Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-335-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-335-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic
Xiaojian Zheng
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Xiquan Dong
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Pacific Northwest National Laboratory, Richland, WA, USA
Timothy Logan
Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
Yuan Wang
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022, https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817, https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Short summary
Marine boundary layer clouds in subtropical regions strongly impact global energy balance, but complete understanding of the processes that control their development remain elusive. We analyze aircraft in-situ measurements of clouds collected in a field campaign for cases that contain organized structures tens of kilometres in extent embedded within a larger overcast cloud field. Failure to account for these structures can lead to misrepresentation in models and satellite retrievals.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Timothy Logan, Yuan Wang, and Peng Wu
Atmos. Chem. Phys., 20, 3483–3501, https://doi.org/10.5194/acp-20-3483-2020, https://doi.org/10.5194/acp-20-3483-2020, 2020
Short summary
Short summary
The continental low-level stratiform cloud susceptibilities to aerosols were investigated under different absorptive aerosol regimes. The weakly absorbing aerosols, which are more hygroscopic, can better activate as cloud condensation nuclei. The favorable thermodynamic condition enhances the cloud susceptibility, while the cloud-layer heating effect induced by strongly absorbing aerosols dampens the cloud susceptibility. Overall, the clouds are more susceptible to the weakly absorbing aerosols.
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3199, https://doi.org/10.5194/egusphere-2024-3199, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The study investigates how aerosol-cloud interactions affect warm boundary layer stratiform clouds over the Eastern North Atlantic. High-resolution WRF-Chem simulations reveal that non-rain clouds at the edges of cloud systems are prone to evaporation, leading to an aerosol drying effect and a transition of aerosols back to accumulation mode for future activation. The study emphasizes that this dynamic behavior is often not adequately represented in most previous prescribed-aerosol simulations.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-124, https://doi.org/10.5194/amt-2024-124, 2024
Preprint under review for AMT
Short summary
Short summary
Understanding the cloud phase and macrophysical properties of Southern Ocean clouds is crucial to enhancing our understanding of the region. The cloud radar and in-situ probes during the SOCRATES aircraft campaign are used to develop a new method to determine cloud boundaries and dominant phase. Low clouds (<3km) are found to be the most dominant cloud type (~90%), with liquid being the most dominant phase type, followed by ice and mixed with a greater incidence of drizzle around the cloud base.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023, https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary
Short summary
Surface PM2.5 concentrations can be enhanced by aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). In this study, we found PM2.5 enhancement induced by ACIs shows a significantly smaller decrease ratio than that induced by ARIs in China with anthropogenic emission reduction from 2013 to 2021, making ACIs more important for enhancing PM2.5 concentrations. ACI-induced PM2.5 enhancement needs to be emphatically considered to meet the national PM2.5 air quality standard.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Yun Lin, Yuan Wang, Jen-Shan Hsieh, Jonathan H. Jiang, Qiong Su, Lijun Zhao, Michael Lavallee, and Renyi Zhang
Atmos. Chem. Phys., 23, 13835–13852, https://doi.org/10.5194/acp-23-13835-2023, https://doi.org/10.5194/acp-23-13835-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) can cause catastrophic damage to coastal regions. We used a numerical model that explicitly simulates aerosol–cloud interaction and atmosphere–ocean coupling. We show that aerosols and ocean coupling work together to make TC storms bigger but weaker. Moreover, TCs in polluted air have more rainfall and higher sea levels, leading to more severe storm surges and flooding. Our research highlights the roles of aerosols and ocean-coupling feedbacks in TC hazard assessment.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023, https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Short summary
Marine boundary layer clouds remain poorly predicted in global climate models due to multiple entangled uncertainty sources. This study uses the in situ observations from a recent field campaign to constrain and evaluate cloud physics in a simplified version of a climate model. Progress and remaining issues in the cloud physics parameterizations are identified. We systematically evaluate the impacts of large-scale forcing, microphysical scheme, and aerosol concentrations on the cloud property.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022, https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817, https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Short summary
Marine boundary layer clouds in subtropical regions strongly impact global energy balance, but complete understanding of the processes that control their development remain elusive. We analyze aircraft in-situ measurements of clouds collected in a field campaign for cases that contain organized structures tens of kilometres in extent embedded within a larger overcast cloud field. Failure to account for these structures can lead to misrepresentation in models and satellite retrievals.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Timothy Logan, Yuan Wang, and Peng Wu
Atmos. Chem. Phys., 20, 3483–3501, https://doi.org/10.5194/acp-20-3483-2020, https://doi.org/10.5194/acp-20-3483-2020, 2020
Short summary
Short summary
The continental low-level stratiform cloud susceptibilities to aerosols were investigated under different absorptive aerosol regimes. The weakly absorbing aerosols, which are more hygroscopic, can better activate as cloud condensation nuclei. The favorable thermodynamic condition enhances the cloud susceptibility, while the cloud-layer heating effect induced by strongly absorbing aerosols dampens the cloud susceptibility. Overall, the clouds are more susceptible to the weakly absorbing aerosols.
Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu
Atmos. Meas. Tech., 12, 3743–3759, https://doi.org/10.5194/amt-12-3743-2019, https://doi.org/10.5194/amt-12-3743-2019, 2019
Short summary
Short summary
Liquid water path (LWP) is a combination of rain liquid water path (RLWP) and cloud liquid water path (CLWP) in stratiform precipitation systems. LWP partitioning is important but poorly understood. Here we estimate the RLWP and CLWP below the melting base simultaneously and separately using ceilometer and radar measurements. Results show that the occurrence of cloud particles below the melting base is low; however, when cloud particles exist, the CLWP value is much larger than the RLWP.
