Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14931-2022
https://doi.org/10.5194/acp-22-14931-2022
Research article
 | 
23 Nov 2022
Research article |  | 23 Nov 2022

The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity

Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter

Related authors

Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022,https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Technical Note: A technique to convert NO2 to NO2 with S(IV) and its application to measuring nitrate photolysis
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024,https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024,https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024,https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024,https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary

Cited articles

Abuduwaili, J., Liu, D., and Wu, G.: Saline dust storms and their ecological impacts in arid regions, J. Arid Land, 2, 144–50, https://doi.org/10.3724/SP.J.1227.2010.00144, 2010. 
Ahmady-Birgani, H., Ravan, P., Schlosser, J. S., Cuevas-Robles, A., AzadiAghdam, M., and Sorooshian, A.: On the chemical nature of wet deposition over a major desiccated lake: Case study for Lake Urmia basin, Atmos. Res., 234, 104762, https://doi.org/10.1016/j.atmosres.2019.104762, 2020. 
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. 
Bigg, E.: Ice Nucleus Concentrations in Remote Areas, J. Atmos. Sci., 30, 1153–1157, https://doi.org/10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2, 1973. 
Bish, D. L. and Plötze, M.: X-ray Powder Diffraction with Emphasis on Qualitative and Quantitative Analysis in Industrial Mineralogy, in: Advances in the characterization of industrial minerals, edited by: Christidis, G. E., EMU and Mineralogical Society, London, 9, 35–76, 2010. 
Short summary
Dust aerosols from dried lakebeds contain mineral particles, as well as soluble salts and (bio-)organic compounds. Here, we investigate ice nucleation (IN) activity of dust samples from Lake Urmia playa, Iran. We find high IN activity of the untreated samples that decreases after organic matter removal but increases after removing soluble salts and carbonates, evidencing inhibiting effects of soluble salts and carbonates on the IN activity of organic matter and minerals, especially microcline.
Altmetrics
Final-revised paper
Preprint