Atmos. Chem. Phys., 22, 1773-1792, 2022 Atmospheric
https://doi.org/10.5194/acp-22-1773-2022 :

© Author(s) 2022. This work is distributed under Chem|s.try
the Creative Commons Attribution 4.0 License. and Physics

Data assimilation of volcanic aerosol observations using
FALL3D+PDAF

Leonardo Mingari!, Arnau Folch?, Andrew T. Prata’, Federica Pardini*, Giovanni Macedonio®, and
Antonio Costa®

'Barcelona Supercomputing Center, Barcelona, Spain
2Geociencias Barcelona (GEO3BCN-CSIC), Barcelona, Spain
3Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
4Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
SIstituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
“Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy

Correspondence: Leonardo Mingari (leonardo.mingari @bsc.es)

Received: 31 August 2021 — Discussion started: 21 September 2021
Revised: 23 November 2021 — Accepted: 29 November 2021 — Published: 7 February 2022

Abstract. Modelling atmospheric dispersal of volcanic ash and aerosols is becoming increasingly valuable for
assessing the potential impacts of explosive volcanic eruptions on buildings, air quality, and aviation. Manage-
ment of volcanic risk and reduction of aviation impacts can strongly benefit from quantitative forecasting of
volcanic ash. However, an accurate prediction of volcanic aerosol concentrations using numerical modelling
relies on proper estimations of multiple model parameters which are prone to errors. Uncertainties in key pa-
rameters such as eruption column height and physical properties of particles or meteorological fields represent
a major source of error affecting the forecast quality. The availability of near-real-time geostationary satellite
observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an op-
erational context by incorporating observations into numerical models. Specifically, ensemble-based filters aim
at converting a prior ensemble of system states into an analysis ensemble by assimilating a set of noisy observa-
tions. Previous studies dealing with volcanic ash transport have demonstrated that a significant improvement of
forecast skill can be achieved by this approach. In this work, we present a new implementation of an ensemble-
based data assimilation (DA) method coupling the FALL3D dispersal model and the Parallel Data Assimilation
Framework (PDAF). The FALL3D+PDAF system runs in parallel, supports online-coupled DA, and can be effi-
ciently integrated into operational workflows by exploiting high-performance computing (HPC) resources. Two
numerical experiments are considered: (i) a twin experiment using an incomplete dataset of synthetic observa-
tions of volcanic ash and (ii) an experiment based on the 2019 Raikoke eruption using real observations of SO;
mass loading. An ensemble-based Kalman filtering technique based on the local ensemble transform Kalman
filter (LETKF) is used to assimilate satellite-retrieved data of column mass loading. We show that this proce-
dure may lead to nonphysical solutions and, consequently, conclude that LETKF is not the best approach for the
assimilation of volcanic aerosols. However, we find that a truncated state constructed from the LETKF solution
approaches the real solution after a few assimilation cycles, yielding a dramatic improvement of forecast quality
when compared to simulations without assimilation.
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1 Introduction

Volcanoes encompass a range of hazardous phenomena that
precede, accompany, and follow volcanic eruptions. Frag-
mented magma and gases released during explosive erup-
tions rise up to a neutral buoyancy level where volcanic
aerosols and ash can be transported thousands of kilometres
by upper-level winds. Specifically, volcanic ash clouds jeop-
ardise flight safety, whereas the subsequent ash fallout can
affect buildings (e.g. causing structural damage due to exces-
sive ash loading), communication networks, airports, power
plants, and water and energy distribution networks (Sulpizio
et al., 2012; Wilson et al., 2014; Clarkson et al., 2016). Man-
agement of volcanic risk and related strategies for reduc-
ing its impacts on aerial navigation can benefit from accu-
rate forecasts of volcanic dispersal produced by volcanic ash
transport and dispersion (VATD) models (e.g. Folch, 2012).
For example, operational institutions like the Volcanic Ash
Advisory Centers (VAACs) rely on VATD models to deliver
volcanic ash forecasts to aviation stakeholders, civil protec-
tion agencies, and governmental bodies (e.g. Beckett et al.,
2020). VATD models aim at simulating the main processes
involved in the life cycle of atmospheric ash and gas species
released during volcanic eruptions: emission, atmospheric
transport, and ground deposition.

The accuracy of forecasts depends on multiple factors in-
volving model spatial resolution, underlying meteorological
driver, model physics and related parameterisations, or un-
certainties on eruption source parameters (ESPs), e.g. col-
umn height, mass eruption rate, particle size distribution, and
vertical mass distribution. In fact, uncertainties in ESPs are
known to be first-order contributors to model errors (Costa
et al., 2016b; Poulidis and Iguchi, 2021). Additionally, in or-
der to properly define the emission source term for complex
plume dynamics, models require time-varying ESPs (e.g.
Suzuki et al., 2016b), which are typically poorly constrained
during eruptive scenarios.

It is long recognised that forecasting of volcanic clouds us-
ing VATD models can benefit from remote sensing observa-
tions (Bonadonna et al., 2012). The emergence of near-real-
time geostationary satellite measurements with high spatial
and temporal resolutions provides the opportunity to improve
the accuracy of operational forecasts. With last-generation
satellite instrumentation, observations can be available ev-
ery 10—15 min at 2—4 km pixel size. For example, the Spin-
ning Enhanced Visible and InfraRed Imager (SEVIRI) on
board the Meteosat Second Generation (MSG) platform pro-
vides observations of the full disk with 3 km resolution at
the sub-satellite point for all channels (except for the high-
resolution visible channel) in observation intervals of 15 min
for a full disk (Schmetz et al., 2002). Similarly, the Advanced
Himawari Imager (AHI) instrument aboard the Himawari-
8 geostationary satellite (Bessho et al., 2016) samples the
Earth’s full disk every 10 min with a spatial resolution of
2 km at the sub-satellite point for the infrared channels.
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Numerous attempts have been made to determine the erup-
tive source using inverse modelling techniques and satellite
retrievals (e.g. Eckhardt et al., 2008; Kristiansen et al., 2010;
Zidikheri and Lucas, 2020, 2021a). Typically, inversion tech-
niques consider a simple formulation of the source term suit-
able to represent a single discrete eruptive event. However,
multi-phase volcanic eruptions with complex emission pat-
terns and varying temporal and spatial scales cannot be de-
scribed in terms of just a few source parameters. In cases
where eruption source parameters are highly uncertain, data
insertion becomes an interesting alternative to include infor-
mation from satellite retrievals in numerical models (Wilkins
et al., 2015, 2016a, b; Prata et al., 2021). In this case, in-
stead of defining the volcanic source, numerical models are
initialised directly from an initial state derived from satellite
observations. Unfortunately, satellite retrievals also contain
errors and missing data because of the limitations related to
retrieval methods and measurement techniques. The inclu-
sion of retrievals errors in numerical models is one of the
major drawbacks of data insertion since errors will be prop-
agated forward in time.

Sequential data assimilation (DA) is one of the most ef-
fective ways to reduce forecast errors through the incorpora-
tion of observation data into numerical models (e.g. Kalnay,
2003). In an assimilation step, a forecast is used as a first
guess to obtain an improved estimate of the system state by
incorporating the available observations along with the corre-
sponding measurement errors. The estimate of an initial state
to start a forecast system applying DA techniques is a well-
established practice in numerical weather prediction, widely
used in research (e.g. Anderson et al., 2009) and operations
(e.g. Whitaker et al., 2008; Kleist et al., 2009; Bonavita
etal., 2016). Specifically, the ensemble Kalman filter (EnKF)
has been widely used in oceanographic and atmospheric sci-
ences for performing 4D data assimilation (Evensen, 2003).
Ensemble data assimilation attempts to represent the error
statistics using an ensemble of model states instead of stor-
ing the full covariance matrix (e.g. Carrassi et al., 2018).

