Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2507-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2507-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interaction between aerosol and thermodynamic stability within the planetary boundary layer during wintertime over the North China Plain: aircraft observation and WRF-Chem simulation
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Li Dong
School of Electronic and Optical Engineering, Nanjing University of
Science and Technology, Nanjing 210094, China
Yichen Chen
CORRESPONDING AUTHOR
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Yuefeng Zhao
CORRESPONDING AUTHOR
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Delong Zhao
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Mengyu Huang
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Deping Ding
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Jiayuan Liao
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Tian Ma
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Maohai Hu
CORRESPONDING AUTHOR
School of Electronic and Optical Engineering, Nanjing University of
Science and Technology, Nanjing 210094, China
Yong Han
CORRESPONDING AUTHOR
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Key Laboratory of Tropical Atmosphere-Ocean System, Sun Yat-sen
University, Ministry of Education, Zhuhai 519082, China
Related authors
Hao Luo, Johannes Quaas, and Yong Han
EGUsphere, https://doi.org/10.5194/egusphere-2023-453, https://doi.org/10.5194/egusphere-2023-453, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent, and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVS are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Hao Luo, Johannes Quaas, and Yong Han
EGUsphere, https://doi.org/10.5194/egusphere-2023-453, https://doi.org/10.5194/egusphere-2023-453, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent, and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVS are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, and Deping Ding
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-483, https://doi.org/10.5194/acp-2022-483, 2022
Revised manuscript under review for ACP
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary and secondary organic aerosol in a sub-urban environment, we firstly observed the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Donglin Chen, Hong Liao, Yang Yang, Lei Chen, Delong Zhao, and Deping Ding
Atmos. Chem. Phys., 22, 1825–1844, https://doi.org/10.5194/acp-22-1825-2022, https://doi.org/10.5194/acp-22-1825-2022, 2022
Short summary
Short summary
The black carbon (BC) vertical profile plays a critical role in BC–meteorology interaction, which also influences PM2.5 concentrations. More BC mass was assigned into high altitudes (above 1000 m) in the model, which resulted in a stronger cooling effect near the surface, a larger temperature inversion below 421 m, more reductions in PBLH, and a larger increase in near-surface PM2.5 in the daytime caused by the direct radiative effect of BC.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Delong Zhao, Mengyu Huang, Dantong Liu, Deping Ding, Ping Tian, Quan Liu, Wei Zhou, Jiujiang Sheng, Fei Wang, Kai Bi, Yan Yang, Xia Li, Yaqiong Hu, Xin Guo, Yang Gao, Hui He, Yunbo Chen, Shaofei Kong, and Jiayi Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1118, https://doi.org/10.5194/acp-2017-1118, 2018
Preprint withdrawn
Short summary
Short summary
This study for the first time reports the 3D distributions of black carbon and detailed physical properties in the boundary layer over the North China Plain, using intensive aircraft measurements in both hot and cold seasons. The BC mass in the planetary boundary layer (PBL) was found to be largely influenced by meteorology which modulated the local emission and regional transport.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement Report: Wintertime new particle formation in the rural area of the North China Plain – influencing factors and possible formation mechanism
Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean
Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden
Measurement report: High Arctic aerosol hygroscopicity at sub- and supersaturated conditions during spring and summer
Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations
Aerosol deposition to the boreal forest in the vicinity of the Alberta Oil Sands
The density of ambient black carbon retrieved by a new method: implications for cloud condensation nuclei prediction
Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei
Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols
Black carbon content of traffic emissions impacts significantly on black carbon mass size distributions and mixing states
Elucidating ozone and PM2.5 pollution in the Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter haze
Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin
Intensive aerosol properties of boreal and regional biomass burning aerosol at Mt. Bachelor Observatory: larger and black carbon (BC)-dominant particles transported from Siberian wildfires
Characterization of ultrafine particles and the occurrence of new particle formation events in an urban and coastal site of the Mediterranean area
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
The variation of particle number size distribution during the rainfall: wet scavenging and air masses changing
