Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-1773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Barcelona Supercomputing Center, Barcelona, Spain
Arnau Folch
Geociencias Barcelona (GEO3BCN-CSIC), Barcelona, Spain
Andrew T. Prata
Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
Federica Pardini
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Giovanni Macedonio
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Related authors
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details the FALL3D-8.0 model physics and the numerical implementation of the code.
Leonardo A. Mingari, Estela A. Collini, Arnau Folch, Walter Báez, Emilce Bustos, María Soledad Osores, Florencia Reckziegel, Peter Alexander, and José G. Viramonte
Atmos. Chem. Phys., 17, 6759–6778, https://doi.org/10.5194/acp-17-6759-2017, https://doi.org/10.5194/acp-17-6759-2017, 2017
Short summary
Short summary
In this paper, we provide the first comprehensive description of
a dust episode occurred in South America in June 2015 through
observations and numerical simulations. We have investigated
the spatiotemporal distribution of aerosols and the emission
process over complex terrain to gain insight into the key role
played by the orography and the condition that triggered the
long-range transport episode.
A. Folch, L. Mingari, M. S. Osores, and E. Collini
Nat. Hazards Earth Syst. Sci., 14, 119–133, https://doi.org/10.5194/nhess-14-119-2014, https://doi.org/10.5194/nhess-14-119-2014, 2014
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details the FALL3D-8.0 model physics and the numerical implementation of the code.
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Short summary
Volcanic ash dispersal forecasts are routinely used to avoid aircraft encounters with volcanic ash. However, the accuracy of these forecasts depends on the knowledge of key factors that are usually difficult to observe directly. In this work we apply an inverse methodology to improve ash concentration forecasts. Results are encouraging, showing that accurate estimations of ash emissions can be performed using the proposed approach, leading to an improvement in ash concentration forecasts.
Silvia Massaro, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra
Solid Earth, 10, 1429–1450, https://doi.org/10.5194/se-10-1429-2019, https://doi.org/10.5194/se-10-1429-2019, 2019
Short summary
Short summary
The Fuego de Colima volcano (Mexico) shows a complex eruptive history, with periods of rapid and slow lava dome growth punctuated by explosive activity. Here we reconstructed the 1998–2018 average discharge rate by means of satellite thermal data and the literature. Using spectral and wavelet analysis, we found a multi-term cyclic behavior that is in good agreement with numerical modeling, accounting for a variable magmatic feeding system composed of a single or double magma chamber system.
Matthieu Poret, Stefano Corradini, Luca Merucci, Antonio Costa, Daniele Andronico, Mario Montopoli, Gianfranco Vulpiani, and Valentin Freret-Lorgeril
Atmos. Chem. Phys., 18, 4695–4714, https://doi.org/10.5194/acp-18-4695-2018, https://doi.org/10.5194/acp-18-4695-2018, 2018
Short summary
Short summary
This study aims at proposing a method to better assess the initial magma fragmentation produced during explosive volcanic eruptions. We worked on merging field, radar, and satellite data to estimate the total grain-size distribution, which is used within simulations to reconstruct the tephra loading and far-travelling airborne ash dispersal. This approach is applied to 23 November 2013, giving the very fine ash fraction related to volcanic hazards (e.g. air traffic safety).
Alejandro Marti and Arnau Folch
Atmos. Chem. Phys., 18, 4019–4038, https://doi.org/10.5194/acp-18-4019-2018, https://doi.org/10.5194/acp-18-4019-2018, 2018
Short summary
Short summary
We use the NMMB-MONARCH-ASH model to quantify the systematic errors associated with traditional offline modeling systems used for operational volcanic ash forecast. Evaluation scores indicate that uncertainties credited to offline modeling are of the same order of magnitude as those associated with the source term, failing to reproduce up to 45–70 % of the ash cloud of an online forecast. This work encourages operational groups to consider online dispersal models for real-time aviation advisory.
Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 17, 861–879, https://doi.org/10.5194/nhess-17-861-2017, https://doi.org/10.5194/nhess-17-861-2017, 2017
Short summary
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Leonardo A. Mingari, Estela A. Collini, Arnau Folch, Walter Báez, Emilce Bustos, María Soledad Osores, Florencia Reckziegel, Peter Alexander, and José G. Viramonte
Atmos. Chem. Phys., 17, 6759–6778, https://doi.org/10.5194/acp-17-6759-2017, https://doi.org/10.5194/acp-17-6759-2017, 2017
Short summary
Short summary
In this paper, we provide the first comprehensive description of
a dust episode occurred in South America in June 2015 through
observations and numerical simulations. We have investigated
the spatiotemporal distribution of aerosols and the emission
process over complex terrain to gain insight into the key role
played by the orography and the condition that triggered the
long-range transport episode.
