Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2507-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2507-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interaction between aerosol and thermodynamic stability within the planetary boundary layer during wintertime over the North China Plain: aircraft observation and WRF-Chem simulation
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Li Dong
School of Electronic and Optical Engineering, Nanjing University of
Science and Technology, Nanjing 210094, China
Yichen Chen
CORRESPONDING AUTHOR
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Yuefeng Zhao
CORRESPONDING AUTHOR
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Delong Zhao
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Mengyu Huang
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Deping Ding
Beijing Weather Modification Center, Beijing 100089, China
Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China
Jiayuan Liao
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Tian Ma
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Maohai Hu
CORRESPONDING AUTHOR
School of Electronic and Optical Engineering, Nanjing University of
Science and Technology, Nanjing 210094, China
Yong Han
CORRESPONDING AUTHOR
Advanced Science and Technology of Atmospheric Physics Group (ASAG), School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
Key Laboratory of Tropical Atmosphere-Ocean System, Sun Yat-sen
University, Ministry of Education, Zhuhai 519082, China
Related authors
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025, https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in a mixed phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows that turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech., 18, 3035–3050, https://doi.org/10.5194/amt-18-3035-2025, https://doi.org/10.5194/amt-18-3035-2025, 2025
Short summary
Short summary
A wind speed correction algorithm for multirotor unoccupied aerial vehicles (UAVs) was developed using computational fluid dynamics (CFD). An integrated compensation algorithm was designed to account for the effects of UAV motion, attitude changes, and rotor-induced airflow on wind speed measurements. Comparative experimental results confirmed the effectiveness of the proposed compensation algorithm.
Huang Zheng, Shaofei Kong, Deping Ding, Marjan Savadkoohi, Congbo Song, Mingming Zheng, and Roy Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2025-2113, https://doi.org/10.5194/egusphere-2025-2113, 2025
Short summary
Short summary
This study analyzes 13 years of BC data in China, uncovering patterns in its concentration and sources. Spatial-temporal variations and trends of BC are reported. Our analysis revealed that the reduction rates of BC and its sources varied across different station types, with spatial differences in the drivers of reduction. These long-term observations provide valuable insights to enhance understanding of pollution trends and improve models for predicting air quality.
Kaiqi Wang, Kai Bi, Shuling Chen, Markus Hartmann, Zhijun Wu, Jiyu Gao, Xiaoyu Xu, Yuhan Cheng, Mengyu Huang, Yunbo Chen, Huiwen Xue, Bingbing Wang, Yaqiong Hu, Xiongying Zhang, Xincheng Ma, Ruijie Li, Ping Tian, Ottmar Möhler, Heike Wex, Frank Startmann, Jie Chen, and Xianda Gong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1873, https://doi.org/10.5194/egusphere-2025-1873, 2025
Short summary
Short summary
Understanding how ice forms in clouds is crucial for predicting weather and climate; however, accurately measuring the ice-nucleating particles that trigger ice formation remains challenging. We developed an advanced instrument called the Freezing Ice Nucleation Detection Analyzer. By refining temperature control, automating freezing detection, and rigorously testing, we demonstrated that this instrument can reliably measure ice-nucleating particles across diverse conditions.
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025, https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Short summary
To understand the effect of aerosols on the vertical distribution of stratocumulus microphysical quantities in southwest China, the daily variation characteristics and formation mechanism of the vertical profiles of stratocumulus microphysical characteristics in this region were described using the data of nine cloud-crossing aircraft observations over Guangxi from 10 October to 3 November 2020.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024, https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Short summary
By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-248, https://doi.org/10.5194/amt-2023-248, 2024
Preprint withdrawn
Short summary
Short summary
The paper introduces a correction algorithm for accurate wind speed measurement in a multirotor unmanned aerial vehicle (UAV) with a sonic anemometer. Addressing propeller rotation, UAV movement, and attitude changes, it integrates computational fluid dynamics simulation and regression analysis. This comprehensive algorithm corrects rotor disturbances, motion, and attitude variations. Validation against meteorological tower data demonstrates its enhanced reliability in wind speed measurements.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Chenjie Yu, Dantong Liu, Kang Hu, Ping Tian, Yangzhou Wu, Delong Zhao, Huihui Wu, Dawei Hu, Wenbo Guo, Qiang Li, Mengyu Huang, Deping Ding, and James D. Allan
Atmos. Chem. Phys., 22, 4375–4391, https://doi.org/10.5194/acp-22-4375-2022, https://doi.org/10.5194/acp-22-4375-2022, 2022
Short summary
Short summary
In this study, we applied a new technique to investigate the aerosol properties on both a mass and number basis and CCN abilities in Beijing suburban regions. The size-resolved aerosol chemical compositions and CCN activation measurement enable a detailed analysis of BC-containing particle hygroscopicity and its size-dependent contribution to the CCN activation. The results presented in this study will affect future models and human health studies.