Vertical distribution of black carbon and its mixing state in urban boundary layer in summer
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
A new method for the quantification of ambient particulate matter emissions
Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece
Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
New particle formation and growth during summer in an urban environment: a dual chamber study
An evaluation of biomass burning aerosol mass, extinction, and size distribution in GEOS using observations from CAMP2Ex
Seasonal significance of new particle formation impacts on cloud condensation nuclei at a mountaintop location
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Insights into the size-resolved dust emission from field measurements in the Moroccan Sahara
Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest
Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Constraining the particle-scale diversity of black carbon light absorption using a unified framework
Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm
Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic
Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes
Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China
Measurement report: Size distributions of urban aerosols down to 1 nm from long-term measurements
Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China
On the relation between apparent ion and total particle growth rates in the boreal forest and related chamber experiments
Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP2Ex
Comparison of particle number size distribution trends in ground measurements and climate models
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
Measurement Report: Year-to-year Variability and Influence of Winter Olympics and other Special Events on Air Quality in Urban Beijing during Wintertime
Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
Parameterizations of size distribution and refractive index of biomass burning organic aerosol with black carbon content
Newly identified climatically and environmentally significant high-latitude dust sources
Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site
Measurement report: A multi-year study on the impacts of Chinese New Year celebrations on air quality in Beijing, China
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Xinyao Hu, Junying Sun, Can Xia, Xiaojing Shen, Yangmei Zhang, Quan Liu, Zhaodong Liu, Sinan Zhang, Jialing Wang, Aoyuan Yu, Jiayuan Lu, Shuo Liu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 5517–5531, https://doi.org/10.5194/acp-23-5517-2023, https://doi.org/10.5194/acp-23-5517-2023, 2023
Short summary
Short summary
The simultaneous measurements under dry conditions of aerosol optical properties were conducted at three wavelengths for PM1 and PM10 in urban Beijing from 2018 to 2021. Considerable reductions in aerosol absorption coefficient and increased single scattering albedo demonstrated that absorbing aerosols were more effectively controlled than scattering aerosols due to pollution control measures. The aerosol radiative effect and the transport's impact on aerosol optical properties were analysed.
Martin de Graaf, Karolina Sarna, Jessica Brown, Elma V. Tenner, Manon Schenkels, and David P. Donovan
Atmos. Chem. Phys., 23, 5373–5391, https://doi.org/10.5194/acp-23-5373-2023, https://doi.org/10.5194/acp-23-5373-2023, 2023
Short summary
Short summary
Clouds over the oceans reflect sunlight and cool the earth. Simultaneous measurements were performed of cloud droplet sizes and smoke particles in and near the cloud base over Ascension Island, a remote island in the Atlantic Ocean, to determine the sensitivity of cloud droplets to smoke from the African continent. The smoke was found to reduce cloud droplet sizes, which makes the cloud droplets more susceptible to evaporation, reducing cloud lifetime.
Madeleine Petersson Sjögren, Malin Alsved, Tina Šantl-Temkiv, Thomas Bjerring Kristensen, and Jakob Löndahl
Atmos. Chem. Phys., 23, 4977–4992, https://doi.org/10.5194/acp-23-4977-2023, https://doi.org/10.5194/acp-23-4977-2023, 2023
Short summary
Short summary
Biological aerosol particles (bioaerosols) affect human health by spreading diseases and may be important agents for atmospheric processes, but their abundance and size distributions are largely unknown. We measured bioaerosols for 18 months in the south of Sweden to investigate bioaerosol temporal variations and their couplings to meteorology. Our results showed that the bioaerosols emissions were coupled to meteorological parameters and depended strongly on the season.
Andreas Massling, Robert Lange, Jakob Boyd Pernov, Ulrich Gosewinkel, Lise-Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 23, 4931–4953, https://doi.org/10.5194/acp-23-4931-2023, https://doi.org/10.5194/acp-23-4931-2023, 2023
Short summary
Short summary
The effect of anthropogenic activities on cloud formation introduces the highest uncertainties with respect to climate change. Data on Arctic aerosols and their corresponding cloud-forming properties are very scarce and most important as the Arctic is warming about 2 times as fast as the rest of the globe. Our studies investigate aerosols in the remote Arctic and suggest relatively high cloud-forming potential, although differences are observed between the Arctic spring and summer.