Previous work has already demonstrated that a sub-
stantial improvement of quantitative ash forecasts can be
achieved by using ensemble-based data assimilation meth-
ods. Broadly speaking, two types of approaches have been
proposed: ensemble Kalman filter methods (Fu et al.,
2015, 2016, 2017a, b; Osores et al., 2020; Pardini et al.,
2020) and ensemble particle filter methods (Zidikheri and
Lucas, 2021a, b). Additionally, four-dimensional variational
data assimilation (4D-Var) methods have been proposed for
the reconstruction of the vertical profile of volcanic eruptions
(Luetal., 20164, b). However, transfer of DA techniques into
operational environments is yet limited, partly because these
approaches require multiple model runs to generate an en-
semble of forecasts, making high-resolution modelling chal-
lenging under time-constrained operational contexts, partic-
ularly if computational resources are limited.
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Recently, the FALL3D code (Folch et al., 2009) has been
redesigned and rewritten in the framework of the EU Cen-
ter of Excellence for Exascale in Solid Earth, ChEESE. The
code version 8.0 (Folch et al., 2020; Prata et al., 2021) is tai-
lored to extreme-scale computing requirements and presents
substantial improvements on code scalability, computational
efficiency, memory management, and overall capability to
handle much larger problems. In addition, the code version
8.1 (Folch et al., 2021) implemented ensemble forecast ca-
pabilities and validation metrics. New developments have led
to improved quality of forecasts, enabled the quantification of
model uncertainties, and laid the foundations for the incorpo-
ration of ensemble-based DA techniques into future releases
of FALL3D.

This work presents a new data assimilation system based
on the coupling between FALL3D and the Parallel Data As-
similation Framework (PDAF; Nerger et al., 2005, 2020),
available in the last code release (version 8.2) of FALL3D.
The proposed methodology can be efficiently implemented
in operational environments by exploiting high-performance-
computing (HPC) resources. The FALL3D+PDAF system
can run in parallel and supports online-coupled DA, which
allows an efficient data transfer management through paral-
lel communications among the ensemble members. The main
objective of this paper is to present and validate an ensemble-
based data assimilation system suitable for efficient imple-
mentation in operational workflows by exploiting HPC capa-
bilities. The proposed methodology aims at producing a sub-
stantial improvement in quantitative forecasting of volcanic
aerosols, taking advantage of high-resolution retrievals from
the new generation of satellite instrumentation. The evalua-
tion of the DA system comprises two numerical experiments
using the local ensemble transform Kalman filter (LETKF;
Ott et al., 2004; Hunt et al., 2007). Firstly, we propose a twin
experiment using a dataset of synthetic observations based
on an idealised volcanic eruption. In this case, the observa-
tional dataset is defined using noisy mass loading (i.e. total
column mass per unit area) data of volcanic ash. Secondly,
we simulate the 2019 Raikoke volcanic eruption considering
satellite-retrieved mass loading of SO, for assimilation pur-
poses.

The paper is organised as follows. Section 2 gives an
overview of the different ensemble-based data assimilation
methods, and some fundamental definitions are introduced.
A description of the FALL3D+PDAF modelling system is
outlined in Sect. 3. The numerical experiments conducted to
evaluate the performance of the modelling system are de-
scribed in Sect. 4, and the results obtained under different
configurations are presented. Results of the experiments are
discussed in Sect. 5, and recommendations are made con-
cerning future studies. Conclusions are drawn in the final
Sect. 6.
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2 Background

Data assimilation (DA) techniques are extensively used to
study and forecast geophysical systems and can be applied
to a broad range of operational and research scenarios (Car-
rassi et al., 2018). Generally speaking, DA techniques aim
at obtaining an optimal state of a dynamical system by com-
bining model forecasts with observations using sequential or
variational methods. In sequential schemes, the assimilation
process is characterised by a sequence of steps involving a
forecast step and a subsequent analysis in which the a poste-
riori estimate is obtained from the a priori forecast state by
incorporating observational information.

The Kalman filter (KF), for example, is a sequential DA
method that provides an optimal solution for linear mod-
els and linear observation operators under certain assump-
tions (Kalman, 1960). In addition to linearity, the KF also as-
sumes Gaussian distributions for model errors and observa-
tion noise. As a result, the multivariate Gaussian prior density
function is described by two moments, i.e. a mean vector and
a covariance matrix. The original KF provides algebraic for-
mulas for the update of the mean and the covariance matrix
(see Appendix A). If the background (i.e. the prior estimate
of the state of a physical system) is represented by a mean
vector X° of size n and the error covariance matrix associ-
ated with this background is P® € R"*", the analysis step of
the KF consists in determining an analysis state estimate x*
and its associated covariance matrix P? given a vector of ob-
servations y € RP (see Appendix A for further details).

The ensemble Kalman filter (EnKF) is a family of methods
providing a practical method to deal with high-dimensional
geophysical problems by means of a low-dimensional ap-
proximation of the background error covariance. The state
estimate of the system is represented by an ensemble of sys-
tem states that actually provide a Monte Carlo approxima-
tion of the KF (Evensen, 1994). A forward model is used to
generate an ensemble of trajectories of the model dynamics.
One of the most important practical advantages of ensemble-
based techniques is the independence of the filter algorithm
from the specific forward model. Given an ensemble of size
m, consisting of m model realisations (ensemble members)
characterised by the vectors x; (i =1,...,m) at a certain
time, the state estimate in the EnKF is given by the ensemble
mean

X=— X, (1)

and the original covariance matrix is replaced by the
ensemble-based covariance matrix P, € R™*":

P. = XXT, 2)
which is expressed here in terms of the matrix of (nor-
malised) ensemble perturbations X € R"*™ defined as

1
X= [x1—x,...,x,, —X]. 3)

Vm—1
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Given an ensemble of background states {x}3 =
1,2,...,m} sampled from the prior PDF and a set of obser-
vations represented by the vector y € RP, the analysis step
consists in determining an ensemble of analyses {x{: i =
1,2, ..., m} consistent with the original KF equations but for-
mulated in terms of the ensemble-based mean and covariance
matrix. In this work, the ensemble mean is updated using the
ensemble-based matrix for the Kalman gain, Ke:

¥ =% + Ke(y — HZ®), 4

where H € RP*" is the observation operator that translates
a model state x into the observation space and that Kalman
gain is given by

K. =X°Y(YYT+R)" !, (5)

where we defined Y = HXb, and R € RP*? ig the observa-
tion error covariance matrix. In this way, the best estimate of
the current state is determined in the analysis step through a
weighted linear combination of the prior ensemble perturba-
tions.

Different EnFK methods vary depending on how the en-
semble analysis is defined. Most formulations can be divided
into two major categories, the stochastic (e.g. the perturbed
observation-based EnKF formulation from Burgers et al.,
1998) and the deterministic approaches (Houtekamer and
Zhang, 2016). The latter group includes the so-called square-
root filters that uses deterministic algorithms to generate the
analysis ensemble (Nerger et al., 2012). The ensemble trans-
form Kalman filter (ETKF; Bishop et al., 2001) is a popular
square-root filter formulation that will be considered in this
work. A detailed description of this method is provided in
Appendix A.

The application of ensemble filters in geophysical sys-
tems can lead to spurious correlations and underestimations
of the ensemble spread due to a limited size of the ensem-
ble, sampling errors, and model errors (Anderson and An-
derson, 1999). The problem of variance underestimation (fil-
ter collapse) is usually addressed by using inflation methods,
whereas localisation is adopted to suppress spurious correla-
tions. In particular, we consider a multiplicative factor A > 1
to inflate the covariance matrix P, — AP, which is equiv-
alent to multiplying X® by A. This inflation-controlling pa-
rameter has to be experimentally tuned.

