
Kalli Furtado, Paul Field, Yali Luo, Tianjun Zhou, and Adrian Hill
Atmos. Chem. Phys., 20, 5093–5110,,, 2020
Short summary
On the relationship between the scattering phase function of cirrus and the atmospheric state
A. J. Baran, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco
Atmos. Chem. Phys., 15, 1105–1127,,, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988,,, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842,,, 2022
Short summary
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472,,, 2022
Short summary
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057,,, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738,,, 2022
Short summary

Cited articles

Ackerman, A., Kirkpatrick, M., Stevens, D., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature 432, 1014–1017,, 2004. a, b, c
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230,, 1989. a
Burton, A., Kilsby, G. G., Fowler, H. J., Cowpertwait, P .S. P. and O'Connell, P. E. RainSim: A spatial–temporal stochastic rainfall modelling system, Environ. Modell. Softw., 23, 1356–1369, 2008. a
Field, P. R. and Shutts, G. J.: Properties of normalised rain-rate distributions in the tropical Pacific, Q. J. Roy. Meteor. Soc., 135, 175–186,, 2009. a, b
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. J.: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131, 1997–2017,, 2005. a
Short summary
The complex processes involved mean that no simple answer to this question has so far been discovered: do aerosols increase or decrease precipitation? Using high-resolution weather simulations, we find a self-similar property of rainfall that is not affected by aerosols. Using this invariant, we can collapse all our simulations to a single curve. So, although aerosol effects on rain are many, there may be a universal constraint on the number of degrees of freedom needed to represent them.
Final-revised paper