Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Alain Protat
Bureau of Meteorology, Melbourne, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Marc D. Mallet
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Simon P. Alexander
Australian Antarctic Division, Hobart, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Matthew T. Woodhouse
Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Related authors
Beth Dingley, James A. Anstey, Marta Abalos, Carsten Abraham, Tommi Bergman, Lisa Bock, Sonya Fiddes, Birgit Hassler, Ryan J. Kramer, Fei Luo, Fiona M. O'Connor, Petr Šácha, Isla R. Simpson, Laura J. Wilcox, and Mark D. Zelinka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3189, https://doi.org/10.5194/egusphere-2025-3189, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This manuscript defines as a list of variables and scientific opportunities which are requested from the CMIP7 Assessment Fast Track to address open atmospheric science questions. The list reflects the output of a large public community engagement effort, coordinated across autumn 2025 through to summer 2025.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024, https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Short summary
In this study we present an evaluation that considers complex, non-linear systems in a holistic manner. This study uses XGBoost, a machine learning algorithm, to predict the simulated Southern Ocean shortwave radiation bias in the ACCESS model using cloud property biases as predictors. We then used a novel feature importance analysis to quantify the role that each cloud bias plays in predicting the radiative bias, laying the foundation for advanced Earth system model evaluation and development.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021, https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Short summary
Coral reefs are known to produce the aerosol precursor dimethyl sulfide (DMS). Currently, this source of coral DMS is unaccounted for in climate modelling, and the impact of coral reef extinction on aerosol and climate is unknown. In this study, we address this problem using a coupled chemistry–climate model for the first time. We find that coral reefs make a minimal contribution to the aerosol population and are unlikely to play a role in climate modulation.
Sonya L. Fiddes, Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, https://doi.org/10.5194/acp-18-10177-2018, 2018
Short summary
Short summary
The role of natural aerosol in the climate system is uncertain. A key contributor to marine aerosol is dimethyl sulfide (DMS), released by phytoplankton in the oceans. We study the effect of DMS on clouds and rain using a climate model with a detailed aerosol scheme. We show that DMS acts to reduce rainfall in cloud deck regions, leading to longer lived clouds and a large impact on solar energy reaching the surface. Further study of these areas will improve future climate projections.
Beth Dingley, James A. Anstey, Marta Abalos, Carsten Abraham, Tommi Bergman, Lisa Bock, Sonya Fiddes, Birgit Hassler, Ryan J. Kramer, Fei Luo, Fiona M. O'Connor, Petr Šácha, Isla R. Simpson, Laura J. Wilcox, and Mark D. Zelinka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3189, https://doi.org/10.5194/egusphere-2025-3189, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This manuscript defines as a list of variables and scientific opportunities which are requested from the CMIP7 Assessment Fast Track to address open atmospheric science questions. The list reflects the output of a large public community engagement effort, coordinated across autumn 2025 through to summer 2025.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024, https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Short summary
In this study we present an evaluation that considers complex, non-linear systems in a holistic manner. This study uses XGBoost, a machine learning algorithm, to predict the simulated Southern Ocean shortwave radiation bias in the ACCESS model using cloud property biases as predictors. We then used a novel feature importance analysis to quantify the role that each cloud bias plays in predicting the radiative bias, laying the foundation for advanced Earth system model evaluation and development.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Ben A. Cala, Scott Archer-Nicholls, James Weber, N. Luke Abraham, Paul T. Griffiths, Lorrie Jacob, Y. Matthew Shin, Laura E. Revell, Matthew Woodhouse, and Alexander T. Archibald
Atmos. Chem. Phys., 23, 14735–14760, https://doi.org/10.5194/acp-23-14735-2023, https://doi.org/10.5194/acp-23-14735-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS) is an important trace gas emitted from the ocean recognised as setting the sulfate aerosol background, but its oxidation is complex. As a result representation in chemistry-climate models is greatly simplified. We develop and compare a new mechanism to existing mechanisms via a series of global and box model experiments. Our studies show our updated DMS scheme is a significant improvement but significant variance exists between mechanisms.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022, https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Short summary