Kevin C. H. Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, and Frank Stratmann
Atmos. Chem. Phys., 23, 4741–4761, https://doi.org/10.5194/acp-23-4741-2023, https://doi.org/10.5194/acp-23-4741-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud formation and thus in our climate. But little is known about the abundance and properties of INPs, especially in the Arctic, where the temperature increases almost 4 times as fast as that of the rest of the globe. We observe higher INP concentrations and more biological INPs in summer than in winter, likely from local sources. We also provide three equations for estimating INP concentrations in models at different times of the year.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Jingye Ren, Lu Chen, Jieyao Liu, and Fang Zhang
Atmos. Chem. Phys., 23, 4327–4342, https://doi.org/10.5194/acp-23-4327-2023, https://doi.org/10.5194/acp-23-4327-2023, 2023
Short summary
Short summary
The density of black carbon (BC) is linked to its morphology and mixing state and could cause uncertainty in evaluating cloud condensation nuclei (CCN) activity. A method for retrieving the mixing state and density of BC in the urban atmosphere is developed. The mean retrieval density of internally mixed BC was lower, assuming void-free spherical structures. Our study suggests the importance of accounting for variable BC density in models when assessing its climate effect in urban atmosphere.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Fei Li, Biao Luo, Miaomiao Zhai, Li Liu, Gang Zhao, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, Ye Kuang, and Jun Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-351, https://doi.org/10.5194/egusphere-2023-351, 2023
Short summary
Short summary
A field campaign was conducted to study black carbon (BC) mass size distributions and mixing states connected to traffic emissions using a system that combines a differential mobility analyzer and single-particle soot photometer. Results showed that the black carbon content of traffic emissions has a considerable influence on both BC mass size distributions and mixing states, which has crucial implications for accurately representing BC from various sources in regional and climate models.
Chunshui Lin, Ru-Jin Huang, Haobin Zhong, Jing Duan, Zixi Wang, Wei Huang, and Wei Xu
Atmos. Chem. Phys., 23, 3595–3607, https://doi.org/10.5194/acp-23-3595-2023, https://doi.org/10.5194/acp-23-3595-2023, 2023
Short summary
Short summary
The complex interaction between O3 and PM2.5, coupled with the topology of the Fenwei Plain and the evolution of the boundary layer height, highlights the challenges in further reducing particulate pollution in winter despite years of efforts to reduce emissions. Through scenario analysis in a chemical box model constrained by observation, we show the co-benefits of reducing NOx and VOCs simultaneously in reducing ozone and SOA.
Liang Yuan and Chunsheng Zhao
Atmos. Chem. Phys., 23, 3195–3205, https://doi.org/10.5194/acp-23-3195-2023, https://doi.org/10.5194/acp-23-3195-2023, 2023
Short summary
Short summary
Chemical compositions vary between and within particles due to the complex sources and aging processes, causing particle-to-particle heterogeneity in aerosol hygroscopicity, which is of great importance to aerosol climatic and environmental effects. This study proposes an algorithm to quantify the heterogeneity from in situ measurements, sheds light on the reanalysis of the existing H-TDMA datasets, and could have a large impact on how we use and think about these datasets.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Haichao Wang, Yongbo Tan, Zheng Shi, Ning Yang, and Tianxue Zheng
Atmos. Chem. Phys., 23, 2843–2857, https://doi.org/10.5194/acp-23-2843-2023, https://doi.org/10.5194/acp-23-2843-2023, 2023
Short summary
Short summary
The effects of aerosols on lightning are complex and still far from understood. We analysed the impacts of aerosols on lightning activity in the Sichuan Basin. Results show that lightning flashes first increase with aerosol loading during all periods and then behave differently (decrease in the afternoon and flatten at night). This suggests that the changes in solar radiation can modulate the aerosol effects on the occurrence and development of convection and lightning activity.
Nathaniel W. May, Noah Bernays, Ryan Farley, Qi Zhang, and Daniel A. Jaffe
Atmos. Chem. Phys., 23, 2747–2764, https://doi.org/10.5194/acp-23-2747-2023, https://doi.org/10.5194/acp-23-2747-2023, 2023
Short summary
Short summary
In summer 2019 at Mt. Bachelor Observatory, we observed smoke from wildfires with transport times ranging from less than a day up to 2 weeks. Aerosol absorption of multi-day transported smoke was dominated by black carbon, while smoke with shorter transport times had greater brown carbon absorption. Notably, Siberian smoke exhibited aerosol scattering and physical properties indicative of contributions from larger particles than typically observed in smoke.
