Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-335-2022
https://doi.org/10.5194/acp-22-335-2022
Research article
 | 
10 Jan 2022
Research article |  | 10 Jan 2022

Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic

Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang

Related authors

Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022,https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020,https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Organized Variations in MBL Cloud Microphysical Properties Observed by Aircraft and Satellite and Simulated by Model
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817,https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements
Xiaojian Zheng, Baike Xi, Xiquan Dong, Timothy Logan, Yuan Wang, and Peng Wu
Atmos. Chem. Phys., 20, 3483–3501, https://doi.org/10.5194/acp-20-3483-2020,https://doi.org/10.5194/acp-20-3483-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024,https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024,https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024,https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024,https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024,https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary

Cited articles

Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H., and Frisch, A. S.: The Atlantic Stratocumulus Transition Experiment - ASTEX, B. Am. Meteorol. Soc., 76, 889–904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2, 1995. 
ARM MET Handbook: ARM Surface Meteorology Systems (MET) Handbook, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM/TR-0861, 19 pp., available at: https://www.arm.gov/publications/tech_reports/handbooks/met_handbook.pdf (last access: 21 August 2021), 2011. 
Atmospheric Radiation Measurement Data Center: Ground-based Measurements at ENA site​​​​​​​, ARM [data set], available at: https://adc.arm.gov/discovery/#/results/site_code::ena (last access: 2 September 2021​​​​​​​), 2021a. 
Atmospheric Radiation Measurement Data Center: ECMWF model output at ENA site​​​​​​​, ARM [data set], available at: https://adc.arm.gov/discovery/#/results/datastream::enaecmwfvarX1.c1 (last access: 2 September 2021), 2021b. 
Braun, R. A., Dadashazar, H., MacDonald, A. B., Crosbie, E., Jonsson, H. H., Woods, R. K., Flagan, R. C., Seinfeld, J. H., and Sorooshian, A.: Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean, J. Geophys. Res.-Atmos., 123, 13790–13806, https://doi.org/10.1029/2018JD029287, 2018. 
Download
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Altmetrics
Final-revised paper
Preprint