Yun Lin, Yuemeng Ji, Yixin Li, Jeremiah Secrest, Wen Xu, Fei Xu, Yuan Wang, Taicheng An, and Renyi Zhang
Atmos. Chem. Phys., 19, 8003–8019, https://doi.org/10.5194/acp-19-8003-2019, https://doi.org/10.5194/acp-19-8003-2019, 2019
Short summary
Short summary
We have investigated the molecular interactions between succinic acid and sulfuric acid–base clusters in the presence of hydration, including ammonia and dimethylamine. Our results indicate that the multicomponent nucleation involving organic acids, sulfuric acid, and base species promotes new particle formation in the atmosphere, particularly under polluted conditions.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Zhibo Zhang, Hua Song, Po-Lun Ma, Vincent E. Larson, Minghuai Wang, Xiquan Dong, and Jianwu Wang
Atmos. Chem. Phys., 19, 1077–1096, https://doi.org/10.5194/acp-19-1077-2019, https://doi.org/10.5194/acp-19-1077-2019, 2019
Peng Wu, Baike Xi, Xiquan Dong, and Zhibo Zhang
Atmos. Chem. Phys., 18, 17405–17420, https://doi.org/10.5194/acp-18-17405-2018, https://doi.org/10.5194/acp-18-17405-2018, 2018
Short summary
Short summary
Prescribed autoconversion and accretion enhancement factors in GCM warm-rain parameterizations contribute partially to the too-frequent and too-light problem in precipitation simulation. The two factors should be regime- and resolution-dependent. A decreased autoconversion enhancement factor and increased accretion enhancement factor in the Morrison and Gettleman (2008) scheme can improve the simulated precipitation frequency and intensity. The two factors for other schemes are also suggested.
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018, https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Short summary
A total of 1.04 million premature mortalities and up to 2 years of life lost (YLL) per person were estimated in India in 2015 due to PM2.5. Premature mortality due to cerebrovascular disease (CEVD) was the highest (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million). The residential sector was the largest contributor, followed by industry, agriculture and energy. Reducing PM2.5 concentrations would lead to a significant reduction in premature mortality and YLL.
Gehui Wang, Fang Zhang, Jianfei Peng, Lian Duan, Yuemeng Ji, Wilmarie Marrero-Ortiz, Jiayuan Wang, Jianjun Li, Can Wu, Cong Cao, Yuan Wang, Jun Zheng, Jeremiah Secrest, Yixin Li, Yuying Wang, Hong Li, Na Li, and Renyi Zhang
Atmos. Chem. Phys., 18, 10123–10132, https://doi.org/10.5194/acp-18-10123-2018, https://doi.org/10.5194/acp-18-10123-2018, 2018
Short summary
Short summary
Several studies using thermodynamic models estimated pH and sulfate formation rate during pollution periods in China are highly conflicting. Here we show distinct sulfate formation for organic seed particles from that of (NH4)2SO4 seeds, when the particles are exposed to SO2, NO2, and NH3 at high RH. Our results reveal that the pH value of ambient organics-dominated aerosols is sufficiently high to promote efficient SO2 oxidation by NO2 with NH3 neutralization under polluted conditions in China.
Pengfei Tian, Lei Zhang, Jianmin Ma, Kai Tang, Lili Xu, Yuan Wang, Xianjie Cao, Jiening Liang, Yuemeng Ji, Jonathan H. Jiang, Yuk L. Yung, and Renyi Zhang
Atmos. Chem. Phys., 18, 7815–7825, https://doi.org/10.5194/acp-18-7815-2018, https://doi.org/10.5194/acp-18-7815-2018, 2018
Short summary
Short summary
The mixing of dust and anthropogenic pollution over East Asia plays a significant yet poorly quantified role in aerosol radiative effects. We have found that radiative absorption of the East Asian aerosol mixtures are significantly enhanced. Our results show that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia.
Ann M. Fridlind, Xiaowen Li, Di Wu, Marcus van Lier-Walqui, Andrew S. Ackerman, Wei-Kuo Tao, Greg M. McFarquhar, Wei Wu, Xiquan Dong, Jingyu Wang, Alexander Ryzhkov, Pengfei Zhang, Michael R. Poellot, Andrea Neumann, and Jason M. Tomlinson
Atmos. Chem. Phys., 17, 5947–5972, https://doi.org/10.5194/acp-17-5947-2017, https://doi.org/10.5194/acp-17-5947-2017, 2017
Short summary
Short summary
Understanding observed storm microphysics via computer simulation requires measurements of aerosol on which most hydrometeors form. We prepare aerosol input data for six storms observed over Oklahoma. We demonstrate their use in simulations of a case with widespread ice outflow well sampled by aircraft. Simulations predict too few ice crystals that are too large. We speculate that microphysics found in tropical storms occurred here, likely associated with poorly understood ice multiplication.
Pengfei Tian, Xianjie Cao, Lei Zhang, Naixiu Sun, Lu Sun, Timothy Logan, Jinsen Shi, Yuan Wang, Yuemeng Ji, Yun Lin, Zhongwei Huang, Tian Zhou, Yingying Shi, and Renyi Zhang
Atmos. Chem. Phys., 17, 2509–2523, https://doi.org/10.5194/acp-17-2509-2017, https://doi.org/10.5194/acp-17-2509-2017, 2017
Short summary
Short summary
We have investigated the vertical distribution and optical properties of aerosols over China using long-term satellite observations from the Cloud–Aerosol Lidar with Orthogonal Polarization, ground-based lidar observations and Aerosol Robotic Network data. Our results provide key information on the long-term aerosol seasonal and spatial variations, optical properties, regional types, long-range transport and atmospheric stability in China for air quality and climate studies.