Donglin Chen, Hong Liao, Yang Yang, Lei Chen, Delong Zhao, and Deping Ding
Atmos. Chem. Phys., 22, 1825–1844, https://doi.org/10.5194/acp-22-1825-2022, https://doi.org/10.5194/acp-22-1825-2022, 2022
Short summary
Short summary
The black carbon (BC) vertical profile plays a critical role in BC–meteorology interaction, which also influences PM2.5 concentrations. More BC mass was assigned into high altitudes (above 1000 m) in the model, which resulted in a stronger cooling effect near the surface, a larger temperature inversion below 421 m, more reductions in PBLH, and a larger increase in near-surface PM2.5 in the daytime caused by the direct radiative effect of BC.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Hao Luo and Yong Han
Atmos. Chem. Phys., 21, 15171–15184, https://doi.org/10.5194/acp-21-15171-2021, https://doi.org/10.5194/acp-21-15171-2021, 2021
Short summary
Short summary
The various feedbacks of Atlantic tropical cyclones (TCs) to the Saharan air layer (SAL) are determined by the combined effects of dry air masses, the dust aerosols as ice nuclei, and dynamic, thermodynamic, and moisture conditions. The specific influence mechanisms of SAL on the three intensities of TCs (tropical depression, tropical storm, and hurricane) are different. The conclusions are beneficial to our recognition of the physical process and evolution of TCs in the Atlantic region.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Dongfei Zuo, Deping Ding, Yichen Chen, Ling Yang, Delong Zhao, Mengyu Huang, Ping Tian, Wei Xiao, Wei Zhou, Yuanmou Du, and Dantong Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-221, https://doi.org/10.5194/amt-2021-221, 2021
Publication in AMT not foreseen
Short summary
Short summary
According to the echo attenuation analysis of mixed precipitation, the melting layer is found to be the key factor affecting the attenuation correction. This study hereby proposes an adaptive echo attenuation correction method based on the melting layer, and uses the ground-based S-band radar to extract the echo on the aircraft trajectory to verify the correction results. The results show that the echo attenuation correction value above the melting layer is related to the flight position.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
Cited articles
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin,
A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol
Optical Properties” Module using data from the MILAGRO campaign, Atmos.
Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Che, H., Gui, K., Xia, X., Wang, Y., Holben, B. N., Goloub, P.,
Cuevas-Agulló, E., Wang, H., Zheng, Y., Zhao, H., and Zhang, X.: Large
contribution of meteorological factors to inter-decadal changes in regional
aerosol optical depth, Atmos. Chem. Phys., 19, 10497–10523,
https://doi.org/10.5194/acp-19-10497-2019, 2019.
Chi, X., Winderlich, J., Mayer, J. C., Panov, A. V., Heimann, M., Birmili,
W., Heintzenberg, J., Cheng, Y., and Andreae, M. O.: Long-term measurements
of aerosol and carbon monoxide at the ZOTTO tall tower to characterize
polluted and pristine air in the Siberian taiga, Atmos. Chem. Phys., 13,
12271–12298, https://doi.org/10.5194/acp-13-12271-2013, 2013.
CNEMC: air pollution data [data set], available at: https://www.http://www.cnemc.cn, last access: 20 November 2020.
Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T.,
Kerminen, V. M., Wang, T., Xie, Y., Herrmann, E., Zheng, L. F., Nie, W.,
Liu, Q., Wei, X. L., and Kulmala, M.: Intense atmospheric pollution modifies
weather: a case of mixed biomass burning with fossil fuel combustion
pollution in eastern China, Atmos. Chem. Phys., 13, 10545–10554,
https://doi.org/10.5194/acp-13-10545-2013, 2013.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V.-M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X.-Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China,
Geophys. Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Du, H., Li, J., Wang, Z., Dao, X., Guo, S., Wang, L., Ma, S., Wu, J., Yang,
W., Chen, X., and Sun, Y.: Effects of Regional Transport on Haze in the
North China Plain: Transport of Precursors or Secondary Inorganic Aerosols,
Geophys. Res. Lett., 47, e2020GL087461, https://doi.org/10.1029/2020GL087461, 2020.