Alejandro Marti, Arnau Folch, Oriol Jorba, and Zavisa Janjic
Atmos. Chem. Phys., 17, 4005–4030, https://doi.org/10.5194/acp-17-4005-2017, https://doi.org/10.5194/acp-17-4005-2017, 2017
Short summary
Short summary
We describe and evaluate NMMB-MONARCH-ASH, a novel online multi-scale meteorological and transport model developed at the BSC-CNS capable of forecasting the dispersal and deposition of volcanic ash. The forecast skills of the model have been validated and they improve on those from traditional operational offline (decoupled) models. The results support the use of online coupled models to aid civil aviation and emergency management during a crisis such as the 2010 eruption of Eyjafjallajökull.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
R. Tonini, L. Sandri, A. Costa, and J. Selva
Nat. Hazards Earth Syst. Sci., 15, 409–415, https://doi.org/10.5194/nhess-15-409-2015, https://doi.org/10.5194/nhess-15-409-2015, 2015
S. Biass, C. Scaini, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, https://doi.org/10.5194/nhess-14-2265-2014, 2014
C. Scaini, S. Biass, A. Galderisi, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2289–2312, https://doi.org/10.5194/nhess-14-2289-2014, https://doi.org/10.5194/nhess-14-2289-2014, 2014
A. Folch, L. Mingari, M. S. Osores, and E. Collini
Nat. Hazards Earth Syst. Sci., 14, 119–133, https://doi.org/10.5194/nhess-14-119-2014, https://doi.org/10.5194/nhess-14-119-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Response of the link between the El Niño–Southern Oscillation (ENSO) and the East Asian winter monsoon to Asian anthropogenic sulfate aerosols
Modeling urban pollutant transport at multiple resolutions: impacts of turbulent mixing
Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
A novel method to quantify the uncertainty contribution of aerosol–radiation interaction factors
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Impact of post-monsoon crop residue burning on PM2.5 over northern India: optimizing emissions using a high-density in situ surface observation network
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
How to trace the origins of short-lived atmospheric species: an Arctic example
An updated microphysical model for particle activation in contrails: the role of volatile plume particles
Dust-producing weather patterns of the North American Great Plains
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Interdecadal shift in the impact of winter land-sea thermal contrasts on following spring transcontinental dust transport pathways in North Africa
Anthropogenic and Natural Causes for the Interannual Variation of PM2.5 in East Asia During Summer Monsoon Periods From 2008 to 2018
Mechanistic insights into nitric acid-enhanced iodic acid particle nucleation in the upper troposphere and lower stratosphere
Construction and application of a pollen emissions model based on phenology and random forests
An uncertain future for the climate and health impacts of anthropogenic aerosols in Africa
The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Gas-phase collision rate enhancement factors for acid-base clusters up to 2 nm in diameter from atomistic simulation and the interacting hard sphere model
How well are aerosol–cloud interactions represented in climate models? – Part 2: Isolating the aerosol impact on clouds following the 2014–15 Holuhraun eruption
Characterization of brown carbon absorption in different European environments through source contribution analysis
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
A global dust emission dataset for estimating dust radiative forcings in climate models
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Direct radiative forcing of light-absorbing carbonaceous aerosol and the influencing factors over China
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
The effect of organic nucleation on the indirect radiative forcing with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Homogeneous ice nucleation in adsorbed water films: A theoretical approach
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Saharan dust linked to European hail events
Impact of Topographic Wind Conditions on Dust Particle Size Distribution: Insights from a Regional Dust Reanalysis Dataset
Uncovering the Impact of Urban Functional Zones on Air Quality in China
Seasonal differences in observed versus modeled new particle formation over boreal regions
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Radiative and climate effects of aerosol scattering in long-wave radiation based on global climate modeling
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Zixuan Jia, Massimo A. Bollasina, Wenjun Zhang, and Ying Xiang
Atmos. Chem. Phys., 25, 8805–8820, https://doi.org/10.5194/acp-25-8805-2025, https://doi.org/10.5194/acp-25-8805-2025, 2025
Short summary
Short summary
Using multi-model mean data from regional aerosol perturbation experiments, we find that increased Asian sulfate aerosols strengthen the link between ENSO (El Niño–Southern Oscillation) and the East Asian winter monsoon. In coupled simulations, aerosol-induced broad cooling increases the ENSO amplitude by affecting the tropical Pacific mean state, contributing to the increase in monsoon interannual variability. These results provide important implications to reduce uncertainties in future projections of regional extreme variability.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
Atmos. Chem. Phys., 25, 8831–8857, https://doi.org/10.5194/acp-25-8831-2025, https://doi.org/10.5194/acp-25-8831-2025, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas simulated at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase the BC lifetime and column concentrations. Land use and terrain variations across multiple resolutions affect turbulent mixing.