The localised version of the ETKF (i.e. LETKF) proposed
by Hunt et al. (2007) is a practical method for data assimi-
lation suitable for high-dimensional systems, relatively easy
to implement, and computationally efficient. A step-by-step
procedure to implement the LETKF algorithm can be found
in Hunt et al. (2007). In this case, a local analysis is per-
formed by computing a separate analysis for each local do-
main and considering only observations within a defined ra-
dius, as explained in detail in Sect. 3. The localisation radius
is denoted by L g and referred to as local radius or local range
throughout this work. This is an input parameter required by
the data assimilation algorithm.
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Both ETKF and LETKF methods have been implemented
in the FALL3D+PDAF modelling system. However, LETKF
is a more general and powerful approach as ETKF represents
a particular case of LETKF in which the localisation radius
is large, i.e. Lg — oo. This work focuses exclusively on the
LETKEF technique, which provides more realistic results than
its global counterpart ETKF for volcanic aerosols, as shown
in Sect. 4.1.1.

3 Data assimilation system

An online DA system has been implemented in the latest ver-
sion release of FALL3D (v8.2), an open-source code with an
active community of users worldwide. FALL3D is an Eule-
rian model for atmospheric passive transport and deposition
based on the so-called advection—diffusion—sedimentation
(ADS) equation (Folch et al., 2020). The code has been re-
designed and rewritten from scratch in the framework of
the EU Center of Excellence for Exascale in Solid Earth
(ChEESE) in order to overcome legacy issues and allow for
successive optimisations in the preparation towards extreme-
scale computing. The new versions include significant im-
provements from the point of view of model physics, numer-
ical algorithmic methods, and computational efficiency. In
addition, the capabilities of the model have been extended by
incorporating new features such as the possibility of running
ensemble forecasts and dealing with multiple atmospheric
species (i.e. volcanic ash and gases, mineral dust, and ra-
dionuclides). Efforts to implement ensemble capabilities on
the previous release of FALL3D (v8.1) not only made it pos-
sible to quantify model uncertainties and improve forecast
quality (Folch et al., 2021) but also paved the way for effi-
cient integration of ensemble-based data assimilation tech-
niques into subsequent versions of FALL3D.

3.1 FALL3D+PDAF

The new release of FALL3D includes ensemble-based DA
techniques based on a sequential scheme. Figure 1 shows
a diagram of the steps involved in the modelling workflow
when data assimilation is enabled. Initially, model parame-
ters, such as emission source parameters (ESPs), and input
data (e.g. meteorological fields) are sampled from a given
probability density function (PDF) in order to define an en-
semble of model instances. In the first step, initial model
conditions are defined through a set of state vectors: {x; :
i=1,2,...,m}, with m being the ensemble size. Initial con-
ditions can be arbitrarily defined (e.g. using data insertion).
However, in this paper simulations are assumed to be started
from a zero initial concentration (x; = 0).

For each assimilation cycle, the analysis step requires
a background ensemble {x}’: i=1,2,...,m}. The back-
ground states are produced by means of a forward model
by evolving the ensemble of system states until a time with
valid observations. At this point, a dataset of observations

https://doi.org/10.5194/acp-22-1773-2022
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Figure 1. Diagram of the modelling workflow used by
FALL3D+PDAF when data assimilation (DA) is enabled. Assim-
ilation is performed by means of an ensemble-based DA technique
based on a sequential scheme.

(including error observations) is incorporated to produce an
ensemble of analyses {xfl :i=1,2,...,m}. The correspond-
ing analysis for each ensemble member is used as the model
initial condition for the next cycle, and the forward model is
restarted from the observation time. Finally, the assimilation
cycle is repeated until the end of the simulation. It should be
noted that model parameters are defined before simulation
starts, and these parameters are not resampled during subse-
quent assimilation cycles.

In this work, the model state for each ensemble mem-
ber is propagated by the FALL3D dispersal model. The
DA system builds upon an efficient implementation by cou-
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pling FALL3D and the Parallel Data Assimilation Frame-
work (PDAF), an open-source software environment for en-
semble data assimilation providing fully implemented and
optimised data assimilation algorithms, including ensemble
Kalman filters (KFs) such as EnKF, ETKF, and LETKF
(Nerger et al., 2005, 2020, see also Sect. 2). PDAF supports
an efficient use of parallel computers and facilitates its imple-
mentation by combining an existing numerical model with a
group of DA algorithms with minimal changes in the model
code. We used the PDAF version 1.14 that, in addition to KF
algorithms, also includes an ensemble square root filter for
nonlinear data assimilation, referred to as the nonlinear en-
semble transform filter (NETF; Todter and Ahrens, 2015),
and a particle filter (PF; e.g. Gordon et al., 1993).

The FALL3D+PDAF system can be run in parallel and
supports online-coupled DA, enabling the workflow to be
executed in a single step and with an efficient data transfer
management through parallel communications. This avoids
the creation of extremely large files that would be required
to store the full system state in case of an offline approach.
The implementation uses a two-level parallelisation scheme
based on MPI (message passing interface) and can bene-
fit from high-performance computing (HPC) resources. The
two-level parallelisation scheme is sketched in Fig. 2. Dur-
ing the ensemble forecast phase, m instances of FALL3D,
referred to as model tasks, are run concurrently as an em-
barrassingly (or perfectly) parallel workflow to evolve the
member states in time (level 1). In other words, the prob-
lem is separated into a number of parallel tasks running in-
dependently that require no communication or dependency
between ensemble members. In turn, each model task is ex-
ecuted by a single parallel instance of FALL3D, which uses
a three-dimensional domain decomposition with ny, ny, and
n; sub-domains along each direction (level 2). Consequently,
the ensemble forecast requires a total of m x n, x ny x n;
MPI processes. Multiple intra-member (level 1) communica-
tions are required during each assimilation step in order to
collect and distribute the state vectors between different par-
allel tasks. Specifically, model tasks communicate with the
master model task (i.e. the first model task in Fig. 2) during
the analysis stage, and filter operations required to produce
the analyses are performed exclusively by the MPI processes
corresponding to the master model task.

3.2 Data assimilation setting

Two ensemble Kalman filter algorithms have been imple-
mented in the FALL3D+PDAF system: ETKF and LETKF.
As stated in Sect. 2, we will focus exclusively on the lo-
calised version of the ETKF proposed by Hunt et al. (2007),
i.e. LETKF. Localisation in LETKF is performed by parti-
tioning the state vector into a number of local domains de-
fined by the vertical column corresponding to a single cell of
the horizontal model grid and includes all bin species con-
tributing to the observed column mass. Local analysis is per-
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Figure 2. Scheme of the ensemble-based data assimilation system implemented in the FALL3D dispersal model. The system builds upon an
efficient implementation by coupling FALL3D and the Parallel Data Assimilation Framework (PDAF) and uses a two-level parallelisation

scheme based on MPI (message passing interface).

formed by computing a separate analysis for each local do-
main and considering only observations within a volume de-
fined by a cylinder of radius L. No vertical localisation is
used since observations are column integrated (see Sect. 3.4).
A separate analysis is then generated for each model grid
point in the local domain. By default, a uniform weight (unit
weight) is assumed for all observations contributing to the
local analysis. Alternatively, the influence of observations
can also decay exponentially with the distance r from the
analysis location according to a weight with the dependency
exp(—r/Lsr), where the exponential decay radius, LggR, is a
user-defined input.