Recent improvements to global parameterisations of oceanic ozone dry deposition and lightning-generated oxides of nitrogen (LNOx) have consequent impacts on earth's radiative fluxes. Uncertainty in radiative fluxes arising from uncertainty in LNOx is of significant magnitude in comparison with the
present-dayIPCC AR6 anthropogenic effective radiative forcing (ERF) due to ozone. Hence, uncertainty in LNOx needs to be explicitly addressed in relation to the GWP and ERF of anthropogenic methane.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Paola Formenti, Claudia Di Biagio, Yue Huang, Jasper Kok, Marc Daniel Mallet, Damien Boulanger, and Mathieu Cazaunau
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-403, https://doi.org/10.5194/amt-2021-403, 2021
Publication in AMT not foreseen
Short summary
Short summary
This paper provides with standardized correction factors for the measurements of the most common instruments used in the atmosphere to measure the concentration per size of aerosol particles. These correction factors are provided to users with supplementary information for their use.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Ruhi S. Humphries, Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, James Harnwell, Connor Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Alain Protat, Simon P. Alexander, and Greg McFarquhar
Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, https://doi.org/10.5194/acp-21-12757-2021, 2021
Short summary
Short summary
The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. In this paper we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys., 21, 7053–7082, https://doi.org/10.5194/acp-21-7053-2021, https://doi.org/10.5194/acp-21-7053-2021, 2021
Short summary
Short summary
Lightning-generated nitrogen oxides (LNOx) greatly influence tropospheric photochemistry. The most common parameterisation of lightning flash rate used to calculate LNOx in global composition models underestimates measurements over the ocean by a factor of 20–25. We formulate and validate an alternative parameterisation to remedy this problem. The new scheme causes an increase in the ozone burden by 8.5 % and the hydroxyl radical by 13 %, and these have implications for climate and air quality.
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021, https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Short summary
Coral reefs are known to produce the aerosol precursor dimethyl sulfide (DMS). Currently, this source of coral DMS is unaccounted for in climate modelling, and the impact of coral reef extinction on aerosol and climate is unknown. In this study, we address this problem using a coupled chemistry–climate model for the first time. We find that coral reefs make a minimal contribution to the aerosol population and are unlikely to play a role in climate modulation.
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Alain Protat and Ian McRobert
Atmos. Meas. Tech., 13, 3609–3620, https://doi.org/10.5194/amt-13-3609-2020, https://doi.org/10.5194/amt-13-3609-2020, 2020
Short summary
Short summary
Three-dimensional (3D) wind motions play a major role in driving the life cycle of clouds. In this pilot study we have developed a technique to measure the 3D winds in clouds, using a shipborne Doppler cloud radar on a stabilized platform. The stabilized platform is driven to point in a series of predefined directions to collect the required measurements. Comparisons with radiosondes demonstrate that accurate 1 min resolution 3D wind motions can be obtained from this instrumental setup.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Short summary
We present a trajectory-based model for simulating the transport of air parcels by convection. Our model extends the approach of existing models by explicitly simulating vertical updraft velocities inside the clouds and the time that an air parcel spends inside the convective event.
Robert C. Jackson, Scott M. Collis, Valentin Louf, Alain Protat, and Leon Majewski
Atmos. Chem. Phys., 18, 17687–17704, https://doi.org/10.5194/acp-18-17687-2018, https://doi.org/10.5194/acp-18-17687-2018, 2018
Short summary
Short summary
This paper looks at a 17 year database of echo top heights of thunderstorms in Darwin retrieved by CPOL. We find that the echo top heights are generally bimodal, corresponding to cumulus congestus and deep convection, and show a greater bimodality during an inactive MJO. Furthermore, we find that convective cell areas are larger in break conditions compared to monsoon conditions, but only during MJO-inactive conditions.