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025, https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
Short summary
Clouds exist at scales that climate models struggle to represent, limiting our knowledge of how climate change may impact clouds. Here we use a new kilometer-scale global model representing an important step towards the necessary scale. We focus on how aerosol particles modify clouds, radiation, and precipitation. We find the magnitude and manner of responses tend to vary from region to region, highlighting the potential of global kilometer-scale simulations and a need to represent aerosols in climate models.
Bishuo He and Chunsheng Zhao
Atmos. Chem. Phys., 25, 7765–7776, https://doi.org/10.5194/acp-25-7765-2025, https://doi.org/10.5194/acp-25-7765-2025, 2025
Short summary
Short summary
Factor uncertainty analysis helps us understand the impacts of factors on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change.
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025, https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Short summary
Studying the cloud-forming capacity of aerosols is crucial in climate research. The PartMC model can provide detailed particle information and help these studies. This model is integrated with the ideal meteorological Cloud Model 1 (CM1) to simulate the aerosols at cloud-forming locations. Significant changes are revealed in the hygroscopicity distribution of aerosols within ascending air parcels. Additionally, different ascent times also affect aerosol aging processes.
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025, https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025, https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary
Short summary
The accuracy of the chemical transport model, a key focus of our research, is strongly dependent on the dry deposition parameterization. Our findings show that the refined CMAQ dust model correlated well with ground-based and high-altitude in situ measurements by implementing the suggested dry deposition schemes. Furthermore, we reveal the mixing state of two types of aerosols at the upper level, a finding supported by both the optimized model and measurements.
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Taisei Machida, Takashi Maki, Prabir K. Patra, and Sachiko Hayashida
Atmos. Chem. Phys., 25, 7137–7160, https://doi.org/10.5194/acp-25-7137-2025, https://doi.org/10.5194/acp-25-7137-2025, 2025
Short summary
Short summary
Air pollution in Delhi during the post-monsoon period is severe, and association with intensive crop residue burning (CRB) over Punjab state has attracted attention. However, the relationship has been unclear as the CRB emissions conventionally derived from satellites were underestimated due to clouds or thick smoke/haze over the region. We evaluated the impact of CRB on PM2.5 to be about 50 %, based on a combination of numerical modeling and an observation network using low-cost sensors we installed.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025, https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
Short summary
Canadian wildfires in August 2018 significantly increased surface air pollution across the United States (US) – by up to 69 % in some areas. Using model, satellite, and ground measurements, the study highlights how weather patterns and long-range smoke transport drive pollution. The northwestern US was most affected by Canadian wildfire smoke, while the northeastern US experienced the least impact. These findings indicate the growing concern that wildfire smoke poses to air quality across the US.
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025, https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Short summary
Particle sources in polar climates are unclear, affecting climate representation in models. This study introduces an evaluated method for tracking particles with backward modeling. Tests on simulated particles allowed us to show that traditional detection methods often misidentify sources. An improved method that accurately traces the origins of aerosol particles in the Arctic is presented. The study recommends using this enhanced method for better source identification of atmospheric species.
Joel Ponsonby, Roger Teoh, Bernd Kärcher, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1717, https://doi.org/10.5194/egusphere-2025-1717, 2025
Short summary
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact comparable to that of aviation’s CO2 emissions. We show that emissions of volatile particulate matter – from fuel sulphur, unburned fuel, and lubrication oil – can increase the number of ice particles formed within a contrail, and therefore have an important role in the climate impacts of aviation. This has implications for emissions regulation and climate mitigation strategies.
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025, https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
Short summary
This study of the North American Great Plains identifies the various weather patterns responsible for blowing dust in all parts of the region using a weather pattern classification. In the southwestern plains passing cold fronts are the primary cause of dust; in the understudied northern plains, summertime patterns and southerly pre-frontal winds are most important in the west and east, respectively. These results are valuable to understanding and forecasting dust in this complex source region.