Table 1 lists the parameters required by the FALL3D in-
put file to configure the data assimilation system. In addition
to start—end time and frequency of assimilation, local range
(L g) and inflation factor (1) can be defined in this block (see
Sect. 2). Note that the covariance inflation factor is expressed
here in terms of the so-called forgetting factor, defined as
p =A"! <1 (Nerger et al., 2012). Other parameters include
satellite filename, type of observation weighting, and cut-off
diameter for volcanic ash (i.e. maximum particle diameter to
compute mass loading). The parameter TRANSFORMATION
specifies how the A matrix, defined in Appendix A by
Eq. (A7), is computed conforming to two possible transfor-
mation options: identity matrix (DETERMINISTIC) or ran-
dom rotation (RANDOM_ROTATION). As explained below in

Atmos. Chem. Phys., 22, 1773-1792, 2022

Sect. 3.3, the parameter SQRT_TRANSFORMATION allows
the user to specify whether a nonlinear transformation should
be applied to the model state variable.

Alternative ensemble-based techniques provided by
PDAF, such as PF and NETF (see Sect. 3.1), will be im-
plemented in future releases of FALL3D. While the ensem-
ble Kalman filters implicitly assume that the prior state and
the observation errors are Gaussian, NETF and PF methods
are not restricted by the assumptions of linearity or Gaussian
noise. In contrast, PF and NETF are exposed to weight col-
lapse due to the so-called curse of dimensionality (e.g. Car-
rassi et al., 2018). In addition, Kalman filters are expected to
outperform NETF and PF in a linear and Gaussian problem
(e.g. see Todter and Ahrens, 2015). FALL3D solves an al-
most linear problem with weak non-linearity effects (e.g. due
to gravity current, wet deposition, or aggregation). However,
as discussed next, the Gaussian hypothesis is not fulfilled,
leaving open the question of which is the best approach to
deal with the assimilation of volcanic aerosols.

3.3 Model state

The DA algorithm requires a model state vector x € R”,
which is corrected in the analysis step. The state vector
is constructed from the three-dimensional concentrations
Ci(x,y,z,t) at the assimilation time ¢ for the bin species

https://doi.org/10.5194/acp-22-1773-2022
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Table 1. List of input parameters required by the data assimilation block in the FALL3D input configuration file.

Parameter Options Description
ASSIMILATION ON/OFF Enable assimilation
FILTER ETKF/LETKF Type of filter

Float value
Float value
Float value
Float value
Float value

ASSIMILATION_START
ASSIMILATION_END
FREQUENCY
FORGETTING_FACTOR
LOCAL_RANGE

TRANSFORMATION

WEIGHTING UNIFORM/EXPONENTIAL
SUPPORT_RANGE Float value
SATELLITE_FILE Filename
SATELLITE_DICTIONARY_FILE Filename
ASSIMILATED_TRACER TEPHRA/S02/H20
DIAMETER_CUT_OFF Float value
IGNORE_ZEROS YES/NO
SQRT_TRANSFORMATION YES/NO

DETERMINISTIC/RANDOM_ROTATION

Assimilation start time

Assimilation end time

Assimilation frequency in hours

Forgetting factor p € (0, 1]

Local radius for observations (L p)*

Type of ensemble transformation

Observation weighting

Exponential decay radius (Lgg)*

Input file with observations in NetCDF format
Input table with NetCDF variables

Species to assimilate

Cut-off diameter for volcanic ash in micrometres
Ignore non-positive observations

Apply a square root transformation to x

* Lg and LgR are defined in units of the model grid size.

i i=1,2,...). As concentration is a positive-semidefinite
variable, the prior PDF associated with the ensemble forecast
tends to show a right-skewed distribution. To illustrate this
aspect, the two-dimensional histogram in Fig. 3a shows the
skewness fi3 (i.e. u3/0>, the third standardised moment) of
the prior PDF computed for each grid cell at the first assimi-
lation time for the Raikoke experiment (see Sect. 4.2). Note
that a positive skewness (i3 > 0) predominates in all points,
with the most probable value (3 ~ 11) occurring when the
mean-to-sigma ratio (i.e. p/o, the mean-to-standard devi-
ation ratio) approaches zero. Interestingly, the relationship
3 =o/u (solid red line) defines a lower boundary which
is satisfied for almost all points (13 > o/u). The skewness
of the a priori PDF tends to the expected value for a normal
distribution (£t3 = 0) only for large values of /o . However,
values of /o above 0.5 are extremely unlikely to occur, and,
in general, skewness values satisfy i3 > 2. This has impor-
tant implications, as the Gaussian hypothesis assumed by the
Kalman filter theory is not satisfied. As a result, the analy-
sis step can yield an unrealistic posterior estimate, including
negative concentrations.

This is illustrated in Fig. 3b, which shows the two-
dimensional histogram plot for the posterior distributions re-
sulting from the LETKF. Clearly, the statistics of the analysis
ensemble tend to become Gaussian, and, as a result, the al-
gorithm generates an unrealistic ensemble which is not con-
sistent with the non-Gaussian Bayes’ theorem, introducing
artificial negative values for both ensemble mean and skew-
ness.

In this work, we follow a simple approach to partially fix
this problem by removing negative concentrations (a zero
value is assigned). This truncated state is no longer a solu-
tion of the original Kalman filter problem, and the ability of
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this method to produce an improved state should be explicitly
demonstrated. The probability of obtaining nonphysical so-
lutions increases with the local radius for observations (Lg)
and with the number of observations close to zero. For these
reasons, global filters such as ETKF are not considered here.
On the other hand, only observations with positive column
mass exceeding a given threshold, related to the detection
limit of satellite sensors, are assimilated.

In addition to removing negative data, we also explored an
alternative definition of the vector state x in terms of some
nonlinear transformation x = 7'(C), so that background con-
centration values close to zero are stretched out. A log-
arithmic function or the square root are two obvious op-
tions for 7. In this way, the filtering process occurs in
the transformed space, and, after the analysis, concentra-
tion can be recovered by applying the inverse transforma-
tion, i.e. C =T~!(x). This “transformed state” approach
failed with a logarithmic mapping due to the existence of few
outliers leading to extremely large concentrations when the
inverse transformation was applied. In contrast, the square
root transformation resulted in reasonable results and a sta-
ble filter. In practice, the square root transformation can be
enabled by the user through the FALL3D input parameter
SQRT_TRANSFORMATION, as indicated in Table 1.

3.4 Observation operator

The DA system supports assimilation of satellite-retrieved
mass loading (i.e. the vertical column mass per unit area) of
volcanic ash and gases (SO, and H,O). As a consequence,
the objective is to reconstruct the three-dimensional con-
centration C;(x,y,z) field of each species i from a two-
dimensional observational dataset. The observation operator

Atmos. Chem. Phys., 22, 1773-1792, 2022
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Figure 3. Two-dimensional histogram plot for the prior (a) and
analysis (b) distributions showing the probability density for skew-
ness (ft3) and mean-to-sigma ratio (i /o) values, where w refers to
ensemble mean and o to standard deviation. Results correspond to
the first assimilation cycle of the Raikoke experiment.

H, which projects a model state x € R" onto the observation
space, entails a vertical integration of concentration, a sum
over different species (if multi-species observations are being
assimilated), and, finally, the interpolation to the observation
coordinates. Note that, if the vector state x represents mass
concentration, H is a linear operator. This is the main ad-
vantage of focusing on mass loading rather than on other ob-
servable physical quantities, e.g. aerosol optical depth, which
would lead to a nonlinear observation operator.

The observation operator acting over the analysis vector
defines a vector y* € RP of analysed mass loading:

¥ = HF, ©)

where X* is the assimilated state vector (analysis).