ECWMF: ERA5 data [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 20 November 2020.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.
Fan, H., Zhao, C., and Yang, Y.: A comprehensive analysis of the
spatio-temporal variation of urban air pollution in China during 2014–2018,
Atmos. Environ., 220, 117066, https://doi.org/10.1016/j.atmosenv.2019.117066, 2020.
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J.
C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos.s, 111, D21305,
https://doi.org/10.1029/2005JD006721, 2006.
Granella, F., Aleluia Reis, L., Bosetti, V., and Tavoni, M.: COVID-19
lockdown only partially alleviates health impacts of air pollution in
Northern Italy, Environ. Res. Lett., 16, 035012,
https://doi.org/10.1088/1748-9326/abd3d2, 2021.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ.t, 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,
6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hu, X.-M., Li, X., Xue, M., Wu, D., and Fuentes, J. D.: The Formation of
Barrier Winds East of the Loess Plateau and Their Effects on Dispersion
Conditions in the North China Plains, Bound.-Lay. Meteorol., 161,
145–163, https://doi.org/10.1007/s10546-016-0159-4, 2016.
Huang, X., Wang, Z., and Ding, A.: Impact of Aerosol-PBL Interaction on Haze
Pollution: Multiyear Observational Evidences in North China, Geophys. Res. Lett., 45, 8596–8603, https://doi.org/10.1029/2018GL079239, 2018.
Hung, W.-T., Lu, C.-H., Alessandrini, S., Kumar, R., and Lin, C.-A.: The
impacts of transported wildfire smoke aerosols on surface air quality in New
York State: A multi-year study using machine learning, Atmos.
Environ., 259, 118513, https://doi.org/10.1016/j.atmosenv.2021.118513, 2021.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Itahashi, S., Hayami, H., and Uno, I.: Comprehensive study of emission
source contributions for tropospheric ozone formation over East Asia,
J. Geophys. Res.-Atmos., 120, 331–358,
https://doi.org/10.1002/2014JD022117, 2015.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Montávez, J.
P., García-Bustamante, E., Navarro, J., Vilà-Guerau de Arellano,
J., and Muñoz-Roldán, A.: An evaluation of WRF's ability to
reproduce the surface wind over complex terrain based on typical circulation
patterns, J. Geophys. Res.-Atmos., 118, 7651–7669,
https://doi.org/10.1002/jgrd.50585, 2013.
Letu, H., Nakajima, T. Y., Wang, T., Shang, H., Ma, R., Yang, K., Baran, A.
J., Riedi, J., Ishimoto, H., Yoshida, M., Shi, C., Khatri, P., Du, Y., Chen,
L., and Shi, J.: A new benchmark for surface radiation products over the
East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation
geostationary satellite, Bull. Am. Meteorol. Soc.,
1–40, https://doi.org/10.1175/bams-d-20-0148.1, 2021.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Fu, Q., Zhao, M., Wu, H.,
Liu, J., Saikawa, E., and Liao, K.: Drivers for the poor air quality
conditions in North China Plain during the COVID-19 outbreak, Atmos.
Environ., 246, 118103, https://doi.org/10.1016/j.atmosenv.2020.118103, 2021.
Li, Q., Zhang, H., Cai, X., Song, Y., and Zhu, T.: The impacts of the
atmospheric boundary layer on regional haze in North China, npj Clim.
Atmos. Sci., 4, 9, https://doi.org/10.1038/s41612-021-00165-y, 2021.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117,
2017.
Luo, H., Han, Y., Lu, C., Yang, J., and Wu, Y.: Characteristics of Surface
Solar Radiation under Different Air Pollution Conditions over Nanjing,
China: Observation and Simulation, Adv. Atmos. Sci., 36,
1047–1059, https://doi.org/10.1007/s00376-019-9010-4, 2019.