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025, https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Short summary
For Bucharest, Romania's capital, mobile measurements during two intensive campaigns and mixed-effect LUR (land-use regression) models to derive seasonal maps of near-surface PM10, NO2 and UFPs (ultrafine particles) have successfully been used. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations.
Qi Wen, Yan Li, Mengying Du, Wenjun Song, Linbo Wei, Zhilan Wang, and Xu Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-826, https://doi.org/10.5194/egusphere-2025-826, 2025
Short summary
Short summary
We find that, through an interdecadal phase-locking effect of sea-land thermal forcing-North Atlantic Oscillation-Westerly Jet coupling, springtime dust from North Africa is more likely to be transported eastwards (extending into North America) after the late 1990s, whereas before that time westward transport paths for dust were more frequent. Subject to thermal forcing, wind speed and drought contribute to dust emissions in the two periods, respectively.
Danyang Ma, Min Xie, Huan He, Tijian Wang, Mengzhu Xi, Lingyun Feng, Shuxian Zhang, and Shitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-10, https://doi.org/10.5194/egusphere-2025-10, 2025
Short summary
Short summary
The PM2.5 concentration in China underwent significant changes in 2013. We examined the underlying causes from three perspectives: anthropogenic pollutant emissions, meteorological conditions, and CO2 concentration variations. Our study highlighted the importance of considering the role of CO2 on vegetation when predicting PM2.5 concentrations and developing corresponding control strategies.
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194, https://doi.org/10.5194/egusphere-2025-1194, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Joe Adabouk Amooli, Marianne T. Lund, Sourangsu Chowdhury, Gunnar Myhre, Ane N. Johansen, Bjørn H. Samset, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-948, https://doi.org/10.5194/egusphere-2025-948, 2025
Short summary
Short summary
We analyze various projections of African aerosol emissions and their potential impacts on climate and public health. We find that future emissions vary widely across emission projections, with differences in sectoral emission distributions. Using the Oslo chemical transport model, we show that air pollution exposure in some regions of Africa could increase significantly by 2050, increasing pollution-related deaths, with most scenarios projecting aerosol-induced warming over sub-Saharan Africa.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
Atmos. Chem. Phys., 25, 3109–3130, https://doi.org/10.5194/acp-25-3109-2025, https://doi.org/10.5194/acp-25-3109-2025, 2025
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure, and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Valtteri Tikkanen, Huan Yang, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2025-507, https://doi.org/10.5194/egusphere-2025-507, 2025
Short summary
Short summary
Collisions of neutral molecules and clusters is the prevalent pathway in atmospheric new particle formation. In heavily polluted urban areas, where clusters are formed rapidly and in large number, cluster-cluster collisions also become relevant. We calculate cluster-cluster collision rates from atomistic molecular dynamics simulations and an interacting hard sphere model. Not accounting for long-range attractive interactions underestimates collision and particle formation rates significantly.
George Jordan, Florent Malavelle, Jim Haywood, Ying Chen, Ben Johnson, Daniel Partridge, Amy Peace, Eliza Duncan, Duncan Watson-Parris, David Neubauer, Anton Laakso, Martine Michou, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2025-835, https://doi.org/10.5194/egusphere-2025-835, 2025
Short summary
Short summary
The 2014–15 Holuhraun eruption created a vast aerosol plume that acted as a natural experiment to assess how well climate models capture changes in cloud properties due to increased aerosol. We find that the models accurately represent the observed shift to smaller, more numerous cloud droplets. However, the models diverge in their aerosol induced changes to large-scale cloud properties, particularly cloud liquid water content. Our study shows that Holuhraun had a cooling effect on the Earth.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025, https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
Short summary
Our results with injected sea salt aerosols for five open oceans show that sea salt aerosols with low injection amounts dominate shortwave radiation, mainly through indirect effects. As indirect aerosol effects saturate with increasing injection rates, direct effects exceed indirect effects. This implies that marine cloud brightening is best implemented in areas with extensive cloud cover, while aerosol direct scattering effects remain dominant when clouds are scarce.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025, https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Short summary
This study derives a gridded dust emission dataset for 1841–2000 by employing a combination of observed dust from core records and reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to better match observations than other mechanistic models.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Shuangqin Yang, Yusi Liu, Li Chen, Nan Cao, Jing Wang, and Shuang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3705, https://doi.org/10.5194/egusphere-2024-3705, 2025
Short summary
Short summary
Black carbon, primary brown carbon, and secondary brown carbon are the leading light-absorbing carbonaceous aerosols (LACs) that contribute significantly to climate change. We modified the GEOS-Chem model to simulate the climate change by LACs based on local emission inventory, and explored the impacts of LACs properties and atmospheric variables on the corresponding DRFs in seven regions of China. The study confirms the warming effect of LACs and deepens our knowledge of their climatic effects.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025, https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Short summary