In order to facilitate the visualisation and enable a direct
comparison with observations, the analysed mass loading,
y?, will be shown in the following figures. However, if not
explicitly stated otherwise, the full analysis state, i.e. X*, will
be used to compute the evaluation metrics (see Sect. 3.7).
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Table 2. Ensemble configuration for the twin and Raikoke exper-
iments. In order to generate the ensemble, eruption source param-
eters (ESPs) and wind components were perturbed around a refer-
ence value using either uniform or truncated normal distributions.
The Latin hypercube sampling (LSH) method is used to sample the
parameter space. The perturbed ESPs are eruption start time (7;),
source duration (AT), eruption column height (H), mass emission
rate (MER), parameters As and g of the Suzuki vertical mass dis-
tribution, and top-hat thickness (A Z).

Parameter  Reference value  Distribution  Sampling
range

True state for twin experiment

H 12-14 km? - -

Ash MER  Estimated® - -

Ag 6 - -

As 4 - -

AT 6h - -

U wind WRF-ARW - -

V wind WRF-ARW - -

Ensemble for twin experiment

H 10km Uniform +40 %

AshMER 107 kg/s Fixed -

Ag 6 Gaussian +25 %

As 4 Gaussian +25%

AT 6h Fixed -

U wind WRF-ARWY Gaussian +25 %

V wind WRE-ARWY Gaussian +25%

Ensemble for Raikoke experiment

H 12.5km Uniform +3 km

SO, MER 2 x 10° kg/s Uniform +20%

AZ 2km Uniform +1km

T; 00:00 UTCS Uniform +6h

AT 2h Uniform +1h

U wind GFS Uniform +25%

V wind GFS Uniform +25%

4 Variable column height as in Fig. 4. b parameterisation from Degruyter and
Bonadonna (2012). € On 22 June 2019. d Weather Research and
Forecasting-Advanced Research WRE.

3.5 Ensemble generation

In order to generate a set of m background states, FALL3D
automatically perturbs eruption source parameters (ESPs)
and horizontal wind components from a reference value us-
ing either uniform or truncated normal distributions (Folch
et al., 2021). A Latin hypercube sampling (LHS; McKay
etal., 1979) is used to efficiently sample the parameter space.
Table 2 lists the perturbed parameters in the twin and Raikoke
DA experiments that are considered in this work (see Sect. 4).
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3.6 Satellite retrievals

The satellite retrievals used for the Raikoke DA ex-
periment are SO» mass loading retrievals derived from
AHI/Himawari-8 measurements. Details of the retrieval
method are described in Appendix B of Prata et al. (2021).
The retrieval is based on the strong absorption of SO, near
the 7.3 um wavelength and is generally only sensitive to
upper-level (2 4km) SO, due to the masking effect of water
vapour absorption at lower levels in the atmosphere (Prata
et al., 2004). A conservative estimate of the relative uncer-
tainty on these mass loading retrievals is 30 %.

3.7 Evaluation metrics

When the true state x,, € R" is known (e.g. experiments with
synthetic observations as in Sect. 4.1), the difference between
the ensemble mean and the truth can be directly quantified
using the average root-mean-square error:

- 2
% —x:rll3

RMSE = @)

n

In contrast, for the case involving real observations (see
Sect. 4.2), the root-mean-square error is computed in the ob-
servation space according to

_ vay2
RMSE, = /M, (8)
P

where y € RP represents a vector with p observations, and
y? is the analysed mass loading vector defined by Eq. (6).

A measure of the uncertainty of the ensemble is given by
the ensemble spread, o.. The domain-averaged spread can be
defined in terms of the ensemble-based covariance matrix as

O = /@, 9)
n

where P, is the ensemble-based matrix for the covariance
defined by Eq. (2), and ¢r(P.) denotes the trace of P.. Note
that the true state is not involved in this definition, meaning
that this metric is independent of x;,.

Additionally, we also consider categorical metrics defined
for model and observations from the exceedance (or not)
of a given threshold. For example, in the case of categori-
cal metrics for the total column mass loading, a true posi-
tive means that both model and observation exceed a given
threshold value. The true positive rate or probability of de-
tection (POD) is defined as the number of true positives ()
divided by the number of false negatives (n_) plus the num-
ber of true positives (n4):

POD= "+ (10)

ny+n_’
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Table 3. Model configuration parameters for the numerical experi-
ments considered in this work.

Parameter Twin experiment  Raikoke experiment
Ensemble size 48 128

Resolution 0.1° x 0.1° 0.2° x 0.2°
Number of grid points 195 x 155 x 50 300 x 150 x 50
Species Four ash bins SO,

TGSD¢ Estimated?® -

Run time 36h 72h

Emission source Suzuki source? Top-hat source
Assimilation frequency 3 h 3h

Assimilation start time  6h 18h

a Costa et al. (2016a). © Pfeiffer et al. (2005). © Total grain size distribution.

The POD ranges from O to 1 (optimal), and, geometri-
cally, it can be interpreted as the area of the intersection
between the modelled and observed column mass contours,
normalised by the area of the observation contour (Folch
etal., 2021).

4 Numerical experiments

This section presents results from two numerical experiments
aiming at evaluating the performance of the FALL3D+PDAF
DA system under different filter configurations. The first ex-
periment (twin experiment) is described in Sect. 4.1, and
the second experiment (Raikoke experiment) is described in
Sect. 4.2. Table 3 summarises the model configuration de-
fined for each experiment.

A critical aspect in operational workflows is the compu-
tational cost required by the ensemble forecasting system.
FALL3D has been proven to have a good strong scalability
(above 90 % of parallel efficiency) up to several thousands of
processors (Folch et al., 2020). As the ensemble forecasting
task is embarrassingly parallel, major constraints on com-
puting time probably come from the analysis step. Simula-
tions were conducted on the Joliot-Curie supercomputer at
the CEA’s Very Large Computing Center (TGCC, France)
using 1152 processors for the twin experiment (ensemble
size: 48) and 3072 processors for the Raikoke experiment
(ensemble size: 128). The typical computing times were of
around 200 s (twin experiment) and 375 s (Raikoke experi-
ment).

4.1 Twin experiment

Twin experiments are commonly used to evaluate DA meth-
ods. In this case, the truth state is generated by a model run
in order to obtain a reference vector state. Synthetic observa-
tions are generated by adding random perturbations, which
represent non-correlated observation errors, to the true state.
An ensemble forecast is then produced by perturbing a state
estimate (different from the truth), and synthetic observations

Atmos. Chem. Phys., 22, 1773-1792, 2022
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Figure 4. Time evolution of the eruption column height used to
define the twin experiment true state. The 6 h duration eruption is
characterised by multiple eruptive phases with a duration of 20 min
and column height randomly sampled within the range 12—14 km
above the vent.

are assimilated. The performance of the ensemble filter can
be evaluated by comparing the assimilation results with the
true state.

The twin case study considers a fictitious eruption from
Etna driven by WRF-ARW meteorological data in order to
produce realistic atmospheric conditions. As stated in Ta-
ble 3, a 36 h numerical simulation was performed consider-
ing an eruption lasting 6 h with a mass emission rate (MER)
estimated from the eruptive column height (H) according to
Degruyter and Bonadonna (2012). The (synthetic) time evo-
lution of column height is shown in Fig. 4.