Adelaide Dinoi, Daniel Gulli, Kay Weinhold, Ivano Ammoscato, Claudia R. Calidonna, Alfred Wiedensohler, and Daniele Contini
Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, https://doi.org/10.5194/acp-23-2167-2023, 2023
Short summary
Short summary
In this study, particle number size distribution analysis was performed with the purpose of characterizing new particle formation (NPF) events occurring in two areas of southern Italy over 5 years of measurements. The identification of NPF events produced different results in terms of frequency and seasonality. Some of the main variables involved in the process, the local atmospheric conditions in which the events occurred, and the role of the air masses were discussed and compared.
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023, https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Short summary
The hygroscopic growth of single nanoparticles is important for hygroscopic characteristic analysis of atmospheric particles and for scientific studies involving atmospheric particles. Based on the hygroscopicity difference of subgroups of atmospheric nanoparticles, the classification and proportion analysis of atmospheric nanoparticles has been completed, which has potential significance in predicting the contribution of the atmospheric particulate hygroscopicity and particle growth mechanism.
Guangdong Niu, Ximeng Qi, Liangduo Chen, Lian Xue, Shiyi Lai, Xin Huang, Jiaping Wang, Xuguang Chi, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2023-33, https://doi.org/10.5194/egusphere-2023-33, 2023
Short summary
Short summary
The reported below-cloud wet scavenging coefficients (BWSCs) are much higher than the theory, but the reason of it remains unclear. Based on the long-term observation, we find the air masses changing during the rainfall events causes the overestimation of BWSCs. Thus, the discrepancy in BWSCs between observation and theory is not as large as currently believed. To obtain reasonable BWSCs and parameterizations from field observations, the effect of air masses changing needs to be considered.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-736, https://doi.org/10.5194/acp-2022-736, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
We provide the average vertical profiles of BC concentration, size distribution and coating thickness at different time of the day in urban area based on 112 vertical profiles. In addition, it’s found BC in the residual layer generally owned a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Stergios Vratolis, Evangelia Diapouli, Manousos I. Manousakas, Susana Marta Almeida, Ivan Beslic, Zsofia Kertesz, Lucyna Samek, and Konstantinos Eleftheriadis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-843, https://doi.org/10.5194/acp-2022-843, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Using a dataset from 16 European and Asian cities we develop a new method so as to quantify the emission rate from each geographic grid cell for aerosol contribution factors (sources) deducted by Positive Matrix Factorization (PMF). The application of the new method allowed us to identify and quantify the source areas and emission rates for Secondary Sulfate and Dust aerosol in Europe and Central Asia.
Christina Spitieri, Maria Gini, Martin Gysel-Beer, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 23, 235–249, https://doi.org/10.5194/acp-23-235-2023, https://doi.org/10.5194/acp-23-235-2023, 2023
Short summary
Short summary
The paper provides insights into the hygroscopic properties and state of mixing of atmospheric aerosol through 1 year of measurements of key microphysical parameters in the suburbs of the most densely populated city of Greece, Athens, in the eastern Mediterranean, which is considered an important climate change hotspot. The results can be used for the prediction of cloud condensation nuclei and quantification of the influence of ambient relative humidity on light scattering by aerosol particles.
Suzanne Crumeyrolle, Jenni S. S. Kontkanen, Clémence Rose, Alejandra Velazquez Garcia, Eric Bourrianne, Maxime Catalfamo, Véronique Riffault, Emmanuel Tison, Joel Ferreira de Brito, Nicolas Visez, Nicolas Ferlay, Frédérique Auriol, and Isabelle Chiapello
Atmos. Chem. Phys., 23, 183–201, https://doi.org/10.5194/acp-23-183-2023, https://doi.org/10.5194/acp-23-183-2023, 2023
Short summary
Short summary
Ultrafine particles (UFPs) are particles with an aerodynamic diameter of 100 nm or less and negligible mass concentration but are the dominant contributor to the total particle number concentration. The present study aims to better understand the environmental factors favoring or inhibiting atmospheric new particle formation (NPF) over Lille, a large city in the north of France, and to analyze the impact of such an event on urban air quality using a long-term dataset (3 years).