Dust days during the spring seasons of 2015–2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM10 concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4135, https://doi.org/10.5194/egusphere-2024-4135, 2025
Short summary
Short summary
This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025, https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4095, https://doi.org/10.5194/egusphere-2024-4095, 2025
Short summary
Short summary
The mechanisms of ice nucleation at temperatures below 235 K have remained unclear for the past century. We suggest that ice nucleation is caused by the freezing of water adsorbed on aerosol surfaces. To test this hypothesis, we derived theoretical equations to predict the exact atmospheric conditions under which ice nucleation occurs. Our predictions agree well with experiments. The new theory thus provides a basis for an improved description of ice nucleation in the atmosphere.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Killian P. Brennan and Lena Wilhelm
EGUsphere, https://doi.org/10.5194/egusphere-2024-3924, https://doi.org/10.5194/egusphere-2024-3924, 2024
Short summary
Short summary
In this study, we discovered that natural dust carried into Europe significantly increases the likelihood of hailstorms. By analyzing dust data, weather records, and hail reports, we found that moderate dust levels lead to more frequent hail, while very high or low dust amounts reduce it. Adding dust information into statistical models improved forecasting skills. We aimed to understand how dust affects hailstorms.
Xinyue Huang, Wenyu Gao, and Hosein Foroutan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3076, https://doi.org/10.5194/egusphere-2024-3076, 2024
Short summary
Short summary
This study investigates the relationship between wind-blown dust aerosols size distribution and wind conditions over topography at a regional scale, utilizing 10 years of dust reanalysis data. Linear regression models suggest that higher wind speeds and steeper land slopes, particularly under uphill winds, are associated with increased fractions of coarser dust particles. Moreover, these positive correlations weaken during summer and afternoon events, likely related to the haboob storms.
Lulu Yuan, Wenchao Han, Jiachen Meng, Yang Wang, Haojie Yu, and Wenze Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3350, https://doi.org/10.5194/egusphere-2024-3350, 2024
Short summary
Short summary
This study utilizes multi-source data to reveal the impact of various urban functional zones in China on the spatial distribution of pollutants. The findings indicate that the residential and commercial zones see notable air quality gains, but the improvement of air quality in the transportation zone is the least considerable. Moreover, the industrial zone has the most seasonal air quality variation. Therefore, air pollution prevention policies should consider differences in functional zones.
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara Blichner, Daniel Yazgi, and Moa Sporre
EGUsphere, https://doi.org/10.5194/egusphere-2024-3626, https://doi.org/10.5194/egusphere-2024-3626, 2024
Short summary
Short summary
This study investigates the model representation of how particles are formed and grow in the atmosphere. Using modeled and observed data from two boreal forest stations in 2018, we identify key factors for NPF to improve particle-climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still highly underestimates the number of particles during warmer months.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Thomas Drugé, Pierre Nabat, Martine Michou, and Marc Mallet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3659, https://doi.org/10.5194/egusphere-2024-3659, 2024
Short summary
Short summary
Aerosol scattering in long-wave radiation is often neglected in climate models. In this study, we analyze its impact through a physical modeling of this process in the CNRM ARPEGE-Climat model. It mainly leads to surface LW radiation increases across Sahara, Sahel and Arabian Peninsula, resulting in daily minimum near-surface temperature rises. Other changes in atmospheric fields are also simulated.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Cited articles
Amezcua, J. and Van Leeuwen, P. J.: Gaussian anamorphosis in the analysis step
of the EnKF: a joint state-variable/observation approach, Tellus A, 66,
23493, https://doi.org/10.3402/tellusa.v66.23493, 2014. a
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The data assimilation research testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo Implementation of the
Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts,
Mon. Weather Rev., 127, 2741–2758,
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Beckett, F. M., Witham, C. S., Leadbetter, S. J., Crocker, R., Webster, H. N.,
Hort, M. C., Jones, A. R., Devenish, B. J., and Thomson, D. J.: Atmospheric
Dispersion Modelling at the London VAAC: A Review of Developments since the
2010 Eyjafjallajökull Volcano Ash Cloud, Atmosphere, 11, 352,
https://doi.org/10.3390/atmos11040352, 2020. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y.,
Miyakawa, T., Murata, H., Ohno, T., et al.: An introduction to
Himawari-8/9–Japan's new-generation geostationary meteorological satellites,
J. Meteorol. Soc. Jpn., 94, 151–183,
https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bishop, C. H.: The GIGG-EnKF: ensemble Kalman filtering for highly skewed
non-negative uncertainty distributions, Q. J. Roy. Meteor. Soc., 142,
1395–1412, https://doi.org/10.1002/qj.2742, 2016. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the
Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather
Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2,
2001. a, b
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments
in modelling and monitoring of volcanic ash clouds: outcomes from the first
IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, Bull.
Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012. a
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the
ECMWF hybrid data assimilation system, Q. J. Roy. Meteor. Soc., 142,
287–303, https://doi.org/10.1002/qj.2652, 2016. a
Burgers, G., Jan van Leeuwen, P., and Evensen, G.: Analysis Scheme in the
Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998. a, b
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIREs
Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018. a, b, c, d
Clarkson, R. J., Majewicz, E. J., and Mack, P.: A re-evaluation of the 2010
quantitative understanding of the effects volcanic ash has on gas turbine
engines, Proceedings of the Institution of Mechanical Engineers, Part G:
J. Aero. Eng., 230, 2274–2291,
https://doi.org/10.1177/0954410015623372, 2016. a
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size
distribution: Insights from field data analysis, Earth Planet. Sc. Lett.,
443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016a. a, b
Costa, A., Suzuki, Y., Cerminara, M., Devenish, B., Ongaro, T. E., Herzog, M.,
Eaton, A. V., Denby, L., Bursik, M., de' Michieli Vitturi, M., Engwell, S.,
Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G.,
Tait, S., Kaminski, E., Mastin, L., Woodhouse, M., Phillips, J., Hogg, A.,
Degruyter, W., and Bonadonna, C.: Results of the eruptive column model
inter-comparison study, J. Volcanol. Geoth. Res., 326, 2–25,
https://doi.org/10.1016/j.jvolgeores.2016.01.017, 2016b. a, b
Degruyter, W. and Bonadonna, C.: Improving on mass flow rate estimates of
volcanic eruptions, Geophys. Res. Lett., 39, , L16308, https://doi.org/10.1029/2012GL052566,
2012. a, b
Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmos. Chem. Phys., 8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008. a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. a, b
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367, 2003. a
Folch, A.: A review of tephra transport and dispersal models: Evolution,
current status, and future perspectives, J. Volcanol. Geoth. Res., 235,
96–115, https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012. a
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for
transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342,
https://doi.org/10.1016/j.cageo.2008.08.008, 2009. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a, b, c
Folch, A., Mingari, L. and Prata, A. T.: Ensemble-Based Forecast of Volcanic Clouds Using FALL3D-8.1, Front. Earth Sci., 9, 741841, https://doi.org/10.3389/feart.2021.741841, 2021. a, b, c, d
Fu, G., Lin, H., Heemink, A., Segers, A., Lu, S., and Palsson, T.: Assimilating
aircraft-based measurements to improve forecast accuracy of volcanic ash
transport, Atmos. Environ., 115, 170–184,
https://doi.org/10.1016/j.atmosenv.2015.05.061, 2015. a
Fu, G., Heemink, A., Lu, S., Segers, A., Weber, K., and Lin, H.-X.: Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements, Atmos. Chem. Phys., 16, 9189–9200, https://doi.org/10.5194/acp-16-9189-2016, 2016. a
Fu, G., Lin, H. X., Heemink, A., Lu, S., Segers, A., van Velzen, N., Lu, T., and Xu, S.: Accelerating volcanic ash data assimilation using a mask-state algorithm based on an ensemble Kalman filter: a case study with the LOTOS-EUROS model (version 1.10), Geosci. Model Dev., 10, 1751–1766, https://doi.org/10.5194/gmd-10-1751-2017, 2017a. a
Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu, S.: Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption, Atmos. Chem. Phys., 17, 1187–1205, https://doi.org/10.5194/acp-17-1187-2017, 2017b. a
Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, in: IEE Proc.-F, Vol. 140,
107–113, 1993. a
Hodyss, D.: Accounting for skewness in ensemble data assimilation, Mon. Weather
Rev., 140, 2346–2358, 2012. a
Hodyss, D. and Campbell, W. F.: Square root and perturbed observation ensemble
generation techniques in Kalman and quadratic ensemble filtering algorithms,
Mon. Weather Rev., 141, 2561–2573, 2013. a
Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for
Atmospheric Data Assimilation, Mon. Weather Rev., 144, 4489–4532,
https://doi.org/10.1175/MWR-D-15-0440.1, 2016. a, b
Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems,
Journal of Basic Engineering, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960. a, b
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge university press, 2003. a
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and Lord,
S.: Introduction of the GSI into the NCEP global data assimilation system,
Weather Forecast., 24, 1691–1705, 2009. a
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Taha, G., Tidiga, M., Eremenko, M., Bossolasco, A., Jégou, F., Renard, J.-B., and Legras, B.: Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing, Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, 2021. a
Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S.,
Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel,
K.: Remote sensing and inverse transport modeling of the Kasatochi eruption
sulfur dioxide cloud, J. Geophys. Res.-Atmos., 115, D00L16,
https://doi.org/10.1029/2009JD013286, 2010. a
Lu, S., Lin, H., Heemink, A., Fu, G., and Segers, A.: Estimation of volcanic
ash emissions using trajectory-based 4D-Var data assimilation, Mon. Weather
Rev., 144, 575–589, 2016a. a
Lu, S., Lin, H. X., Heemink, A., Segers, A., and Fu, G.: Estimation of volcanic
ash emissions through assimilating satellite data and ground-based
observations, J. Geophys. Res.-Atmos., 121, 10971–10994,
https://doi.org/10.1002/2016JD025131, 2016b. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code, Technometrics, 21, 239–245, 1979. a
Mingari, L., Folch, A., Dominguez, L., and Bonadonna, C.: Volcanic Ash
Resuspension in Patagonia: Numerical Simulations and Observations,
Atmosphere, 11, 977, https://doi.org/10.3390/atmos11090977, 2020. a
Muser, L. O., Hoshyaripour, G. A., Bruckert, J., Horváth, Á., Malinina, E., Wallis, S., Prata, F. J., Rozanov, A., von Savigny, C., Vogel, H., and Vogel, B.: Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019 eruption, Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, 2020. a
Nerger, L., Hiller, W., and Schröter, J.: PDAF - The Parallel Data
Assimilation Framework: Experiences with Kalman filtering, in: Use of High
Performance Computing in Meteorology, 63–83, World Scientific,
https://doi.org/10.1142/9789812701831_0006, 2005. a, b, c
Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A Unification of
Ensemble Square Root Kalman Filters, Mon. Weather Rev., 140, 2335–2345,
https://doi.org/10.1175/MWR-D-11-00102.1, 2012. a, b, c, d
Osores, S., Ruiz, J., Folch, A., and Collini, E.: Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0), Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, 2020. a
Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,
M., Kalnay, E., Patil, D., and Yorke, J. A.: A local ensemble Kalman filter
for atmospheric data assimilation, Tellus A, 56, 415–428, https://doi.org/10.3402/tellusa.v56i5.14462, 2004. a
Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri, A., Stelitano, D., and de' Michieli Vitturi, M.: Ensemble-Based Data Assimilation of Volcanic Ash
Clouds from Satellite Observations: Application to the 24 December 2018 Mt.
Etna Explosive Eruption, Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359, 2020. a, b
Pfeiffer, T., Costa, A., and Macedonio, G.: A model for the numerical
simulation of tephra fall deposits, J. Volcanol. Geoth. Res., 140, 273–294, https://doi.org/10.1016/j.jvolgeores.2004.09.001, 2005. a, b
Poulidis, A. P. and Iguchi, M.: Model sensitivities in the case of
high-resolution Eulerian simulations of local tephra transport and
deposition, Atmos. Res., 247, 105136, https://doi.org/10.1016/j.atmosres.2020.105136,
2021. a
Prata, A., Rose, W., Self, S., and O'Brien, D.: Global, Long-Term Sulphur
Dioxide Measurements from TOVS Data: A New Tool for Studying Explosive
Volcanism and Climate, in: Volcanism and the Earth's Atmosphere, edited by:
Robock, A. and Oppenheimer, C., American Geophysical Union (AGU), 75–92,
https://doi.org/10.1029/139GM05, 2004. a
Prata, A. J. and Prata, A. T.: Eyjafjallajökull volcanic ash concentrations
determined using Spin Enhanced Visible and Infrared Imager measurements, J.