P. Wu, X. Dong, and B. Xi
Atmos. Meas. Tech., 8, 3555–3562, https://doi.org/10.5194/amt-8-3555-2015, https://doi.org/10.5194/amt-8-3555-2015, 2015
Short summary
Short summary
How does drizzle underneath marine boundary layer (MBL) clouds affect cloud property retrievals? How much liquid water is depleted by virga and rain? To our knowledge, no previous studies have quantitatively estimated the impact of drizzle on cloud property retrievals. Cloud parameterization and radiative transfer modeling researchers will be interested since we give quantitative estimations of drizzle and cloud effective radius, no. concentration, liquid water content, and optical thickness.
T. Logan, B. Xi, and X. Dong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-32269-2013, https://doi.org/10.5194/acpd-13-32269-2013, 2013
Revised manuscript not accepted
T. Logan, B. Xi, X. Dong, Z. Li, and M. Cribb
Atmos. Chem. Phys., 13, 2253–2265, https://doi.org/10.5194/acp-13-2253-2013, https://doi.org/10.5194/acp-13-2253-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Air mass history linked to the development of Arctic mixed-phase clouds
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Technical note: Applicability of physics-based and machine-learning-based algorithms of geostationary satellite in retrieving the diurnal cycle of cloud base height
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Observing convective activities in the complex organizations and their contributions to the precipitation and anvil amount
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Weak liquid water path response in ship tracks
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Observations of the macrophysical properties of cumulus cloud fields over the tropical western Pacific and their connection to meteorological variables
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
How does the lifetime of detrained cirrus impact the high cloud radiative effect in the tropics?
Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Technical note: Bimodal parameterizations of in situ ice cloud particle size distributions
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand ∕ Aotearoa
Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean
Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic
Quantifying the dependence of drop spectrum width on cloud drop number concentration for cloud remote sensing
The evolution of deep convective systems and their associated cirrus outflows
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rapid saturation of cloud water adjustments to shipping emissions
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Investigating the development of clouds within marine cold-air outbreaks
Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations
Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Profile-based estimated inversion strength
Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic
Natural marine cloud brightening in the Southern Ocean
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024, https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
Short summary
Uncertainty with respect to cloud phases over the Southern Ocean and Arctic marine regions leads to large uncertainties in the radiation budget of weather and climate models. This study investigates the phases of low-base and mid-base clouds using satellite-based remote sensing data. A comprehensive analysis of the correlation of cloud phase with various parameters, such as temperature, aerosols, sea ice, vertical and horizontal cloud extent, and cloud radiative effect, is presented.
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1516, https://doi.org/10.5194/egusphere-2024-1516, 2024
Short summary
Short summary
Although machine learning technology is advanced in the field of satellite remote sensing, the physical inversion algorithm based on cloud base height can better capture the daily variation characteristics of cloud base.
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024, https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Short summary
Cloud types are determined using machine learning image classifiers applied to satellite imagery for 1 year in the North Atlantic. This survey of these cloud types shows that the climate impact of a cloud scene is, in part, a function of cloud type. Each type displays a different mix of thick and thin cloud cover, with the fraction of thin cloud cover having the strongest impact on the clouds' radiative effect. Future studies must account for differing properties and processes among cloud types.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024, https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
Short summary
For decades the earth's temperature has been rising. The Arctic regions are warming faster. Cirrus clouds can contribute to this phenomenon. During warm-air intrusions, air masses are transported into the Arctic from the mid-latitudes. The HALO-(AC)3 campaign took place to measure cirrus during intrusion events and under normal conditions. We study the two cloud types based on these measurements and find differences in their geometry, relative humidity distribution and vertical structure.
Zhenquan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1318, https://doi.org/10.5194/egusphere-2024-1318, 2024
Short summary
Short summary
The connected but independent convective systems are divided from the complicated organizations and tracked. The duration, precipitation and anvil amount of the tracked organization segments have a strong log-linear relationship with its brightness temperature structures. Most precipitation are contributed by the cold long-lived but less frequent convective structures, while anvils are produced by both the cold long-lived and the warm short-lived but frequent convective structures.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-1479, https://doi.org/10.5194/egusphere-2024-1479, 2024
Short summary
Short summary
Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research, and that when we account for this bias, the LWP response to aerosols is much weaker than previously reported.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024, https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics. Features such as convective-core growth, for example, are shown. The study found differences in the initiation location of shallow convection and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024, https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
Short summary
Storm clouds cover large areas of the tropics. These clouds both reflect incoming sunlight and trap heat from the atmosphere below, regulating the temperature of the tropics. Over land, storm clouds occur in the late afternoon and evening and so exist both during the daytime and at night. Changes in this timing could upset the balance of the respective cooling and heating effects of these clouds. We find that isolated storms have a larger effect on this balance than their small size suggests.
George Horner and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1090, https://doi.org/10.5194/egusphere-2024-1090, 2024
Short summary
Short summary
This work tracks the lifecycle of thin cirrus clouds that flow out of tropical convective storms. These cirrus clouds are found to have a warming effect on the atmosphere over their whole lifetime. Thin cirrus that originate from land origin convection warm more than those of ocean origin. Moreover, if the lifetime of these cirrus clouds increase, the warming they exert over their whole lifetime also increases. These results help us understand how these clouds might change in a future climate.
