Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-1773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Barcelona Supercomputing Center, Barcelona, Spain
Arnau Folch
Geociencias Barcelona (GEO3BCN-CSIC), Barcelona, Spain
Andrew T. Prata
Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
Federica Pardini
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Giovanni Macedonio
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Related authors
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Cited articles
Amezcua, J. and Van Leeuwen, P. J.: Gaussian anamorphosis in the analysis step
of the EnKF: a joint state-variable/observation approach, Tellus A, 66,
23493, https://doi.org/10.3402/tellusa.v66.23493, 2014. a
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The data assimilation research testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo Implementation of the
Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts,
Mon. Weather Rev., 127, 2741–2758,
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Beckett, F. M., Witham, C. S., Leadbetter, S. J., Crocker, R., Webster, H. N.,
Hort, M. C., Jones, A. R., Devenish, B. J., and Thomson, D. J.: Atmospheric
Dispersion Modelling at the London VAAC: A Review of Developments since the
2010 Eyjafjallajökull Volcano Ash Cloud, Atmosphere, 11, 352,
https://doi.org/10.3390/atmos11040352, 2020. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y.,
Miyakawa, T., Murata, H., Ohno, T., et al.: An introduction to
Himawari-8/9–Japan's new-generation geostationary meteorological satellites,
J. Meteorol. Soc. Jpn., 94, 151–183,
https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bishop, C. H.: The GIGG-EnKF: ensemble Kalman filtering for highly skewed
non-negative uncertainty distributions, Q. J. Roy. Meteor. Soc., 142,
1395–1412, https://doi.org/10.1002/qj.2742, 2016. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the
Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather
Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2,
2001. a, b
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments
in modelling and monitoring of volcanic ash clouds: outcomes from the first
IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, Bull.
Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012. a
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The evolution of the
ECMWF hybrid data assimilation system, Q. J. Roy. Meteor. Soc., 142,
287–303, https://doi.org/10.1002/qj.2652, 2016. a
Burgers, G., Jan van Leeuwen, P., and Evensen, G.: Analysis Scheme in the
Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998. a, b
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIREs
Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018. a, b, c, d
Clarkson, R. J., Majewicz, E. J., and Mack, P.: A re-evaluation of the 2010
quantitative understanding of the effects volcanic ash has on gas turbine
engines, Proceedings of the Institution of Mechanical Engineers, Part G:
J. Aero. Eng., 230, 2274–2291,
https://doi.org/10.1177/0954410015623372, 2016. a
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size
distribution: Insights from field data analysis, Earth Planet. Sc. Lett.,
443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016a. a, b
Costa, A., Suzuki, Y., Cerminara, M., Devenish, B., Ongaro, T. E., Herzog, M.,
Eaton, A. V., Denby, L., Bursik, M., de' Michieli Vitturi, M., Engwell, S.,
Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G.,
Tait, S., Kaminski, E., Mastin, L., Woodhouse, M., Phillips, J., Hogg, A.,
Degruyter, W., and Bonadonna, C.: Results of the eruptive column model
inter-comparison study, J. Volcanol. Geoth. Res., 326, 2–25,
https://doi.org/10.1016/j.jvolgeores.2016.01.017, 2016b. a, b
Degruyter, W. and Bonadonna, C.: Improving on mass flow rate estimates of
volcanic eruptions, Geophys. Res. Lett., 39, , L16308, https://doi.org/10.1029/2012GL052566,
2012. a, b
Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmos. Chem. Phys., 8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008. a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. a, b
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367, 2003. a
Folch, A.: A review of tephra transport and dispersal models: Evolution,
current status, and future perspectives, J. Volcanol. Geoth. Res., 235,
96–115, https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012. a
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for
transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342,
https://doi.org/10.1016/j.cageo.2008.08.008, 2009. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a, b, c
Folch, A., Mingari, L. and Prata, A. T.: Ensemble-Based Forecast of Volcanic Clouds Using FALL3D-8.1, Front. Earth Sci., 9, 741841, https://doi.org/10.3389/feart.2021.741841, 2021. a, b, c, d
Fu, G., Lin, H., Heemink, A., Segers, A., Lu, S., and Palsson, T.: Assimilating
aircraft-based measurements to improve forecast accuracy of volcanic ash
transport, Atmos. Environ., 115, 170–184,
https://doi.org/10.1016/j.atmosenv.2015.05.061, 2015. a
Fu, G., Heemink, A., Lu, S., Segers, A., Weber, K., and Lin, H.-X.: Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements, Atmos. Chem. Phys., 16, 9189–9200, https://doi.org/10.5194/acp-16-9189-2016, 2016. a