Luo, H., Han, Y., Cheng, X., Lu, C., and Wu, Y.: Spatiotemporal Variations
in Particulate Matter and Air Quality over China: National, Regional and
Urban Scales, Atmosphere, 12, 43, https://doi.org/10.3390/atmos12010043, 2021.
Ma, Y., Ye, J., Xin, J., Zhang, W., Vilà-Guerau de Arellano, J., Wang,
S., Zhao, D., Dai, L., Ma, Y., Wu, X., Xia, X., Tang, G., Wang, Y., Shen,
P., Lei, Y., and Martin, S. T.: The Stove, Dome, and Umbrella Effects of
Atmospheric Aerosol on the Development of the Planetary Boundary Layer in
Hazy Regions, Geophys. Res. Lett., 47, e2020GL087373,
https://doi.org/10.1029/2020GL087373, 2020.
Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate Effects of Black
Carbon Aerosols in China and India, Science, 297, 2250–2253,
https://doi.org/10.1126/science.1075159, 2002.
Miao, Y., Liu, S., and Huang, S.: Synoptic pattern and planetary boundary
layer structure associated with aerosol pollution during winter in Beijing,
China, Sci. Total Environ., 682, 464–474,
https://doi.org/10.1016/j.scitotenv.2019.05.199, 2019.
Miao, Y., Che, H., Zhang, X., and Liu, S.: Integrated impacts of synoptic
forcing and aerosol radiative effect on boundary layer and pollution in the
Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 20, 5899–5909,
https://doi.org/10.5194/acp-20-5899-2020, 2020.
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A New Double-Moment
Microphysics Parameterization for Application in Cloud and Climate Models,
Part I: Description, J. Atmos. Sci., 62, 1665,
https://doi.org/10.1175/jas3446.1, 2005.
NCAR: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
NCAR: WRF-Chem Version 3.9 [code], https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 20 November 2020.
Niu, F., Li, Z., Li, C., Lee, K.-H., and Wang, M.: Increase of wintertime
fog in China: Potential impacts of weakening of the Eastern Asian monsoon
circulation and increasing aerosol loading, J. Geophys. Res.-Atmos., 115, D00K20, https://doi.org/10.1029/2009JD013484, 2010.
Noh, Y., Cheon, W. G., Hong, S. Y., and Raasch, S.: Improvement of the
K-profile Model for the Planetary Boundary Layer based on Large Eddy
Simulation Data, Bound.-Lay. Meteorol., 107, 401–427,
https://doi.org/10.1023/a:1022146015946, 2003.
Qu, Y., Han, Y., Wu, Y., Gao, P., and Wang, T.: Study of PBLH and Its
Correlation with Particulate Matter from One-Year Observation over Nanjing,
Southeast China, Remote Sens., 9, 668, https://doi.org/10.3390/rs9070668, 2017.
Ran, L., Deng, Z. Z., Wang, P. C., and Xia, X. A.: Black carbon and
wavelength-dependent aerosol absorption in the North China Plain based on
two-year aethalometer measurements, Atmos. Environ., 142, 132–144,
https://doi.org/10.1016/j.atmosenv.2016.07.014, 2016.
Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate Effects of
Aerosol-Cloud Interactions, Science, 343, 379–380, https://doi.org/10.1126/science.1247490,
2014.
Shen, L. and Zhao, C.: Dominance of Shortwave Radiative Heating in the
Sea-Land Breeze Amplitude and its Impacts on Atmospheric Visibility in
Tokyo, Japan, J. Geophys. Res.-Atmos., 125,
e2019JD031541, https://doi.org/10.1029/2019JD031541, 2020.
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary
layer height and surface pollutants derived from lidar observations over
China: regional pattern and influencing factors, Atmos. Chem. Phys., 18,
15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
Su, T., Li, Z., Li, C., Li, J., Han, W., Shen, C., Tan, W., Wei, J., and
Guo, J.: The significant impact of aerosol vertical structure on lower
atmosphere stability and its critical role in aerosol–planetary boundary
layer (PBL) interactions, Atmos. Chem. Phys., 20, 3713–3724,
https://doi.org/10.5194/acp-20-3713-2020, 2020.
Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.:
Investigation of the sources and evolution processes of severe haze
pollution in Beijing in January 2013, J. Geophys. Res.-Atmos., 119, 4380–4398, https://doi.org/10.1002/2014JD021641, 2014.
Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel,
M., Russell, L., and Burnet, F.: Evaluation of the aerosol indirect effect
in marine stratocumulus clouds: Droplet number, size, liquid water path, and
radiative impact, J. Geophys. Res.-Atmos., 110, D08203,
https://doi.org/10.1029/2004JD005116, 2005.
Wang, H., Shi, G. Y., Zhang, X. Y., Gong, S. L., Tan, S. C., Chen, B., Che,
H. Z., and Li, T.: Mesoscale modelling study of the interactions between
aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji
and its near surrounding region – Part 2: Aerosols' radiative feedback
effects, Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015, 2015.
Wang, Z., Huang, X., Ding, K., Ren, C., Cao, L., Zhou, D., Gao, J., and
Ding, A.: Weakened Aerosol-PBL Interaction During COVID-19 Lockdown in
Northern China, Geophys. Res. Lett., 48, e2020GL090542,
https://doi.org/10.1029/2020GL090542, 2021.
Wu, B. and Wang, J.: Winter Arctic Oscillation, Siberian High and East
Asian Winter Monsoon, Geophys. Res. Lett., 29, 3-1–3-4,
https://doi.org/10.1029/2002GL015373, 2002.
Wu, Y., Wang, X., Tao, J., Huang, R., Tian, P., Cao, J., Zhang, L., Ho, K.
F., Han, Z., and Zhang, R.: Size distribution and source of black carbon
aerosol in urban Beijing during winter haze episodes, Atmos. Chem. Phys.,
17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, 2017.
Yang, X., Zhao, C., Guo, J., and Wang, Y.: Intensification of aerosol
pollution associated with its feedback with surface solar radiation and
winds in Beijing, J. Geophys. Res.-Atmos., 121,
4093–4099, https://doi.org/10.1002/2015JD024645, 2016.
Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow
patterns and boundary layer process of the severe haze events over the North
China Plain in January 2013, Atmos. Environ., 124, 129–145,
https://doi.org/10.1016/j.atmosenv.2015.06.011, 2016.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai,
Z. P., Wang, X., Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The
impact of circulation patterns on regional transport pathways and air
quality over Beijing and its surroundings, Atmos. Chem. Phys., 12,
5031–5053, https://doi.org/10.5194/acp-12-5031-2012, 2012.
Zhang, Q., Ma, X., Tie, X., Huang, M., and Zhao, C.: Vertical distributions
of aerosols under different weather conditions: Analysis of in-situ aircraft
measurements in Beijing, China, Atmos. Environ., 43, 5526–5535,
https://doi.org/10.1016/j.atmosenv.2009.05.037, 2009.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad.
Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, W., Guo, J., Miao, Y., Liu, H., Song, Y., Fang, Z., He, J., Lou, M.,
Yan, Y., Li, Y., and Zhai, P.: On the Summertime Planetary Boundary Layer
with Different Thermodynamic Stability in China: A Radiosonde Perspective,
J. Clim., 31, 1451–1465, https://doi.org/10.1175/jcli-d-17-0231.1, 2018.
Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., and Zhong, J.:
The impact of meteorological changes from 2013 to 2017 on PM2.5 mass
reduction in key regions in China, Sci. China Earth Sci., 62,
1885–1902, https://doi.org/10.1007/s11430-019-9343-3, 2019.
Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu,
C.: Impact of synoptic weather patterns and inter-decadal climate
variability on air quality in the North China Plain during 1980–2013,
Atmos. Environ., 124, 119–128, https://doi.org/10.1016/j.atmosenv.2015.05.063, 2016.
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., Kang, S., Cong,
Z., Letu, H., and Menenti, M.: Aerosol characteristics and impacts on
weather and climate over the Tibetan Plateau, Natl. Sci. Rev., 7,
492–495, https://doi.org/10.1093/nsr/nwz184, 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and
Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,
https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the atmosphere and exacerbating surface air pollution. Using aircraft measurements and WRF-Chem simulations, we find that the aerosol–PBL interaction of different aerosols under contrasting synoptic patterns, PBL structures, and aerosol vertical distributions vary significantly. We attempt to determine which pollutants to target in different synoptic conditions to attain more precise air pollution control.
Aerosol–planetary boundary layer (PBL) interaction is a key mechanism for stabilizing the...
Altmetrics
Final-revised paper
Preprint