Sonya L. Fiddes, Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, https://doi.org/10.5194/acp-18-10177-2018, 2018
Short summary
Short summary
The role of natural aerosol in the climate system is uncertain. A key contributor to marine aerosol is dimethyl sulfide (DMS), released by phytoplankton in the oceans. We study the effect of DMS on clouds and rain using a climate model with a detailed aerosol scheme. We show that DMS acts to reduce rainfall in cloud deck regions, leading to longer lived clouds and a large impact on solar energy reaching the surface. Further study of these areas will improve future climate projections.
Ashok K. Luhar, Matthew T. Woodhouse, and Ian E. Galbally
Atmos. Chem. Phys., 18, 4329–4348, https://doi.org/10.5194/acp-18-4329-2018, https://doi.org/10.5194/acp-18-4329-2018, 2018
Short summary
Short summary
Dry deposition at the Earth’s surface is an important sink of atmospheric ozone. A new parameterisation for ozone dry deposition to the ocean that accounts for relevant chemical and physical processes is developed and tested. It results in an ocean deposition loss that is only about a third of the current model estimates and corresponds to an increase of 5 % in the tropospheric ozone burden. This is important for tropospheric ozone budget, associated radiative forcing, and ozone mixing ratios.
Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe
Atmos. Meas. Tech., 11, 1615–1637, https://doi.org/10.5194/amt-11-1615-2018, https://doi.org/10.5194/amt-11-1615-2018, 2018
Short summary
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.
McKenna W. Stanford, Adam Varble, Ed Zipser, J. Walter Strapp, Delphine Leroy, Alfons Schwarzenboeck, Rodney Potts, and Alain Protat
Atmos. Chem. Phys., 17, 9599–9621, https://doi.org/10.5194/acp-17-9599-2017, https://doi.org/10.5194/acp-17-9599-2017, 2017
Short summary
Short summary
Radar reflectivity is a valuable observational tool used to guide numerical weather model improvement. Biases in simulated reflectivity help identify potential errors in physical process and property representation in models. This study uniquely compares simulated and observed tropical convective systems to establish that a commonly documented high bias in radar reflectivity values at least partially results from the production of simulated ice particle sizes that are larger than observed.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Marcus Thatcher
Atmos. Chem. Phys., 17, 3749–3767, https://doi.org/10.5194/acp-17-3749-2017, https://doi.org/10.5194/acp-17-3749-2017, 2017
Short summary
Short summary
Dry deposition of tropospheric ozone relates to its destruction at the Earth’s surface. An improved model scheme for such deposition to the ocean is formulated backed up by field data. It results in the oceanic dry deposition of ozone to be 12 % of the global total, which is much lower than the current model estimate of about 30 %. This result has implications for modelling global tropospheric ozone budget and its radiative forcing, and ozone mixing ratios, especially in the Southern Hemisphere.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
M. T. Woodhouse, G. W. Mann, K. S. Carslaw, and O. Boucher
Atmos. Chem. Phys., 13, 2723–2733, https://doi.org/10.5194/acp-13-2723-2013, https://doi.org/10.5194/acp-13-2723-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
On the impact of thunder on cloud ice crystals and droplets
Counteracting influences of gravitational settling modulate aerosol impacts on cloud-base-lowering fog characteristics
The critical number and size of precipitation embryos to accelerate warm rain initiation
Impact on the stratocumulus-to-cumulus transition of the interaction of cloud microphysics and macrophysics with large-scale circulation
Technical note: Phase space depiction of cloud condensation nuclei activation and cloud droplet diffusional growth
Impact of wildfire smoke on Arctic cirrus formation – Part 2: Simulation of MOSAiC 2019–2020 cases
Constraining aerosol–cloud adjustments by uniting surface observations with a perturbed parameter ensemble
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
Exploiting airborne far-infrared measurements to optimise an ice cloud retrieval
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Microphysical fingerprints in anvil cloud albedo
Influence of Secondary Ice Production on cloud and rain properties: Analysis of the HYMEX IOP7a Heavy Precipitation Event
Factors Causing Stratocumulus to Deviate from Subtropical High Variability on Seasonal to Interannual Timescales
The influence of Amazonian anthropogenic emissions on new particle formation, aerosol, cloud and surface rain
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Tropical cirrus evolution in a km-scale model with improved ice microphysics
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Impacts of aerosol-radiation and aerosol-cloud interactions on a short-term heavy rainfall event – A case study in the Guanzhong Basin, China
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Failed cyclogenesis of a mesoscale convective system near Cape Verde: The role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Ice formation processes key in determining WCB outflow cirrus properties
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
High-resolution modelling of early contrail evolution from hydrogen-powered aircraft
Investigating the impact of subgrid-scale aerosol-cloud interaction on mesoscale meteorology prediction
Identifying Synoptic Controls on Boundary Layer Thermodynamic and Cloud Properties in a Regional Forecast Model
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Can pollen affect precipitation?