Fu, G., Lin, H. X., Heemink, A., Lu, S., Segers, A., van Velzen, N., Lu, T., and Xu, S.: Accelerating volcanic ash data assimilation using a mask-state algorithm based on an ensemble Kalman filter: a case study with the LOTOS-EUROS model (version 1.10), Geosci. Model Dev., 10, 1751–1766, https://doi.org/10.5194/gmd-10-1751-2017, 2017a. a
Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu, S.: Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption, Atmos. Chem. Phys., 17, 1187–1205, https://doi.org/10.5194/acp-17-1187-2017, 2017b. a
Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, in: IEE Proc.-F, Vol. 140,
107–113, 1993. a
Hodyss, D.: Accounting for skewness in ensemble data assimilation, Mon. Weather
Rev., 140, 2346–2358, 2012. a
Hodyss, D. and Campbell, W. F.: Square root and perturbed observation ensemble
generation techniques in Kalman and quadratic ensemble filtering algorithms,
Mon. Weather Rev., 141, 2561–2573, 2013. a
Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for
Atmospheric Data Assimilation, Mon. Weather Rev., 144, 4489–4532,
https://doi.org/10.1175/MWR-D-15-0440.1, 2016. a, b
Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems,
Journal of Basic Engineering, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960. a, b
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge university press, 2003. a
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and Lord,
S.: Introduction of the GSI into the NCEP global data assimilation system,
Weather Forecast., 24, 1691–1705, 2009. a
Kloss, C., Berthet, G., Sellitto, P., Ploeger, F., Taha, G., Tidiga, M., Eremenko, M., Bossolasco, A., Jégou, F., Renard, J.-B., and Legras, B.: Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing, Atmos. Chem. Phys., 21, 535–560, https://doi.org/10.5194/acp-21-535-2021, 2021. a
Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S.,
Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel,
K.: Remote sensing and inverse transport modeling of the Kasatochi eruption
sulfur dioxide cloud, J. Geophys. Res.-Atmos., 115, D00L16,
https://doi.org/10.1029/2009JD013286, 2010. a
Lu, S., Lin, H., Heemink, A., Fu, G., and Segers, A.: Estimation of volcanic
ash emissions using trajectory-based 4D-Var data assimilation, Mon. Weather
Rev., 144, 575–589, 2016a. a
Lu, S., Lin, H. X., Heemink, A., Segers, A., and Fu, G.: Estimation of volcanic
ash emissions through assimilating satellite data and ground-based
observations, J. Geophys. Res.-Atmos., 121, 10971–10994,
https://doi.org/10.1002/2016JD025131, 2016b. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code, Technometrics, 21, 239–245, 1979. a
Mingari, L., Folch, A., Dominguez, L., and Bonadonna, C.: Volcanic Ash
Resuspension in Patagonia: Numerical Simulations and Observations,
Atmosphere, 11, 977, https://doi.org/10.3390/atmos11090977, 2020. a
Muser, L. O., Hoshyaripour, G. A., Bruckert, J., Horváth, Á., Malinina, E., Wallis, S., Prata, F. J., Rozanov, A., von Savigny, C., Vogel, H., and Vogel, B.: Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019 eruption, Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020, 2020. a
Nerger, L., Hiller, W., and Schröter, J.: PDAF - The Parallel Data
Assimilation Framework: Experiences with Kalman filtering, in: Use of High
Performance Computing in Meteorology, 63–83, World Scientific,
https://doi.org/10.1142/9789812701831_0006, 2005. a, b, c
Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A Unification of
Ensemble Square Root Kalman Filters, Mon. Weather Rev., 140, 2335–2345,
https://doi.org/10.1175/MWR-D-11-00102.1, 2012. a, b, c, d
Osores, S., Ruiz, J., Folch, A., and Collini, E.: Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0), Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, 2020. a
Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,
M., Kalnay, E., Patil, D., and Yorke, J. A.: A local ensemble Kalman filter
for atmospheric data assimilation, Tellus A, 56, 415–428, https://doi.org/10.3402/tellusa.v56i5.14462, 2004. a
Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri, A., Stelitano, D., and de' Michieli Vitturi, M.: Ensemble-Based Data Assimilation of Volcanic Ash
Clouds from Satellite Observations: Application to the 24 December 2018 Mt.
Etna Explosive Eruption, Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359, 2020. a, b
Pfeiffer, T., Costa, A., and Macedonio, G.: A model for the numerical
simulation of tephra fall deposits, J. Volcanol. Geoth. Res., 140, 273–294, https://doi.org/10.1016/j.jvolgeores.2004.09.001, 2005. a, b
Poulidis, A. P. and Iguchi, M.: Model sensitivities in the case of
high-resolution Eulerian simulations of local tephra transport and
deposition, Atmos. Res., 247, 105136, https://doi.org/10.1016/j.atmosres.2020.105136,
2021. a
Prata, A., Rose, W., Self, S., and O'Brien, D.: Global, Long-Term Sulphur
Dioxide Measurements from TOVS Data: A New Tool for Studying Explosive
Volcanism and Climate, in: Volcanism and the Earth's Atmosphere, edited by:
Robock, A. and Oppenheimer, C., American Geophysical Union (AGU), 75–92,
https://doi.org/10.1029/139GM05, 2004. a
Prata, A. J. and Prata, A. T.: Eyjafjallajökull volcanic ash concentrations
determined using Spin Enhanced Visible and Infrared Imager measurements, J.