In a previous study including several cases, Costa et al.
(2016b) found a maximum column height variability of 30 %
for weak plumes and 10 % for strong plumes. Moreover,
Suzuki et al. (2016a, b) showed that a variability of up
to ~20% can simply be due to internal plume dynamics.
Correspondingly, the twin experiment in this work consid-
ers multiple eruptive phases with a duration of 20 min and
a column height sampled from a uniform probability dis-
tribution within the range 12—-14km above the vent (15.3—
17.3kma.s.l.). Such a time-varying source term can result
in complex cloud dynamics and represents a challenge for
dispersion models and DA. The Suzuki plume option was
adopted for the vertical distribution of mass (Pfeiffer et al.,
2005), and the total grain size distribution was estimated
from the time-varying column height following the param-
eterisation proposed by Costa et al. (2016a) assuming a
magma viscosity of n = 10° Pas. The computational domain
has a horizontal resolution of 0.1° and a domain size of n, x
ny Xn; =195 x 155 x 50 grid cells. Simulations involve four
fine ash bins (n, =4) with particle diameters d < 10 pm,
and, consequently, the dimension of the state vector x used
in the assimilation cycle is n = ny X ny xn; X np ~ 6 x 10°.
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Synthetic observations were generated by adding a Gaus-
sian noise to the column mass loading computed from the
true state. As in Pardini et al. (2020), a conservative relative
error of 40 % is considered for both the synthetic observa-
tions and the Raikoke SO, retrievals. In order to represent
a realistic scenario where the range of valid measurements
is restricted by the instrumental detection limit, we assume
mass loading observations are above a given threshold. For
example, Prata and Prata (2012) suggested a detection limit
of 0.2g m~2, approximately, for SEVIRI retrievals of ash
mass loading. On the other hand, Mingari et al. (2020) found
a good correlation between MODIS airborne ash detection
products and the 0.1 g m~2 mass loading contours simulated
by FALL3D. In this work, synthetic observations were de-
fined assuming a mass loading threshold of 0.15 g m™2.

The twin experiment considers a 48-member ensemble
and two types of simulations: (i) a free run without assimila-
tion and (ii) a set of LETKF runs, where observations were
incorporated with an assimilation frequency of 3 h beginning
at t = 6h after the simulation start (the total simulation time
was 36 h). To generate the ensemble, the column height was
uniformly sampled around a reference value of 10 km with a
perturbation range of 40 % and assuming a fixed mass flow
rate of 107 kg s~! (see Table 2). Since both eruption column
height and eruption rate are assumed to be constant here, no
single member can actually reproduce the true state by it-
self because the control run was defined from a time-varying
source term (Fig. 4). Furthermore, the ensemble central col-
umn height (H = 10km) tends to underestimate the true col-
umn height. Consequently, the ensemble was not optimally
constructed to mimic a realistic situation in an operational
forecasting workflow in which the exact column height is un-
known.

4.1.1  Twin experiment results

The spatial distribution of mass loading is shown in Fig. 5
at simulation time ¢ = 18h after the eruption start time ac-
cording to the true state (Fig. 5a), synthetic observations
(Fig. 5b), ensemble free run without assimilation (Fig. 5c¢),
and LETKF analysis (Fig. 5d). In all cases, the ash cloud
for this idealised eruption is transported eastwards by upper-
level winds. As expected, the free run case shows a broader
spatial distribution than the true state due to the ensemble
spread. Moreover, the free run incorrectly predicts the loca-
tion of the column mass maximum occurring over the north-
ern region of the cloud. In contrast, the analysed mass load-
ing field approaches the true state after a few assimilation
cycles (Fig. 5d).

To quantify the impact of DA, the RMSE and ensemble
spread were computed using Egs. (7) and (9). Figure 6a
shows the time-averaged (over the whole simulated period)
RMSE for different localisation radii and two multiplicative
inflation factors of A =1 (black triangles) and A = 1.2 (red
circles). Simulations were repeated three times to inspect the
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Figure 5. Spatial distribution of ash mass loading for the twin experiment at + = 18 h after eruption start. The true state (a) given by a single
run assumes a time-varying emission. Synthetic observations (b) are generated from the truth by adding a Gaussian noise and assuming an
observation error variance of 40 %. The impact of the LETKF DA becomes evident by comparing results from the free ensemble run without

assimilation (c¢) with the analysed mass loading (d).

impact of the random noise, and the resulting metrics were
averaged (solid lines). Despite the large scattered data, op-
timal localisation radius seems to be between L = 2° and
Lr =4° (20 to 40 grid cells), with a notorious degradation
of performance for L < 2° (see Fig. 6a). Increasing the in-
flation factor from A =1.0 to A =1.2 resulted in slightly
smaller RMSE in most of the ensemble realisations (Fig. 6a).

Hourly time series of the evaluation metrics are shown in
Fig. 6b for the free and LETKF runs (analysis times are in-
dicated by star symbols). The optimal parameters Lg = 4°
and A = 1.2 were used here to configure the LETKF run. As
expected for a diffusive process without sources, the RMSE
decreases from ¢t = 6h, when the eruption ends. Clearly, the
LETKEF simulation outperforms the free run. The impact of
DA becomes more apparent by looking at the relative RMSE,
i.e. the LETKF-to-free ratio of RMSE. In the first assimila-
tion cycle at t = 6h, the relative RMSE decreases abruptly
from 1 down to ~ 0.2. During successive assimilation cy-
cles this ratio decreases further, suggesting that the analysis
is converging to the true state.

The ensemble spread should be close to the analysis er-
ror since under-dispersive ensembles are prone to filter di-
vergence. As depicted in Fig. 6b, a steep decrease in spread

https://doi.org/10.5194/acp-22-1773-2022

occurs at each assimilation time, which is compensated for
by the ensemble variability introduced during each forecast
period. The 3 h assimilation frequency turned out to be suffi-
cient to keep spread just above the RMSE during each assim-
ilation cycle, meaning that uncertainties are correctly repre-
sented by the ensemble.

In conclusion, the twin experiment shows that it is possible
to reconstruct the original 3D model state of concentration
field from an incomplete dataset of 2D measurements subject
to uncertainty. A good filter performance was achieved de-
spite the fact that column mass data below 0.15g m~2 were
discarded, i.e. the fact that only a fraction of the available
column mass data were actually assimilated.

4.2 The 2019 Raikoke eruption

On 21 June 2019, the Raikoke volcano (48.292°N,
153.25°E) in the Kuril Islands (Russia) had a significant
eruption that disrupted major flight routes across the North
Pacific (Prata et al., 2021). The eruption injected ash and
gases into the atmosphere in a sequence of around 10 erup-
tive pulses, from the initial explosive phase at 18:00 UTC on
21 June until 10:00 UTC on 22 June (Muser et al., 2020). The

Atmos. Chem. Phys., 22, 1773-1792, 2022
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Figure 6. Evaluation metrics used for the twin experiment are as
follows. (a) Time-averaged RMSE computed for different filter con-
figurations and three ensemble realisations. Best performance was
obtained for localisation radius, L g, in the range 2—4°and an infla-
tion factor of A = 1.2. (b) Temporal evolution of ensemble spread
and RMSE for the free and LETKF runs. (¢) Time series of LETKF-
to-free ratio of RMSE. Assimilation times are denoted by star sym-
bols.

eruption sequence was captured by the Himawari-8 satellite
at both IR and visible wavelengths. A remarkable amount of
SO, was injected into the atmosphere during these explosive
phases, producing a long-range transport of SO, that could
be detected by satellite instrumentation.

In order to simulate this event, the FALL3D computational
domain was configured using a horizontal resolution of 0.2°
and a domain size of n, x ny x n; =300 x 150 x 50 grid
cells. In this case, the state vector x includes only SO, and
has a size of n ~ 2 x 10°. For this experiment, 72 h numeri-
cal simulations were conducted starting on 21 June 2019 at
18:00 UTC using 128 ensemble members. A free run without
DA and several LETKF runs were performed for comparative
purposes. Assimilation starts on 22 June 2019 at 12:00 UTC
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with a frequency of 3 h for the successive assimilation cycles.
The top-hat option was adopted for the vertical mass distri-
bution in the source term; i.e. the source term is defined by
a uniform mass distribution along a layer of thickness AZ
and top at height H. Both parameters were perturbed with
central values of AZ =2km and H = 12.5km above sea
level. In addition, mass emission rate (MER), start time and
duration of eruption, and wind components were also per-
turbed. Specifically, the emission start time was uniformly
sampled between 18:00 UTC on 21 June and 06:00 UTC on
22 June, assuming a duration of AT =2 =+ 1h for each en-
semble member. Note that the eruption total time for Raikoke
was around 14 h, meaning that each ensemble member repre-
sents a possible eruptive phase lasting a fraction of the total
eruption time. This approach was adopted in order to repro-
duce a multi-phase eruptive scenario with a complex time-
varying emission source term. In this case, the real state in-
volves a mixture of multiple ensemble members with weights
to be determined by the analysis step.