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
The subtleties of three-dimensional radiative effects in contrails and cirrus clouds
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
On the Processes Determining the Slope of Cloud-Water Adjustments in Non-Precipitating Stratocumulus
High sensitivity of simulated fog properties to parameterized aerosol activation in case studies from ParisFog
Adiabatic and radiative cooling are both important causes of aerosol activation in simulated fog events in Europe
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025, https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain underrepresented. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature profiles. The model also struggles to capture the observed cloud phase and the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025, https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
Short summary
This study aims to investigate how cloud seeding affects snowfall in Australia's Snowy Mountains. By running simulations with different setups, we found that seeding impact varies greatly with weather conditions. Seeding increased snow in stable weather but sometimes reduced it in stormy weather. This helps us to better understand when seeding works best to boost water supplies.
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025, https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary
Short summary
This study explores how uncertainties in the representation of microphysical processes affect the tropical condensate distribution in the global storm-resolving model ICON. The results point to the importance of the fall speed of hydrometeor particles and to a simple relationship: the faster a condensate falls, the less there is of it. Implications for the energy balance and precipitation properties are discussed.
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025, https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Short summary
Injecting sea salt aerosols into marine stratiform clouds can distribute the cloud water over more droplets in smaller sizes. This process is expected to make the clouds brighter, allowing them to reflect more sunlight back to space. However, it may also cause the clouds to lose water over time, reducing their ability to reflect sunlight. We use a computer model to show that the loss of cloud water occurs relatively quickly and does not completely offset the initial brightening.
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025, https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary
Short summary
Shallow clouds in the trades are a major source of uncertainty in climate projections. These clouds organize into striking mesoscale patterns that are exactly what climate models lack. This study explores the origin of such patterns and investigates how variations in microscale properties control them. The importance of microscale effects is compared to that of large-scale forcing on the mesoscale organization of trade-cumulus fields.
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025, https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Short summary
The study investigates how aerosol–cloud interactions affect warm boundary layer stratiform clouds over the eastern North Atlantic. High-resolution weather model simulations reveal that non-rain clouds at the edge of cloud systems are prone to evaporation, leading to an aerosol drying effect and a transition of aerosols back to the accumulation mode for future activation. The study shows that this dynamic behavior is often not adequately represented in most previous prescribed-aerosol simulations.
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025, https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
Short summary
Our study examines how well the global climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) predicts contrail formation by analysing temperature and humidity – two key factors for contrail development and persistence. The model underestimates temperature, leading to an overprediction of contrail formation and larger ice-supersaturated regions. Adjusting the model improves temperature accuracy but adds uncertainties. Better predictions of contrail formation areas can help optimise flight tracks to reduce aviation's climate effect.
Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis
Atmos. Chem. Phys., 25, 5935–5946, https://doi.org/10.5194/acp-25-5935-2025, https://doi.org/10.5194/acp-25-5935-2025, 2025
Short summary
Short summary
The sound of thunder induces mechanical effects on cloud droplets and ice particles, causing changes in their size distribution. A shock wave near the lightning channel causes extensive shattering of cloud particles. At a distance, the audio wave will cause agglomeration of particles. So, thunder may influence the rain generation process and the radiative properties of clouds. As global warming may influence the occurrence rate of lightning, a climate feedback may be induced by these mechanisms.
Nathan H. Pope and Adele L. Igel
Atmos. Chem. Phys., 25, 5433–5444, https://doi.org/10.5194/acp-25-5433-2025, https://doi.org/10.5194/acp-25-5433-2025, 2025
Short summary
Short summary
We used an atmospheric model that simulates a single column to study the sensitivity of marine fog formed through the lowering of the base of a stratus cloud to meteorology and aerosols. We found that higher aerosol concentration reduces the likelihood and duration of fog but leads to denser fog. This overall trend was caused by multiple physical mechanisms depending on conditions.
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
Atmos. Chem. Phys., 25, 5313–5329, https://doi.org/10.5194/acp-25-5313-2025, https://doi.org/10.5194/acp-25-5313-2025, 2025
Short summary
Short summary
Rain formation in warm clouds begins when small droplets collide, but this process can be slow without larger droplets. We used simulations to explore the role of bigger droplets, known as precipitation embryos, in triggering rain. We found that they speed up rain only when their size and number exceed a critical threshold. This threshold becomes larger when collisions are naturally efficient, such as in clouds with broad droplet size distributions or strong turbulence.
Je-Yun Chun, Robert Wood, Peter N. Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 25, 5251–5271, https://doi.org/10.5194/acp-25-5251-2025, https://doi.org/10.5194/acp-25-5251-2025, 2025
Short summary
Short summary
This study explores how aerosols affect clouds transitioning from stratocumulus to cumulus along trade winds under varying atmospheric conditions. We found that aerosols typically reduce precipitation and raise cloud height, but their impact changes when subsidence changes by aerosol enhancement are considered. Our findings indicate that the cooling effect of aerosols might be overestimated if these atmospheric changes are not accounted for.
Wojciech W. Grabowski and Hanna Pawlowska
Atmos. Chem. Phys., 25, 5273–5285, https://doi.org/10.5194/acp-25-5273-2025, https://doi.org/10.5194/acp-25-5273-2025, 2025
Short summary
Short summary
A simple diagram to depict cloud droplets' formation via the activation of cloud condensation nuclei (CCN) as well as their subsequent growth and evaporation is presented.
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
Atmos. Chem. Phys., 25, 4867–4884, https://doi.org/10.5194/acp-25-4867-2025, https://doi.org/10.5194/acp-25-4867-2025, 2025
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. Aerosol and cirrus observations with lidar and radar during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, presented in the companion paper (Ansmann et al., 2025), are closely linked to comprehensive modeling of ice nucleation in cirrus evolution processes, presented in this article. A clear impact of wildfire smoke on cirrus formation was found.
August Mikkelsen, Daniel T. McCoy, Trude Eidhammer, Andrew Gettelman, Ci Song, Hamish Gordon, and Isabel L. McCoy
Atmos. Chem. Phys., 25, 4547–4570, https://doi.org/10.5194/acp-25-4547-2025, https://doi.org/10.5194/acp-25-4547-2025, 2025
Short summary
Short summary
Whether increased aerosol increases or decreases liquid cloud mass has been a longstanding question. Observed correlations suggest that aerosols thin liquid cloud, but we are able to show that observations were consistent with an increase in liquid cloud in response to aerosols by leveraging a model where causality could be traced.