Shaoyue Qiu, Xue Zheng, David Painemal, Christopher R. Terai, and Xiaoli Zhou
Atmos. Chem. Phys., 24, 2913–2935, https://doi.org/10.5194/acp-24-2913-2024, https://doi.org/10.5194/acp-24-2913-2024, 2024
Short summary
Short summary
The aerosol indirect effect (AIE) depends on cloud states, which exhibit significant diurnal variations in the northeastern Atlantic. Yet the AIE diurnal cycle remains poorly understood. Using satellite retrievals, we find a pronounced “U-shaped” diurnal variation in the AIE, which is contributed to by the transition of cloud states combined with the lagged cloud responses. This suggests that polar-orbiting satellites with overpass times at noon underestimate daytime mean values of the AIE.
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024, https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Short summary
How many ice crystals of each size are in a cloud is a key parameter for the retrieval of cloud properties. The distribution of ice crystals is obtained from in situ measurements and used to create parameterizations that can be used when analyzing the remote-sensing data. Current parameterizations are based on data sets that do not include reliable measurements of small crystals, but in our study we use a data set that includes very small ice crystals to improve these parameterizations.
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024, https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
Short summary
The south-central interior of Andalusia experiences complex precipitation patterns as a result of the semi-arid Mediterranean climate and the influence of Saharan dust. This study monitored the inter-relations between aerosols, clouds, meteorological variables, and precipitation systems using ground-based remote sensing and in situ instruments.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024, https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Short summary
Viewed from space, a defining feature of Earth's atmosphere is the wide spectrum of cloud sizes. A recent study predicted the distribution of cloud sizes, and this paper compares the prediction to observations. Although there is nuance in viewing perspective, we find robust agreement with theory across different climatological conditions, including land–ocean contrasts, time of year, or latitude, suggesting a minor role for Coriolis forces, aerosol loading, or surface temperature.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023, https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023, https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary
Short summary
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors controlling their transition from high-coverage to broken cloud fields are poorly understood. We use satellite and reanalysis data to study how these clouds develop in time and the different influences on their evolution. The aerosol concentration is correlated with cloud break-up; more aerosol is linked to prolonged coverage and a stronger cooling effect, with implications for a more polluted Arctic.
Michael S. Diamond
Atmos. Chem. Phys., 23, 8259–8269, https://doi.org/10.5194/acp-23-8259-2023, https://doi.org/10.5194/acp-23-8259-2023, 2023
Short summary
Short summary
Fuel sulfur regulations were implemented for ships in 2020 to improve air quality but may also accelerate global warming. We use spatial statistics and satellite retrievals to detect changes in the size of cloud droplets and find evidence for a resulting decrease in cloud brightness within a major shipping corridor after the sulfur limits went into effect. Our results confirm both that the regulations are being followed and that they are having a warming influence via their effect on clouds.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023, https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023, https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary
Short summary
This study develops a novel profile-based algorithm based on the ERA5 to estimate the inversion strength in the planetary boundary layer better than the previous inversion index, which is a key low-cloud-controlling factor. This improved measure is more effective at representing the meteorological influence on low-cloud variations. It can better constrain the meteorological influence on low clouds to better isolate cloud responses to aerosols or to estimate low cloud feedbacks in climate models.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Cited articles
Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H., and Frisch, A. S.:
The Atlantic Stratocumulus Transition Experiment - ASTEX,
B. Am. Meteorol. Soc., 76, 889–904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2, 1995.
ARM MET Handbook: ARM Surface Meteorology Systems (MET) Handbook, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM/TR-0861, 19 pp., available at: https://www.arm.gov/publications/tech_reports/handbooks/met_handbook.pdf (last access: 21 August 2021), 2011.
Atmospheric Radiation
Measurement Data Center: Ground-based Measurements at ENA site, ARM [data set], available at: https://adc.arm.gov/discovery/#/results/site_code::ena (last access: 2 September 2021), 2021a.
Atmospheric Radiation
Measurement Data Center: ECMWF model output at ENA site, ARM [data set], available at: https://adc.arm.gov/discovery/#/results/datastream::enaecmwfvarX1.c1 (last access: 2 September 2021), 2021b.
Braun, R. A., Dadashazar, H., MacDonald, A. B., Crosbie, E., Jonsson, H. H., Woods, R. K., Flagan, R. C., Seinfeld, J. H., and Sorooshian, A.:
Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean,
J. Geophys. Res.-Atmos.,
123, 13790–13806, https://doi.org/10.1029/2018JD029287, 2018.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Chandrakar, K. K., Cantrell, W., Chang, K., Ciochetto, D., Niedermeier, D., Ovchinnikov, M., Shaw, R. A., and Yang, F.:
Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions,
P. Natl. Acad. Sci. USA,
113, 14243–14248, https://doi.org/10.1073/pnas.1612686113, 2016.
Chen, Y. C., Christensen, M. W., Stephens, G. L., and Seinfeld, J. H.:
Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds,
Nat. Geosci., 7, 643–646, https://doi.org/10.1038/ngeo2214, 2014.
Costantino, L. and Bréon, F. M.:
Analysis of aerosol–cloud interaction from multi-sensor satellite observations,
Geophys. Res. Lett., 37, L11801, https://doi.org/10.1029/2009GL041828, 2010.