Spiro D. Jorga, Kalliopi Florou, David Patoulias, and Spyros N. Pandis
Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023, https://doi.org/10.5194/acp-23-85-2023, 2023
Short summary
Short summary
We take advantage of this unexpected low, new particle formation frequency in Greece and use a dual atmospheric simulation chamber system with starting point ambient air in an effort to gain insight about the chemical species that is limiting nucleation in this area. A potential nucleation precursor, ammonia, was added in one of the chambers while the other one was used as a reference. The addition of ammonia assisted new particle formation in almost 50 % of the experiments conducted.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-758, https://doi.org/10.5194/acp-2022-758, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth’s system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022, https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
Short summary
Playa surfaces in Iran that emerged through Lake Urmia (LU) desiccation have become a relevant dust source of regional relevance. Here, we identify highly erodible LU playa surfaces and determine their physicochemical properties and mineralogical composition and perform emulsion-freezing experiments with them. We find high ice nucleation activities (up to 250 K) that correlate positively with organic matter and clay content and negatively with pH, salinity, K-feldspars, and quartz.
Payton Beeler and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 14825–14836, https://doi.org/10.5194/acp-22-14825-2022, https://doi.org/10.5194/acp-22-14825-2022, 2022
Short summary
Short summary
Understanding and parameterizing the influences of black carbon (BC) particle morphology and compositional heterogeneity on its light absorption represent a fundamental problem. We develop scaling laws using a single unifying parameter that effectively encompasses large-scale diversity observed in BC light absorption on a per-particle basis. The laws help reconcile the disparities between field observations and model predictions. Our framework is packaged in an open-source Python application.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Qian Liu, Guixing Chen, Lifang Sheng, and Toshiki Iwasaki
Atmos. Chem. Phys., 22, 13371–13388, https://doi.org/10.5194/acp-22-13371-2022, https://doi.org/10.5194/acp-22-13371-2022, 2022
Short summary
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Yishuo Guo, Chenjuan Deng, Aino Ovaska, Feixue Zheng, Chenjie Hua, Junlei Zhan, Yiran Li, Jin Wu, Zongcheng Wang, Jiali Xie, Ying Zhang, Tingyu Liu, Yusheng Zhang, Boying Song, Wei Ma, Yongchun Liu, Chao Yan, Jingkun Jiang, Veli-Matti Kerminen, Men Xia, Tuomo Nieminen, Wei Du, Tom Kokkonen, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-565, https://doi.org/10.5194/acp-2022-565, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Using the comprehensive datasets, we investigated the long-term variations of air pollutants during winter Beijing from 2019 to 2022, and analyzed the characteristics of atmospheric pollution cocktail during different short-term special events (e.g. Beijing Winter Olympics, COVID lockdown and Chinese New Year periods) associated with substantial emission reductions. Our results are useful in planning more targeted and sustainable long-term pollution control plans.
Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, and Min Hu
Atmos. Chem. Phys., 22, 12387–12399, https://doi.org/10.5194/acp-22-12387-2022, https://doi.org/10.5194/acp-22-12387-2022, 2022
Short summary
Short summary
Regional and total deposition doses for different age groups were quantified based on explicit hygroscopicity measurements. We found that particle hygroscopic growth led to a reduction (~24 %) in the total dose. The deposition rate of hygroscopic particles was higher in the daytime, while hydrophobic particles exhibited a higher rate at night and during rush hours. The results will deepen the understanding of the impact of hygroscopicity and the mixing state on deposition patterns in the lungs.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Cited articles
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin,
A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol
Optical Properties” Module using data from the MILAGRO campaign, Atmos.
Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Che, H., Gui, K., Xia, X., Wang, Y., Holben, B. N., Goloub, P.,
Cuevas-Agulló, E., Wang, H., Zheng, Y., Zhao, H., and Zhang, X.: Large
contribution of meteorological factors to inter-decadal changes in regional
aerosol optical depth, Atmos. Chem. Phys., 19, 10497–10523,
https://doi.org/10.5194/acp-19-10497-2019, 2019.
Chi, X., Winderlich, J., Mayer, J. C., Panov, A. V., Heimann, M., Birmili,
W., Heintzenberg, J., Cheng, Y., and Andreae, M. O.: Long-term measurements
of aerosol and carbon monoxide at the ZOTTO tall tower to characterize
polluted and pristine air in the Siberian taiga, Atmos. Chem. Phys., 13,
12271–12298, https://doi.org/10.5194/acp-13-12271-2013, 2013.
CNEMC: air pollution data [data set], available at: https://www.http://www.cnemc.cn, last access: 20 November 2020.
Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T.,
Kerminen, V. M., Wang, T., Xie, Y., Herrmann, E., Zheng, L. F., Nie, W.,
Liu, Q., Wei, X. L., and Kulmala, M.: Intense atmospheric pollution modifies
weather: a case of mixed biomass burning with fossil fuel combustion
pollution in eastern China, Atmos. Chem. Phys., 13, 10545–10554,
https://doi.org/10.5194/acp-13-10545-2013, 2013.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V.-M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X.-Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China,
Geophys. Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Du, H., Li, J., Wang, Z., Dao, X., Guo, S., Wang, L., Ma, S., Wu, J., Yang,
W., Chen, X., and Sun, Y.: Effects of Regional Transport on Haze in the
North China Plain: Transport of Precursors or Secondary Inorganic Aerosols,
Geophys. Res. Lett., 47, e2020GL087461, https://doi.org/10.1029/2020GL087461, 2020.
ECWMF: ERA5 data [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 20 November 2020.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.
Fan, H., Zhao, C., and Yang, Y.: A comprehensive analysis of the
spatio-temporal variation of urban air pollution in China during 2014–2018,
Atmos. Environ., 220, 117066, https://doi.org/10.1016/j.atmosenv.2019.117066, 2020.
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J.
C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos.s, 111, D21305,
https://doi.org/10.1029/2005JD006721, 2006.
Granella, F., Aleluia Reis, L., Bosetti, V., and Tavoni, M.: COVID-19
lockdown only partially alleviates health impacts of air pollution in
Northern Italy, Environ. Res. Lett., 16, 035012,
https://doi.org/10.1088/1748-9326/abd3d2, 2021.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ.t, 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,
6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hu, X.-M., Li, X., Xue, M., Wu, D., and Fuentes, J. D.: The Formation of
Barrier Winds East of the Loess Plateau and Their Effects on Dispersion
Conditions in the North China Plains, Bound.-Lay. Meteorol., 161,
145–163, https://doi.org/10.1007/s10546-016-0159-4, 2016.
Huang, X., Wang, Z., and Ding, A.: Impact of Aerosol-PBL Interaction on Haze
Pollution: Multiyear Observational Evidences in North China, Geophys. Res. Lett., 45, 8596–8603, https://doi.org/10.1029/2018GL079239, 2018.
Hung, W.-T., Lu, C.-H., Alessandrini, S., Kumar, R., and Lin, C.-A.: The
impacts of transported wildfire smoke aerosols on surface air quality in New
York State: A multi-year study using machine learning, Atmos.
Environ., 259, 118513, https://doi.org/10.1016/j.atmosenv.2021.118513, 2021.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Itahashi, S., Hayami, H., and Uno, I.: Comprehensive study of emission
source contributions for tropospheric ozone formation over East Asia,
J. Geophys. Res.-Atmos., 120, 331–358,
https://doi.org/10.1002/2014JD022117, 2015.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Montávez, J.
P., García-Bustamante, E., Navarro, J., Vilà-Guerau de Arellano,
J., and Muñoz-Roldán, A.: An evaluation of WRF's ability to
reproduce the surface wind over complex terrain based on typical circulation
patterns, J. Geophys. Res.-Atmos., 118, 7651–7669,
https://doi.org/10.1002/jgrd.50585, 2013.
Letu, H., Nakajima, T. Y., Wang, T., Shang, H., Ma, R., Yang, K., Baran, A.
J., Riedi, J., Ishimoto, H., Yoshida, M., Shi, C., Khatri, P., Du, Y., Chen,
L., and Shi, J.: A new benchmark for surface radiation products over the
East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation
geostationary satellite, Bull. Am. Meteorol. Soc.,
1–40, https://doi.org/10.1175/bams-d-20-0148.1, 2021.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Fu, Q., Zhao, M., Wu, H.,
Liu, J., Saikawa, E., and Liao, K.: Drivers for the poor air quality
conditions in North China Plain during the COVID-19 outbreak, Atmos.
Environ., 246, 118103, https://doi.org/10.1016/j.atmosenv.2020.118103, 2021.
Li, Q., Zhang, H., Cai, X., Song, Y., and Zhu, T.: The impacts of the
atmospheric boundary layer on regional haze in North China, npj Clim.
Atmos. Sci., 4, 9, https://doi.org/10.1038/s41612-021-00165-y, 2021.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117,
2017.
Luo, H., Han, Y., Lu, C., Yang, J., and Wu, Y.: Characteristics of Surface
Solar Radiation under Different Air Pollution Conditions over Nanjing,
China: Observation and Simulation, Adv. Atmos. Sci., 36,
1047–1059, https://doi.org/10.1007/s00376-019-9010-4, 2019.