The list of model parameters used to generate the ensem-
ble is detailed in Table 2, and Table 3 summarises the gen-
eral model configuration used in the Raikoke experiment.
The dispersal model was driven by meteorological data from
the Global Forecast System (GFS) model instead of using re-
analysis data in order to replicate an operational forecasting
environment.

4.2.1 Raikoke experiment results

Figure 7 compares the spatial distribution of SO, mass load-
ing according to the satellite retrievals (left panel), free run
(central panel), and analysis (right panel) at three time in-
stants. On 22 June, the volcanic plume is influenced by
upper-level zonal winds and moves eastwards crossing the
180th meridian. From 23 June, the plume of sulfur dioxide
gets trapped within the cyclonic circulation of the Aleutian
low, causing the airborne material to spiral anticlockwise for
several days (Kloss et al., 2021).

In order to assess the filter performance, two quantitative
metrics defined in Sect. 3.7 will be considered below. First,
the root-mean-square error (RMSE,) is computed in the ob-
servation space using Eq. (8). Figure 8a shows the RMSE,
for all the analysis states using different localisation radius
(Lgr =2, 4 and 6°). Despite the occurrence of nonphysi-
cal solutions (grid cells with negative concentrations) dur-
ing the first assimilation cycle, the truncated LETKF solu-
tions outperform the free run in all cases. After successive
assimilation cycles, the ensemble analysis becomes closer to
a Gaussian distribution, and the probability of obtaining non-
physical solutions diminishes. Results in Fig. 8 also show
that RMSE,, decreases with the localisation radius. Specif-
ically, the time-averaged RMSE, (Fig. 8b) decreased from
1.08 gm™2 (Lg =6°)t0 0.87 gm~2 (Lg = 2°). Overall, the
analysis errors were decreased by more than 50 % relative
to the free run errors. However, it is important to highlight
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Figure 7. Spatial distribution of SO, mass loading at different time instants: (a—c) 22 June at 15:00 UTC, (d—f) 23 June at 00:00 UTC and
(g—1) 23 June at 09:00 UTC. The column panels show observations (left panel), free run (central panel) and analysed mass loading (right
panel). Panels in the central and right columns correspond to ensemble means.

that it is not possible to infer the filter performance was im-
proved by decreasing the localisation radius as no true state
is now available to compute the actual RMSE (see Sect. 4.1).
Finally, Fig. 8b also shows results for the LETKF (sqrt) sim-
ulations, where the option SQRT_TRANSFORMATION was
enabled (see Sect. 3.3), meaning the vector state was con-
structed from the square root of the concentration. This ap-
proach resulted in a slightly smaller RMSE,, but the impact
does not appear to be significant.

While the free run results show a very poor correlation
between observed and modelled SO, mass loading, a clear
correlation emerges after a few assimilation cycles in the
LETKF simulations. As an example, Fig. 9 shows a compar-
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ison between the observed and analysed mass loading at the
fourth assimilation cycle. A systematic bias, likely caused by
the characteristics of the ensemble distribution, was found at
each assimilation cycle, and analysis tends to underestimate
observations. In this particular cycle, for instance, an average
bias of 0.41 g m~2 was found.

The spatial distribution of observed and analysed mass
loading for the SO; cloud on 23 June at 12:00 UTC is shown
in Fig. 10 along with the cloud top height derived from the
analysed state. A complete sequence of the temporal evo-
lution for this figure can be found in the Supplement. The
cloud top height is defined as the upper height of a given iso-
concentration contour (50ug m~—> was assumed here). The
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model can correctly capture the position of the SO, plume for
mass loading contours above 1g m~2. However, no observa-
tions are available below 0.5g m~2 (e.g. see Fig. 9), mak-
ing the comparison for low mass loading values challeng-
ing. Specifically, the analysed mass loading indicates the ex-
istence of a low-level cloud in the southern region that could
not be detected by the satellite retrievals.

Finally, we computed categorical metrics based on the
1 g m~2 contour of SO, mass loading. The resulting maps are
shown in Fig. 11 for three time instants. The complete time
sequence can be found in the Supplement. The plume dy-
namics according to the free run (top panel) follows a similar
pattern to that found in previous simulations by Prata et al.
(2021). Specifically, the free run (solid red line) and observed
contours (green shaded area) diverge after a few time steps.
In contrast, the contours corresponding to simulations with
data assimilation evolve concurrently with observations for
all simulated times (Fig. 11, bottom panel).

The performance of the simulations can be quantified
through the POD categorical metric (Eq. 10), which can be
interpreted geometrically as the ratio between the intersec-
tion area delimited by both the observation and model con-
tours and the total area of the observation contour. Figure 12
shows the temporal evolution of the POD. After a forecast

Atmos. Chem. Phys., 22, 1773-1792, 2022

L. Mingari et al.: Data assimilation of volcanic aerosols

4th assimilation cycle

Observed mass loading [g m~2]

Average bias=0.41gm™?

1 2 3 4 5
Analysed mass loading [g m~2]

Figure 9. Comparison of SO, mass loading observations and the
analysis state at the fourth assimilation cycle. In general, analy-
sis underestimates observations. In this case, an average bias of
041g m~2 was found.

time of around r = 18 h, this metrics tends to decrease mono-
tonically for the free run, whereas it remains close to the op-
timal value (POD = 1) along all time steps when data assim-
ilation is enabled. A sudden increase in this metric occurs
at each assimilation cycle (square symbols), clearly visible
from Fig. 12, which prevents this metric from degrading sig-
nificantly. In conclusion, POD remains in the range around
0.8-0.9.

5 Discussions

In this work, a localised version of the ensemble Kalman fil-
ter LETKF has shown to be a promising alternative for as-
similation of volcanic aerosols. Despite the limitations of this
method, resulting in suboptimal filter performance, our find-
ings do nevertheless show that a significant improvement of
evaluation metrics was achieved.

Ensemble Kalman filters give an optimal state estimate un-
der the following implicit assumptions: (i) the distribution of
the background is Gaussian, (ii) the observational error has
Gaussian distribution, and (iii) the forward model and obser-
vation operator are linear. FALL3D is a dispersal model with
weak nonlinear terms, and modelling complex multi-phase
eruptions entails the contribution of multiple ensemble mem-
bers to properly represent the model state. However, in this
work it has been shown that skewness is a significant issue,
and the condition (i) is largely violated, resulting in subopti-
mal behaviour from the EnKF.

Different approaches have been proposed for dealing with
non-Gaussianity, including variable transformations (e.g.
Zhou et al., 2011; Amezcua and Van Leeuwen, 2014) and
Bayesian approaches, such as a particle filter (e.g. van
Leeuwen and Ades, 2013) or the nonlinear ensemble trans-
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results corresponding to the free run (top panel) and the analysis (bottom panel) are compared. A localisation radius of L g = 2° was defined

for the data assimilation method.

form filter (NETF; Todter and Ahrens, 2015). Unfortunately,
these methods suffer from a series of pitfalls. For instance,
variable transformation applied to skewed prior distributions
would require highly nonlinear transformations to obtain
state variables fulfilling the Gaussianity conditions, again
leading to suboptimal states. On the other hand, particle fil-
ters and NETF are exposed to weight collapse due to the so-
called curse of dimensionality, which would result in a poor
performance in complex eruptive scenarios with stochas-
tic time-varying emission source parameters. In addition,
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although the aforementioned methods may be suitable for
problems involving highly nonlinear processes, ensemble-
based Kalman filters are expected to work better for linear
and Gaussian problems (e.g. Todter and Ahrens, 2015). In
consequence, it is not clear which of these methods would
result in a better performance for linear (or weakly nonlin-
ear) and non-Gaussian problems.