Diamond, M. S., Dobracki, A., Freitag, S., Small Griswold, J. D., Heikkila, A., Howell, S. G., Kacarab, M. E., Podolske, J. R., Saide, P. E., and Wood, R.: Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean, Atmos. Chem. Phys., 18, 14623–14636, https://doi.org/10.5194/acp-18-14623-2018, 2018.
Dong, X., Ackerman, T. P., and Clothiaux, E. E.: Parameterizations of the microphysical and shortwave radiative properties of boundary layer stratus from ground-based measurements, J. Geophys. Res.-Atmos., 103, 31681–31693, https://doi.org/10.1029/1998JD200047, 1998.
Dong, X., Xi, B., Kennedy, A., Minnis, P., and Wood, R.:
A 19-month record of marine aerosol–cloud-radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties,
J. Climate,
27, 3665–3682, https://doi.org/10.1175/JCLI-D-13-00553.1, 2014.
Dong, X., Schwantes, A. C., Xi, B., and Wu, P.:
Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the azores,
J. Geophys. Res.-Atmos.,
120, 6179–6191, https://doi.org/10.1002/2014JD022939, 2015.
Duong, H. T., Sorooshian, A., and Feingold, G.: Investigating potential biases in observed and modeled metrics of aerosol-cloud-precipitation interactions, Atmos. Chem. Phys., 11, 4027–4037, https://doi.org/10.5194/acp-11-4027-2011, 2011.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.:
Review of Aerosol–Cloud Interactions: Mechanisms, Significance and Challenges,
J. Atmos. Sci.,
73, 4221–4252, 2016.
Feingold, G. and McComiskey, A.:
ARM's Aerosol–Cloud–Precipitation Research (Aerosol Indirect Effects),
Meteor. Mon.,
57, 22.21–22.15, https://doi.org/10.1175/amsmonographs-d-15-0022.1, 2016.
Feingold, G., Kreidenweis, S. M., Stevens, B., and Cotton, W. R.:
Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence,
J. Geophys. Res.-Atmos.,
101, 21391–21402, https://doi.org/10.1029/96jd01552, 1996.
Feingold, G., Frisch, A. S., Stevens, B., and Cotton, W. R.:
On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar,
J. Geophys. Res.-Atmos.,
104, 22195–22203, https://doi.org/10.1029/1999JD900482, 1999.
Feingold, G., Eberhard, W. L., Veron, D. E., and Previdi, M.: First measurements of the Twomey indirect effect using ground-based remote sensors, Geophys. Res. Lett., 30, 1287, https://doi.org/10.1029/2002GL016633, 2003.
Feingold, G., Furrer, R., Pilewskie, P., Remer, L. A., Min, Q., and Jonsson, H.:
Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period,
J. Geophys. Res.-Atmos.,
111, D05S14, https://doi.org/10.1029/2004JD005648, 2006.
Freud, E. and Rosenfeld, D.:
Linear relation between convective cloud drop number concentration and depth for rain initiation,
J. Geophys. Res.-Atmos.,
117, D02207, https://doi.org/10.1029/2011JD016457, 2012.
Garrett, T. J. and Zhao, C.:
Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes,
Nature,
440, 787–789, https://doi.org/10.1038/nature04636, 2006.
Garrett, T. J., Zhao, C., Dong, X., Mace, G. G., and Hobbs, P. V.:
Effects of varying aerosol regimes on low-level Arctic stratus,
Geophys. Res. Lett.,
31, L17105, https://doi.org/10.1029/2004GL019928, 2004.
Gerber, H.:
Microphysics of marine stratocumulus clouds with two drizzle modes,
J. Atmos. Sci.,
53, 1649–1662, https://doi.org/10.1175/1520-0469(1996)053<1649:MOMSCW>2.0.CO;2, 1996.
Ghate, V. P. and Cadeddu, M. P.:
Drizzle and Turbulence Below Closed Cellular Marine Stratocumulus Clouds,
J. Geophys. Res.-Atmos.,
124, 5724–5737, https://doi.org/10.1029/2018JD030141, 2019.
Ghate, V. P., Albrecht, B. A., and Kollias, P.:
Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds,
J. Geophys. Res.-Atmos.,
115, D13204, https://doi.org/10.1029/2009JD013091, 2010.
Ghate, V. P., Cadeddu, M. P., Zheng, X., and O'Connor, E.:
Turbulence in The Marine Boundary Layer and Air Motions Below Stratocumulus Clouds at the ARM Eastern North Atlantic Site,
J. Appl. Meteorol. Clim.,
60, 1495–1510, https://doi.org/10.1175/jamc-d-21-0087.1, 2021.
Gryspeerdt, E., Quaas, J., and Bellouin, N.:
Constraining the aerosol influence on cloud fraction,
J. Geophys. Res.,
121, 3566–3583, https://doi.org/10.1002/2015JD023744, 2016.
Hill, A. A., Feingold, G., and Jiang, H.:
The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus,
J. Atmos. Sci.,
66, 1450–1464, https://doi.org/10.1175/2008JAS2909.1, 2009.
Hogan, R. J., Grant, A. L. M., Illingworth, A. J., Pearson, G. N., and O'Connor, E. J.:
Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar,
Q. J. R. Meteor. Soc.,
135, 635–643, https://doi.org/10.1002/qj.413, 2009.