Geophys. Res.-Atmos., 117, D00U23, https://doi.org/10.1029/2011JD016800, 2012. a
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation, Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, 2021. a, b, c, d, e
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An introduction to Meteosat Second Generation (MSG), B. Am. Meteorol. Soc., 83, 977–992,
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002. a
Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P.: Hazard
assessment of far-range volcanic ash dispersal from a violent Strombolian
eruption at Somma-Vesuvius volcano, Naples, Italy: Implications on civil
aviation, Bull. Volcanol., 74, 2205–2218, https://doi.org/10.1007/s00445-012-0656-3,
2012. a
Suzuki, Y., Costa, A., Cerminara, M., Esposti Ongaro, T., Herzog, M., Van
Eaton, A., and Denby, L.: Inter-comparison of three-dimensional models of
volcanic plumes, J. Volcanol. Geoth. Res., 326, 26–42,
https://doi.org/10.1016/j.jvolgeores.2016.06.011, 2016a. a
Suzuki, Y., Costa, A., and Koyaguchi, T.: On the relationship between eruption
intensity and volcanic plume height: Insights from three-dimensional
numerical simulations, J. Volcanol. Geoth. Res., 326, 120–126,
https://doi.org/10.1016/j.jvolgeores.2016.04.016, 2016b. a, b
Tödter, J. and Ahrens, B.: A Second-Order Exact Ensemble Square Root Filter
for Nonlinear Data Assimilation, Mon. Weather Rev., 143, 1347–1367,
https://doi.org/10.1175/MWR-D-14-00108.1, 2015. a, b, c, d
van Leeuwen, P. J. and Ades, M.: Efficient fully nonlinear data assimilation
for geophysical fluid dynamics, Comput. Geosci., 55, 16–27,
https://doi.org/10.1016/j.cageo.2012.04.015, 2013. a
Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., and Toth, Z.: Ensemble data
assimilation with the NCEP Global Forecast System, Mon. Weather Rev., 136,
463–482, 2008. a
Wilkins, K., Western, L., and Watson, I.: Simulating atmospheric transport of
the 2011 Grímsvötn ash cloud using a data insertion update scheme, Atmos.
Environ., 141, 48–59, https://doi.org/10.1016/j.atmosenv.2016.06.045,
2016a. a
Wilkins, K. L., Mackie, S., Watson, M., Webster, H. N., Thomson, D. J., and
Dacre, H. F.: Data insertion in volcanic ash cloud forecasting, Ann.
Geophys., 57, https://doi.org/10.4401/ag-6624, 2015. a
Wilkins, K. L., Watson, I. M., Kristiansen, N. I., Webster, H. N., Thomson,
D. J., Dacre, H. F., and Prata, A. J.: Using data insertion with the NAME
model to simulate the 8 May 2010 Eyjafjallajökull volcanic ash cloud, J.
Geophys. Res.-Atmos., 121, 306–323, https://doi.org/10.1002/2015JD023895,
2016b. a
Wilson, G., Wilson, T., Deligne, N., and Cole, J.: Volcanic hazard impacts to
critical infrastructure: A review, J. Volcanol. Geoth. Res., 286, 148–182,
https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014. a
Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., and Li, L.: An
approach to handling non-Gaussianity of parameters and state variables in
ensemble Kalman filtering, Adv. Water Res., 34, 844–864,
https://doi.org/10.1016/j.advwatres.2011.04.014, 2011. a
Zidikheri, M. J. and Lucas, C.: Using Satellite Data to Determine Empirical
Relationships between Volcanic Ash Source Parameters, Atmosphere, 11, 342,
https://doi.org/10.3390/atmos11040342, 2020. a
Zidikheri, M. J. and Lucas, C.: A Computationally Efficient Ensemble Filtering
Scheme for Quantitative Volcanic Ash Forecasts, J. Geophys. Res.-Atmos., 126,
e2020JD033094, https://doi.org/10.1029/2020JD033094, 2021a. a, b
Zidikheri, M. J. and Lucas, C.: Improving Ensemble Volcanic Ash Forecasts by
Direct Insertion of Satellite Data and Ensemble Filtering, Atmosphere, 12,
https://doi.org/10.3390/atmos12091215, 2021b. a
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
We present a new implementation of an ensemble-based data assimilation method to improve...
Altmetrics
Final-revised paper
Preprint