Promising results obtained in this work using LETKF sug-
gest that the natural approach for dealing with assimilation of
volcanic aerosols in future research should focus on ensem-
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ble Kalman filters in which the Gaussian assumption is not
made at all. For example, Bishop (2016) proposed an ensem-
ble Kalman filter for highly skewed non-negative uncertainty
distributions. This approach allows the EnKF to be gener-
alised with few coding changes and little additional compu-
tational expense. Finally, higher-order EnKFs have also been
proposed (e.g. Hodyss, 2012; Hodyss and Campbell, 2013)
and could potentially address the aforementioned issues.

6 Conclusions

A detailed study has been conducted in order to assess the
feasibility of using ensemble-based Kalman filters for data
assimilation (DA) of volcanic aerosol observations. To this
purpose, a new DA system based on coupling the FALL3D
dispersal model with the Parallel Data Assimilation Frame-
work (PDAF) has been implemented in the latest release of
FALL3D (v8.2). The system supports online-coupled DA,
can be run in parallel exploiting high-performance comput-
ing (HPC) resources and is suitable for an operational work-
flow. The computing time required by the numerical simula-
tions carried out in this work ranges between 2 (twin experi-
ment) and 6 (Raikoke experiment) minutes.

One of the major assumptions in the (ensemble) Kalman
filters is that the prior model errors and the observation
noise are Gaussian. However, ensemble forecasts of vol-
canic aerosols yield to a non-Gaussian prior, with positively
skewed distributions. Consequently, the ability of the assim-
ilation technique to produce an improved model state com-
patible with the available observations requires explicit veri-
fication.

We carried out two numerical experiments in which mass
loading data were assimilated using the local ensemble trans-
form Kalman filter (LETKF). Both test cases are charac-
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terised by complex plume dynamics and time-varying erup-
tive source parameters (ESPs) that pose a challenge to dis-
persion models, especially in operational environments. The
complexities involved in the definition of the source term
were intentionally discarded in the prior ensemble construc-
tion in order to replicate an operational environment, where
such variations are typically unknown. A constant eruption
column height (H) and mass emission rate (MER) were as-
sumed for each ensemble member, meaning that no mem-
ber can individually reproduce the case study correctly. In
the twin experiment, the analysis converged to the true state
when observations were continuously assimilated with a fre-
quency of 3 h. In the second experiment, involving the SO;
plume produced by the 2019 Raikoke eruption, categorical
metrics (POD) also remain close to optimal values as long as
observations are continuously assimilated every 3 h.

Even though the results presented here are encouraging,
the proposed truncated LETKF methodology is not optimal
and should be tested in broader contexts and under different
scenarios. We also encourage the community to test and de-
velop more appropriate methodologies for positively skewed,
non-Gaussian prior distributions.

Appendix A: Ensemble Kalman filter

The Kalman filter (KF) is a sequential data assimilation (DA)
method that provides an optimal solution for linear models
with linear observation operators (Kalman, 1960). In addi-
tion, KF also assumes Gaussian distributions for model er-
rors and observation noise. If the state of a physical system
can be represented by an n-dimensional vector, the analysis
step of the KF consists in determining the a posteriori (anal-
ysis) state estimate, represented by a vector x* € R”, and its
associated covariance matrix P? € R"*", given a vector of
observations y € RP and the a priori (background) state es-
timate x® along with the error covariance matrix PP. In the
analysis step, the state estimate and covariance are updated
according to the KF equations:

x* =x? 4+ K(y — Hx),
P = P — KHPP,

(Ala)
(Alb)

where H € RP*" is the observation operator that translates a
model state x into the observation space and K € R"*? is the
so-called Kalman gain matrix given by

K = PPHT(HP’H™ + R)"!, (A2)

where R € RP*? is the observation error covariance matrix.
Note that any reference to time indices is omitted here. The
Kalman gain matrix assigns relative weights to observations.
A high-gain filtering implies more weight to measurements,
whereas a low-gain filtering tends to follow the model more
closely.

The ensemble Kalman filter (EnKF) is a family of meth-
ods in which the state estimate of the system is represented
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by an ensemble of system states that actually provide a
Monte Carlo approximation of the KF and replace the orig-
inal covariance matrix by a sample covariance matrix P,
computed from the ensemble (Evensen, 1994). Given an en-
semble of background states {xlb :1=1,2,...,m}, the anal-
ysis step consists in determining an ensemble of analyses
{xi.1 :i=1,2,...,m} in agreement with Eq. (Ala, b) but for-
mulated in terms of the ensemble-based mean vector (Eq. 1)
and covariance matrix (Eq. 2). The ensemble mean is updated
using the standard KF analysis equation, Eq. (Ala),

¥ =% +Ke(y — Hx"), (A3)
with K¢ being the ensemble-based Kalman gain matrix:
K. = X°YT(YY"+R) !, (A4)

where we have defined Y = HX® and X" is given by Eq. (3).
Note that, with respect to Eq. (A2), the ensemble-based gain
matrix K¢ considers the ensemble background perturbations
XP and their projections onto the observation space through
the matrix Y € RP*"_ In this way, the best estimate of the
current state is determined in the analysis step through a
weighted linear combination of the prior ensemble pertur-
bations.

Different EnFK methods vary depending on how the en-
semble analysis is defined so that the update for the en-
semble covariance matrix is consistent with the original KF
Eq. (Ala, b). Most formulations can be divided into two ma-
jor categories, the stochastic (e.g. the perturbed observation-
based EnKF formulation from Burgers et al., 1998) and the
deterministic (Houtekamer and Zhang, 2016) approaches.
The latter group includes the so-called square-root filters that
use deterministic algorithms to generate the analysis ensem-
ble (Nerger et al., 2012).

The ensemble transform Kalman filter (ETKF; Bishop
et al., 2001) is a popular square-root filter formulation that is
considered in this work. A square-root filter requires a matrix
W € R"™*™ to transform the ensemble perturbations accord-
Ing to

X2 = XPW. (A5)

In order to obtain the ensemble perturbations, the covariance
update is required to be consistent with the original KF for-
mulation given by Eq. (Ala, b), leading to (e.g. see Carrassi
et al., 2018)

XHXYT = (XDAX)T, (A6)
where A € R™>*™ is the so-called transform matrix, defined
by A=l =1+ YTR™Y (Nerger et al., 2012). If the square
root is denoted by C (i.e. CCT = A), the weight matrix W is

assumed to be expressed as

W = CA, (A7)
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where A € R™*™ is any orthogonal matrix preserving the
ensemble mean (see Sect. 3.1). In this work, the symmetric
square root is used to define C according to the symmetric
factorisation

Cc=us2yr (A8)

using the singular value decomposition: USV = A~!. This
definition of the root square matrix ensures that the ensemble
mean is preserved (Hunt et al., 2007).

Code availability. FALL3D-8.2 is available under version 3 of
the GNU General Public License (GPL) at https://gitlab.com/
fall3d-distribution/v8 (last access: 12 January 2022). The PDAF
code (version 1.14 was used here) and full documentation are avail-
able at http://pdaf.awi.de (last access: 11 November 2020) (Nerger
et al., 2005, 2020).
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