Hudson, J. G. and Noble, S.:
CCN and Vertical Velocity Influences on Droplet Concentrations and Supersaturations in Clean and Polluted Stratus Clouds,
J. Atmos. Sci.,
71, 312–331, https://doi.org/10.1175/jas-d-13-086.1, 2013.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jones, C. R., Bretherton, C. S., and Leon, D.: Coupled vs. decoupled boundary layers in VOCALS-REx, Atmos. Chem. Phys., 11, 7143–7153, https://doi.org/10.5194/acp-11-7143-2011, 2011.
Klein, S. A. and Hartmann, D. L.:
The seasonal cycle of low stratiform clouds,
J. Climate,
6, 1587–1606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993.
Kim, B. G., Miller, M. A., Schwartz, S. E., Liu, Y., and Min, Q.:
The role of adiabaticity in the aerosol first indirect effect,
J. Geophys. Res.-Atmos.,
113, D05210, https://doi.org/10.1029/2007JD008961, 2008.
Liu, J., Li, Z., and Cribb, M.:
Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-month AMF-Azores campaign,
J. Atmos. Sci.,
73, 4253–4268, https://doi.org/10.1175/JAS-D-15-0364.1, 2016.
Lappen, C. L. and Randall, D. A.:
Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model,
J. Atmos. Sci.,
58, 2021–2036, https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2, 2001.
Logan, T., Xi, B., and Dong, X.:
Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores,
J. Geophys. Res.,
119, 4859–4872, https://doi.org/10.1002/2013JD021288, 2014.
Logan, T., Dong, X., and Xi, B.:
Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment,
Adv. Atmos. Sci.,
35, 224–233, https://doi.org/10.1007/s00376-017-7033-2, 2018.
Lu, M. L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.:
The marine stratus/stratocumulus experiment (MASE): Aerosol–cloud relationships in marine stratocumulus,
J. Geophys. Res.,
112, D10209, https://doi.org/10.1029/2006JD007985, 2007.
Mann, J. A., Christine Chiu, J., Hogan, R. J., O'Connor, E. J., L'Ecuyer, T. S., Stein, T. H., and Jefferson, A.:
Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments,
J. Geophys. Res.-Atmos.,
119, 4136–4148, https://doi.org/10.1002/2013JD021339, 2014.
Martin, G. M., Johnson, D. W., and Spice, A.:
The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds,
J. Atmos. Sci.,
51, 1823–1842, https://doi.org/10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2, 1994.
Martins, J. V., Marshak, A., Remer, L. A., Rosenfeld, D., Kaufman, Y. J., Fernandez-Borda, R., Koren, I., Correia, A. L., Zubko, V., and Artaxo, P.: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., 11, 9485–9501, https://doi.org/10.5194/acp-11-9485-2011, 2011.
McComiskey, A. and Feingold, G.: The scale problem in quantifying aerosol indirect effects, Atmos. Chem. Phys., 12, 1031–1049, https://doi.org/10.5194/acp-12-1031-2012, 2012.
McComiskey, A, Feingold, G., Frisch, A. S., Turner, D. D., Miller, M., Chiu, J. C., Min, Q., and Ogren, J.:
An assessment of aerosol–cloud interactions in marine stratus clouds based on surface remote sensing,
J. Geophys. Res.,
114, D09203, https://doi.org/10.1029/2008JD011006, 2009.
Medeiros, B. and Stevens, B.:
Revealing differences in GCM representations of low clouds,
Clim. Dynam.,
36, 385–399, https://doi.org/10.1007/s00382-009-0694-5, 2011.
Morris, V. R.: Ceilometer Instrument Handbook, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM-TR-020, 26 pp., available at: https://www.arm.gov/publications/tech_reports/handbooks/ceil_handbook.pdf (last access: 23 April 2021), 2016.
Newsom, R. K., Sivaraman, C., Shippert, T. R., and Riihimaki, L. D.: Doppler Lidar Vertical Velocity Statistics Value-Added Product, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM/TR-149, 22 pp., available at: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-149.pdf (last access: 2 September 2021), 2019.
Nicholls, S.:
The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model,
Q. J. Roy. Meteor. Soc.,
110, 783–820, https://doi.org/10.1002/qj.49711046603, 1984.
Pandithurai, G., Takamura, T., Yamaguchi, J., Miyagi, K., Takano, T., Ishizaka, Y., Dipu, S., and Shimizu, A.:
Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region,
Geophys. Res. Lett.,
36, L13805, https://doi.org/10.1029/2009GL038451, 2009.
Pawlowska, H., Grabowski, W. W., and Brenguier, J. L.:
Observations of the width of cloud droplet spectra in stratocumulus,
Geophys. Res. Lett.,
33, L19810, https://doi.org/10.1029/2006GL026841, 2006.
Pearson, G., Davies, F., and Collier, C.:
An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer,
J. Atmos. Ocean. Tech.,
26, 240–250, https://doi.org/10.1175/2008JTECHA1128.1, 2009.
Pinsky, M. B. and Khain, A. P.:
Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds,
Q. J. Roy. Meteor. Soc.,
128, 501–533, https://doi.org/10.1256/003590002321042072, 2002.
Qiu, Y., Zhao, C., Guo, J., and Li, J.:
8-Year ground-based observational analysis about the seasonal variation of the aerosol–cloud droplet effective radius relationship at SGP site,
Atmos. Environ.,
164, 139–146, https://doi.org/10.1016/j.atmosenv.2017.06.002, 2017.