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
Atmos. Chem. Phys., 25, 4505–4529, https://doi.org/10.5194/acp-25-4505-2025, https://doi.org/10.5194/acp-25-4505-2025, 2025
Short summary
Short summary
We investigate ice formation pathways in idealized convective clouds using a novel microphysics scheme that distinguishes between five ice classes each with their own unique formation mechanism. Ice crystals from rime splintering form the lowermost layer of ice crystals around the updraft core. The majority of ice crystals in the anvil of the convective cloud stems from frozen droplets. Ice stemming from homogeneous and deposition nucleation was only relevant in the overshoot.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Rui Song, Richard Siddans, Richard Bantges, Jonathan Murray, Stuart Fox, and Cathryn Fox
EGUsphere, https://doi.org/10.5194/egusphere-2025-647, https://doi.org/10.5194/egusphere-2025-647, 2025
Short summary
Short summary
Upwelling radiation with wavelengths between 15 and 100 microns is theorised to be highly sensitive to the properties of ice clouds, particularly the shape of the ice crystals. We exploit this sensitivity and perform the first retrieval of ice cloud properties using these wavelengths from an observation taken on an aircraft and evaluate it against measurements of the cloud’s properties.
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
Pierre Grzegorczyk, Wolfram Wobrock, Aymeric Dziduch, and Céline Planche
EGUsphere, https://doi.org/10.5194/egusphere-2025-819, https://doi.org/10.5194/egusphere-2025-819, 2025
Short summary
Short summary
The impact of secondary ice production (SIP) on a HYMEX intense precipitation event is investigated using 3D bin microphysics. Including SIP improves agreement with in situ aircraft observations (ice crystal number concentration and supercooled drop number fraction), generates small ice crystals and redistributes condensed water mass toward smaller particle sizes. As these crystals melt, the liquid precipitation flux decreases, reducing total precipitation by 8 % and heavy rainfall by 20 %.
Hairu Ding, Bjorn Stevens, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-876, https://doi.org/10.5194/egusphere-2025-876, 2025
Short summary
Short summary
This study examines the physical link between subtropical highs and stratocumulus variability. Using reanalysis data, we test two proposed pathways—one at the surface and one in the free troposphere—but find that neither is a dominant mechanism for stratocumulus variability on seasonal and interannual timescales. These results challenge the assumed influence of subtropical highs on stratocumulus and highlight the need for further research into lower tropospheric stability dynamics.
Xuemei Wang, Kenneth S. Carslaw, Daniel P. Grosvenor, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-132, https://doi.org/10.5194/egusphere-2025-132, 2025
Short summary
Short summary
Anthropogenic emissions can influence aerosol particle number concentrations via new particle formation. Our model simulations predict around 10 % increase of the particle and cloud droplet number concentrations when doubling the emissions in the Manaus region in the Amazonian wet season. However, the corresponding changes in cloud water and rain mass are around 4 %. Such weak response implied that this convective environment is not sensitive to the localised anthropogenic emission changes here.