Geophys. Res.-Atmos., 117, D00U23, https://doi.org/10.1029/2011JD016800, 2012. a
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation, Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, 2021. a, b, c, d, e
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An introduction to Meteosat Second Generation (MSG), B. Am. Meteorol. Soc., 83, 977–992,
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002. a
Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P.: Hazard
assessment of far-range volcanic ash dispersal from a violent Strombolian
eruption at Somma-Vesuvius volcano, Naples, Italy: Implications on civil
aviation, Bull. Volcanol., 74, 2205–2218, https://doi.org/10.1007/s00445-012-0656-3,
2012. a
Suzuki, Y., Costa, A., Cerminara, M., Esposti Ongaro, T., Herzog, M., Van
Eaton, A., and Denby, L.: Inter-comparison of three-dimensional models of
volcanic plumes, J. Volcanol. Geoth. Res., 326, 26–42,
https://doi.org/10.1016/j.jvolgeores.2016.06.011, 2016a. a
Suzuki, Y., Costa, A., and Koyaguchi, T.: On the relationship between eruption
intensity and volcanic plume height: Insights from three-dimensional
numerical simulations, J. Volcanol. Geoth. Res., 326, 120–126,
https://doi.org/10.1016/j.jvolgeores.2016.04.016, 2016b. a, b
Tödter, J. and Ahrens, B.: A Second-Order Exact Ensemble Square Root Filter
for Nonlinear Data Assimilation, Mon. Weather Rev., 143, 1347–1367,
https://doi.org/10.1175/MWR-D-14-00108.1, 2015. a, b, c, d
van Leeuwen, P. J. and Ades, M.: Efficient fully nonlinear data assimilation
for geophysical fluid dynamics, Comput. Geosci., 55, 16–27,
https://doi.org/10.1016/j.cageo.2012.04.015, 2013. a
Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., and Toth, Z.: Ensemble data
assimilation with the NCEP Global Forecast System, Mon. Weather Rev., 136,
463–482, 2008. a
Wilkins, K., Western, L., and Watson, I.: Simulating atmospheric transport of
the 2011 Grímsvötn ash cloud using a data insertion update scheme, Atmos.
Environ., 141, 48–59, https://doi.org/10.1016/j.atmosenv.2016.06.045,
2016a. a
Wilkins, K. L., Mackie, S., Watson, M., Webster, H. N., Thomson, D. J., and
Dacre, H. F.: Data insertion in volcanic ash cloud forecasting, Ann.
Geophys., 57, https://doi.org/10.4401/ag-6624, 2015. a
Wilkins, K. L., Watson, I. M., Kristiansen, N. I., Webster, H. N., Thomson,
D. J., Dacre, H. F., and Prata, A. J.: Using data insertion with the NAME
model to simulate the 8 May 2010 Eyjafjallajökull volcanic ash cloud, J.
Geophys. Res.-Atmos., 121, 306–323, https://doi.org/10.1002/2015JD023895,
2016b. a
Wilson, G., Wilson, T., Deligne, N., and Cole, J.: Volcanic hazard impacts to
critical infrastructure: A review, J. Volcanol. Geoth. Res., 286, 148–182,
https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014. a
Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., and Li, L.: An
approach to handling non-Gaussianity of parameters and state variables in
ensemble Kalman filtering, Adv. Water Res., 34, 844–864,
https://doi.org/10.1016/j.advwatres.2011.04.014, 2011. a
Zidikheri, M. J. and Lucas, C.: Using Satellite Data to Determine Empirical
Relationships between Volcanic Ash Source Parameters, Atmosphere, 11, 342,
https://doi.org/10.3390/atmos11040342, 2020. a
Zidikheri, M. J. and Lucas, C.: A Computationally Efficient Ensemble Filtering
Scheme for Quantitative Volcanic Ash Forecasts, J. Geophys. Res.-Atmos., 126,
e2020JD033094, https://doi.org/10.1029/2020JD033094, 2021a. a, b
Zidikheri, M. J. and Lucas, C.: Improving Ensemble Volcanic Ash Forecasts by
Direct Insertion of Satellite Data and Ensemble Filtering, Atmosphere, 12,
https://doi.org/10.3390/atmos12091215, 2021b. a
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
We present a new implementation of an ensemble-based data assimilation method to improve...
Altmetrics
Final-revised paper
Preprint