Luo, H., Han, Y., Cheng, X., Lu, C., and Wu, Y.: Spatiotemporal Variations
in Particulate Matter and Air Quality over China: National, Regional and
Urban Scales, Atmosphere, 12, 43, https://doi.org/10.3390/atmos12010043, 2021.
Ma, Y., Ye, J., Xin, J., Zhang, W., Vilà-Guerau de Arellano, J., Wang,
S., Zhao, D., Dai, L., Ma, Y., Wu, X., Xia, X., Tang, G., Wang, Y., Shen,
P., Lei, Y., and Martin, S. T.: The Stove, Dome, and Umbrella Effects of
Atmospheric Aerosol on the Development of the Planetary Boundary Layer in
Hazy Regions, Geophys. Res. Lett., 47, e2020GL087373,
https://doi.org/10.1029/2020GL087373, 2020.
Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate Effects of Black
Carbon Aerosols in China and India, Science, 297, 2250–2253,
https://doi.org/10.1126/science.1075159, 2002.
Miao, Y., Liu, S., and Huang, S.: Synoptic pattern and planetary boundary
layer structure associated with aerosol pollution during winter in Beijing,
China, Sci. Total Environ., 682, 464–474,
https://doi.org/10.1016/j.scitotenv.2019.05.199, 2019.
Miao, Y., Che, H., Zhang, X., and Liu, S.: Integrated impacts of synoptic
forcing and aerosol radiative effect on boundary layer and pollution in the
Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 20, 5899–5909,
https://doi.org/10.5194/acp-20-5899-2020, 2020.
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A New Double-Moment
Microphysics Parameterization for Application in Cloud and Climate Models,
Part I: Description, J. Atmos. Sci., 62, 1665,
https://doi.org/10.1175/jas3446.1, 2005.
NCAR: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
NCAR: WRF-Chem Version 3.9 [code], https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 20 November 2020.
Niu, F., Li, Z., Li, C., Lee, K.-H., and Wang, M.: Increase of wintertime
fog in China: Potential impacts of weakening of the Eastern Asian monsoon
circulation and increasing aerosol loading, J. Geophys. Res.-Atmos., 115, D00K20, https://doi.org/10.1029/2009JD013484, 2010.
Noh, Y., Cheon, W. G., Hong, S. Y., and Raasch, S.: Improvement of the
K-profile Model for the Planetary Boundary Layer based on Large Eddy
Simulation Data, Bound.-Lay. Meteorol., 107, 401–427,
https://doi.org/10.1023/a:1022146015946, 2003.
Qu, Y., Han, Y., Wu, Y., Gao, P., and Wang, T.: Study of PBLH and Its
Correlation with Particulate Matter from One-Year Observation over Nanjing,
Southeast China, Remote Sens., 9, 668, https://doi.org/10.3390/rs9070668, 2017.
Ran, L., Deng, Z. Z., Wang, P. C., and Xia, X. A.: Black carbon and
wavelength-dependent aerosol absorption in the North China Plain based on
two-year aethalometer measurements, Atmos. Environ., 142, 132–144,
https://doi.org/10.1016/j.atmosenv.2016.07.014, 2016.
Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate Effects of
Aerosol-Cloud Interactions, Science, 343, 379–380, https://doi.org/10.1126/science.1247490,
2014.
Shen, L. and Zhao, C.: Dominance of Shortwave Radiative Heating in the
Sea-Land Breeze Amplitude and its Impacts on Atmospheric Visibility in
Tokyo, Japan, J. Geophys. Res.-Atmos., 125,
e2019JD031541, https://doi.org/10.1029/2019JD031541, 2020.
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary
layer height and surface pollutants derived from lidar observations over
China: regional pattern and influencing factors, Atmos. Chem. Phys., 18,
15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
Su, T., Li, Z., Li, C., Li, J., Han, W., Shen, C., Tan, W., Wei, J., and
Guo, J.: The significant impact of aerosol vertical structure on lower
atmosphere stability and its critical role in aerosol–planetary boundary
layer (PBL) interactions, Atmos. Chem. Phys., 20, 3713–3724,
https://doi.org/10.5194/acp-20-3713-2020, 2020.
Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.:
Investigation of the sources and evolution processes of severe haze
pollution in Beijing in January 2013, J. Geophys. Res.-Atmos., 119, 4380–4398, https://doi.org/10.1002/2014JD021641, 2014.
Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel,
M., Russell, L., and Burnet, F.: Evaluation of the aerosol indirect effect
in marine stratocumulus clouds: Droplet number, size, liquid water path, and
radiative impact, J. Geophys. Res.-Atmos., 110, D08203,
https://doi.org/10.1029/2004JD005116, 2005.
Wang, H., Shi, G. Y., Zhang, X. Y., Gong, S. L., Tan, S. C., Chen, B., Che,
H. Z., and Li, T.: Mesoscale modelling study of the interactions between
aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji
and its near surrounding region – Part 2: Aerosols' radiative feedback
effects, Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015, 2015.
Wang, Z., Huang, X., Ding, K., Ren, C., Cao, L., Zhou, D., Gao, J., and
Ding, A.: Weakened Aerosol-PBL Interaction During COVID-19 Lockdown in
Northern China, Geophys. Res. Lett., 48, e2020GL090542,
https://doi.org/10.1029/2020GL090542, 2021.
Wu, B. and Wang, J.: Winter Arctic Oscillation, Siberian High and East
Asian Winter Monsoon, Geophys. Res. Lett., 29, 3-1–3-4,
https://doi.org/10.1029/2002GL015373, 2002.
Wu, Y., Wang, X., Tao, J., Huang, R., Tian, P., Cao, J., Zhang, L., Ho, K.
F., Han, Z., and Zhang, R.: Size distribution and source of black carbon
aerosol in urban Beijing during winter haze episodes, Atmos. Chem. Phys.,
17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, 2017.
Yang, X., Zhao, C., Guo, J., and Wang, Y.: Intensification of aerosol
pollution associated with its feedback with surface solar radiation and
winds in Beijing, J. Geophys. Res.-Atmos., 121,
4093–4099, https://doi.org/10.1002/2015JD024645, 2016.
Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow
patterns and boundary layer process of the severe haze events over the North
China Plain in January 2013, Atmos. Environ., 124, 129–145,
https://doi.org/10.1016/j.atmosenv.2015.06.011, 2016.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai,
Z. P., Wang, X., Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The
impact of circulation patterns on regional transport pathways and air
quality over Beijing and its surroundings, Atmos. Chem. Phys., 12,
5031–5053, https://doi.org/10.5194/acp-12-5031-2012, 2012.
Zhang, Q., Ma, X., Tie, X., Huang, M., and Zhao, C.: Vertical distributions
of aerosols under different weather conditions: Analysis of in-situ aircraft
measurements in Beijing, China, Atmos. Environ., 43, 5526–5535,
https://doi.org/10.1016/j.atmosenv.2009.05.037, 2009.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad.
Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, W., Guo, J., Miao, Y., Liu, H., Song, Y., Fang, Z., He, J., Lou, M.,
Yan, Y., Li, Y., and Zhai, P.: On the Summertime Planetary Boundary Layer
with Different Thermodynamic Stability in China: A Radiosonde Perspective,
J. Clim., 31, 1451–1465, https://doi.org/10.1175/jcli-d-17-0231.1, 2018.
Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., and Zhong, J.:
The impact of meteorological changes from 2013 to 2017 on PM2.5 mass
reduction in key regions in China, Sci. China Earth Sci., 62,
1885–1902, https://doi.org/10.1007/s11430-019-9343-3, 2019.
Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu,
C.: Impact of synoptic weather patterns and inter-decadal climate
variability on air quality in the North China Plain during 1980–2013,
Atmos. Environ., 124, 119–128, https://doi.org/10.1016/j.atmosenv.2015.05.063, 2016.
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., Kang, S., Cong,
Z., Letu, H., and Menenti, M.: Aerosol characteristics and impacts on
weather and climate over the Tibetan Plateau, Natl. Sci. Rev., 7,
492–495, https://doi.org/10.1093/nsr/nwz184, 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and
Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,
https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the atmosphere and exacerbating surface air pollution. Using aircraft measurements and WRF-Chem simulations, we find that the aerosol–PBL interaction of different aerosols under contrasting synoptic patterns, PBL structures, and aerosol vertical distributions vary significantly. We attempt to determine which pollutants to target in different synoptic conditions to attain more precise air pollution control.
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the...
Altmetrics
Final-revised paper
Preprint