Romps, D. M.:
Exact expression for the lifting condensation level,
J. Atmos. Sci.,
74, 3891–3900, https://doi.org/10.1175/JAS-D-17-0102.1, 2017.
Rosenfeld, D.:
Aerosol–Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets,
in: Solar Variability and Planetary Climates,
edited by: Calisesi, Y., Bonnet, R. M., Gray, L., Langen, J., and Lockwood, M., Springer New York, New York, NY, 149–157, https://doi.org/10.1007/978-0-387-48341-2_12, 2007.
Rosenfeld, D. and Woodley, W. L.: Closing the 50-year circle: From cloud seeding to space and back to climate change through precipitation physics, in: Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), edited by: Tao, W.-K. and Adler, R., Meteorological Monographs, American Meteorological Society, Boston, MA, 59–80, 2003.
Rosenfeld, D., Wang, H., and Rasch, P. J.:
The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus,
Geophys. Res. Lett.,
39, L13801, https://doi.org/10.1029/2012GL052028, 2012.
Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.: Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds, Science, 363, eaav0566, https://doi.org/10.1126/science.aav0566, 2019.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.:
Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system,
P. Natl. Acad. Sci. USA,
113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Siebert, H., Szodry, K.-E., Egerer, U., Wehner, B., Henning, S., Chevalier, K., Lückerath, J., Welz, O., Weinhold, K., Lauermann, F., Gottschalk, M., Ehrlich, A., Wendisch, M., Fialho, P., Roberts, G., Allwayin, N., Schum, S., Shaw, R. A., Mazzoleni, C., Mazzoleni, L., Nowak, J. L., Malinowski, S. P., Karpinska, K., Kumala, W., Czyzewska, D., Luke, E. P., Kollias, P., Wood, R., and Mellado, J. P.:
Observations of Aerosol, Cloud, Turbulence, and Radiation Properties at the Top of the Marine Boundary Layer over the Eastern North Atlantic Ocean: The ACORES Campaign,
B. Am. Meteorol. Soc.,
102, E123–E147, https://doi.org/10.1175/bams-d-19-0191.1, 2021.
Smalley, K. M. and Rapp, A. D.: The Role of Cloud Size and Environmental Moisture in Shallow Cumulus Precipitation, J. Appl. Meteorol. Clim., 59, 535–550, https://doi.org/10.1175/JAMC-D-19-0145.1, 2020.
Terai, C. R., Zhang, Y., Klein, S. A., Zelinka, M. D., Chiu, J. C., and Min, Q.:
Mechanisms Behind the Extratropical Stratiform Low-Cloud Optical Depth Response to Temperature in ARM Site Observations,
J. Geophys. Res.-Atmos.,
124, 2127–2147, https://doi.org/10.1029/2018JD029359, 2019.
Toto, T. and Jensen, M.: Interpolated Sounding and Gridded Sounding Value-Added Products, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM-TR-183, 13 pp., available at: https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-183.pdf (last access: 2 September 2021), 2016.
Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel, M., Russell, L., and Burnet, F.:
Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact,
J. Geophys. Res.-Atmos.,
110, D08203, https://doi.org/10.1029/2004JD005116, 2005.
Twomey, S.:
The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration,
Geofis. Pura e Appl.,
43, 243–249, https://doi.org/10.1007/BF01993560, 1959.
Twomey, S.:
The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci.,
34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Wang, J., Wood, R., Jensen, M. P., Chiu, J. C., Liu, Y., Lamer, K., Desai, N., Giangrande, S. E., Knopf, D. A., Kollias, P., Laskin, A., Liu, X., Lu, C., Mechem, D., Mei, F., Starzec, M., Tomlinson, J., Wang, Y., Yum, S. S., Zheng, G., Aiken, A. C., Azevedo, E. B., Blanchard, Y., China, S., Dong, X., Gallo, F., Gao, S., Ghate, V. P., Glienke, S., Goldberger, L., Hardin, J. C., Kuang, C., Luke, E. P., Matthews, A. A., Miller, M. A., Moffet, R., Pekour, M., Schmid, B., Sedlacek, A. J., Shaw, R. A., Shilling, J. E., Sullivan, A., Suski, K., Veghte, D. P., Weber, R., Wyant, M., Yeom, J., Zawadowicz, M., and Zhang, Z.: Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA), B. Am. Meteorol. Soc., Early Online Release, 1–51, https://doi.org/10.1175/BAMS-D-19-0220.1, 2021.
Wang, Y., Jiang, J. H., Su, H., Choi, S., Huang, L., Guo, J., and Yung, Y. L.:
Elucidating the Role of Anthropogenic Aerosols In Arctic Sea Ice Variations,
J. Climate,
31, 99–114, 2018.
Wang, Y., Zheng, X., Dong, X., Xi, B., Wu, P., Logan, T., and Yung, Y. L.: Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic, Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, 2020.
West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z.: The importance of vertical velocity variability for estimates of the indirect aerosol effects, Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, 2014.
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook, DOE ARM Climate Research Facility, U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Radiation Measurement Facility, DOE/SC-ARM/TR-106, 25 pp., available at: https://www.arm.gov/publications/tech_reports/handbooks/kazr_handbook.pdf (last access: 23 April 2021), 2012.
Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure, J. Atmos. Sci., 62, 3011–3033, https://doi.org/10.1175/JAS3529.1, 2005.
Wood, R.:
Rate of loss of cloud droplets by coalescence in warm clouds,
J. Geophys. Res.-Atmos.,
111, D21205, https://doi.org/10.1029/2006JD007553, 2006.
Wood, R.:
Stratocumulus clouds,
Mon. Weather Rev.,
140, 2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Wood, R. and Bretherton, C. S.:
On the relationship between stratiform low cloud cover and lower-tropospheric stability,
J. Climate,
19, 6425–6432, https://doi.org/10.1175/JCLI3988.1, 2006.
Wood, R., Wyant, M., Bretherton, C. S., Rémillard, J., Kollias, P., Fletcher, J., Stemmler, J., De Szoeke, S., Yuter, S., Miller, M., Mechem, D., Tselioudis, G., Chiu, J. C., Mann, J. A. L., O'Connor, E. J., Hogan, R. J., Dong, X., Miller, M., Ghate, V., Jefferson, A., Min, Q., Minnis, P., Palikonda, R., Albrecht, B., Luke, E., Hannay, C., and Lin, Y.:
Clouds, aerosols, and precipitation in the marine boundary layer: An arm mobile facility deployment,
B. Am. Meteorol. Soc.,
96, 419–440, https://doi.org/10.1175/BAMS-D-13-00180.1, 2015.
Wu, P., Dong, X., and Xi, B.: Marine boundary layer drizzle properties and their impact on cloud property retrieval, Atmos. Meas. Tech., 8, 3555–3562, https://doi.org/10.5194/amt-8-3555-2015, 2015.
Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M., and Minnis, P.:
Effects of environment forcing on marine boundary layer cloud-drizzle processes,
J. Geophys. Res.,
122, 4463–4478, https://doi.org/10.1002/2016JD026326, 2017.
Wu, P., Dong, X., Xi, B., Tian, J., and Ward, D. M.:
Profiles of MBL Cloud and Drizzle Microphysical Properties Retrieved From Ground-Based Observations and Validated by Aircraft In Situ Measurements Over the Azores,
J. Geophys. Res.-Atmos.,
125, e2019JD032205, https://doi.org/10.1029/2019JD032205, 2020a.
Wu, P., Dong, X., and Xi, B.:
A climatology of marine boundary layer cloud and drizzle properties derived from ground-based observations over the azores,
J. Climate,
33, 10133–10148, https://doi.org/10.1175/JCLI-D-20-0272.1, 2020b.
Xi, B., Dong, X., Minnis, P., and Khaiyer, M. M.:
A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site,
J. Geophys. Res.-Atmos.,
115, D12124, https://doi.org/10.1029/2009JD012800, 2010.
Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., Zhao, L., Lv, F., and Yan, F.:
Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations,
Atmos. Res.,
221, 27–33, https://doi.org/10.1016/j.atmosres.2019.01.027, 2019.
Yue, Q., Kahn, B. H., Fetzer, E. J., and Teixeira, J.:
Relationship between marine boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP,
J. Geophys. Res.-Atmos.,
116, D18212, https://doi.org/10.1029/2011JD016136, 2011.
Yum, S. S., Wang, J., Liu, Y., Senum, G., Springston, S., McGraw, R., and Yeom, J. M.:
Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project,
J. Geophys. Res.,
120, 5047–5069, https://doi.org/10.1002/2014JD022802, 2015.
Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., and Fu, C.: On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16, 2765–2783, https://doi.org/10.5194/acp-16-2765-2016, 2016.
Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., and Wang, Y.:
Negative Aerosol–Cloud re Relationship From Aircraft Observations Over Hebei, China,
Earth Sp. Sci.,
5, 19–29, https://doi.org/10.1002/2017EA000346, 2018.
Zhao, C., Zhao, L., and Dong, X.:
A case study of stratus cloud properties using in situ aircraft observations over Huanghua, China,
Atmosphere-Basel,
10, 19, https://doi.org/10.3390/atmos10010019, 2019.
Zawadowicz, M. A., Suski, K., Liu, J., Pekour, M., Fast, J., Mei, F., Sedlacek, A. J., Springston, S., Wang, Y., Zaveri, R. A., Wood, R., Wang, J., and Shilling, J. E.: Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic, Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, 2021.
Zheng, G., Wang, Y., Aiken, A. C., Gallo, F., Jensen, M. P., Kollias, P., Kuang, C., Luke, E., Springston, S., Uin, J., Wood, R., and Wang, J.: Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes, Atmos. Chem. Phys., 18, 17615–17635, https://doi.org/10.5194/acp-18-17615-2018, 2018.
Zheng, G., Kuang, C., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer, Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, 2020.
Zheng, X., Xi, B., Dong, X., Logan, T., Wang, Y., and Wu, P.: Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements, Atmos. Chem. Phys., 20, 3483–3501, https://doi.org/10.5194/acp-20-3483-2020, 2020.
Zheng, Y., Rosenfeld, D., and Li, Z.:
Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling,
Geophys. Res. Lett.,
43, 11407–11413, https://doi.org/10.1002/2016GL071185, 2016.
Zheng, Y., Rosenfeld, D., and Li, Z.:
A More General Paradigm for Understanding the Decoupling of Stratocumulus-Topped Boundary Layers: The Importance of Horizontal Temperature Advection,
Geophys. Res. Lett.,
47, e2020GL087697, https://doi.org/10.1029/2020GL087697, 2020.
Zhu, P. and Zuidema, P.:
On the use of PDF schemes to parameterize sub-grid clouds,
Geophys. Res. Lett.,
36, L05807, https://doi.org/10.1029/2008GL036817, 2009.
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
This study uses ground-based observations to investigate the physical processes in the...
Altmetrics
Final-revised paper
Preprint