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025, https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
EGUsphere, https://doi.org/10.5194/egusphere-2025-47, https://doi.org/10.5194/egusphere-2025-47, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in mixed-phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Blaž Gasparini, Rachel Atlas, Aiko Voigt, Martina Krämer, and Peter N. Blossey
EGUsphere, https://doi.org/10.5194/egusphere-2025-203, https://doi.org/10.5194/egusphere-2025-203, 2025
Short summary
Short summary
Tropical cirrus clouds, especially their evolution, are poorly understood, contributing to uncertainty in climate projections. We address this by using novel tracers in a cloud-resolving model to track the life cycle of cirrus clouds, providing insights into cloud formation, ice crystal evolution, and radiative effects. We also improve the model's cloud microphysics with a simple, computationally efficient approach that can be applied to other models.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Naifang Bei, Bo Xiao, Ruonan Wang, Yuning Yang, Lang Liu, Yongming Han, and Guohui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3558, https://doi.org/10.5194/egusphere-2024-3558, 2025
Short summary
Short summary
This study uses a cloud-resolving model to examine how aerosols influence a mesoscale convective system (MCS) in central China via aerosol-radiation (ARIs) and aerosol-cloud interactions (ACIs). Without ARIs, added aerosols don’t significantly affect precipitation due to cloud competition for moisture. ARIs can stabilize or enhance convection. High aerosol levels lead to a combined ARI and ACI effect that greatly reduces precipitation.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025, https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat–CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
EGUsphere, https://doi.org/10.5194/egusphere-2025-105, https://doi.org/10.5194/egusphere-2025-105, 2025
Short summary
Short summary
The Saharan air at trade wind layer, cold pools, and upper tropospheric dry air are identified as the three main factors inhibiting the cyclogenesis of the Pierre Henri mesoscale convective system. The findings were obtained trough observations made during two flights of the CADDIWA campaign and a convection-permitting simulation run with the Meso-NH model. They provide new insights into the complex dynamics of cyclogenesis in the Cape Verde region and challenge the existing model of the SAL.
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025, https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
Tim Lüttmer, Annette Miltenberger, and Peter Spichtinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-185, https://doi.org/10.5194/egusphere-2025-185, 2025
Short summary
Short summary
We investigate ice formation pathways in a warm conveyor belt case study. We employ a multi-phase microphysics scheme that distinguishes between ice from different nucleation processes. Ice crystals in the cirrus outflow mostly stem from in-situ formation. Hence they were formed directly from the vapor phase. Sedimentational redistribution modulates cirrus properties and leads to a disagreement between cirrus origin classifications based on thermodynamic history and nucleation processes.
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, Sang-Keun Song, and Kyung-Ja Ha
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025, https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Short summary
This study attempts to test a general factor that explains differences in the properties of different mixed-phase clouds using a modeling tool. Although this attempt is not to identify a factor that can perfectly explain and represent the properties of different mixed-phase clouds, we believe that this attempt acts as a valuable stepping stone towards a more complete, general way of using climate models to better predict climate change.
Annemarie Lottermoser and Simon Unterstraßer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3859, https://doi.org/10.5194/egusphere-2024-3859, 2025
Short summary
Short summary
Contrail-cirrus significantly contributes to aviation's overall climate impact. As hydrogen combustion and fuel cell use are emerging technologies for aircraft propulsion, we simulated individual contrails from hydrogen propulsion during the first six minutes after exhaust emission, termed the vortex phase. The ice crystal loss during that stage is crucial as the number of ice crystals has a large impact on the further evolution of contrails into contrail-cirrus and their radiative forcing.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Yue Peng, Zhaodong Liu, Deying Wang, Da Zhang, Chen Han, Yang Zhao, Junting Zhong, Wenxing Jia, Huiqiong Ning, and Huizheng Che
EGUsphere, https://doi.org/10.5194/egusphere-2024-3677, https://doi.org/10.5194/egusphere-2024-3677, 2025
Short summary
Short summary
We implement a real-time subgrid-scale aerosol-cloud interaction (ACI) mechanism in a mesoscale atmospheric chemistry system and find that subgrid-scale ACI can improve meteorological factors predictions. This study demonstrates the importance of real-time subgrid-scale ACI to weather forecast and the necessity of multiscale ACI studies.
Jordan Eissner, David Mechem, Yi Jin, Virendra Ghate, and James Booth
EGUsphere, https://doi.org/10.5194/egusphere-2024-3438, https://doi.org/10.5194/egusphere-2024-3438, 2025
Short summary
Short summary
Low-level clouds have important radiative feedbacks and can occur in a range of meteorological conditions, yet our knowledge and prediction of them are insufficient. We evaluate model forecasts of low-level cloud properties across a cold front and the associated environments that they form in. The model represents the meteorological conditions well and produces broken clouds behind the cold front in areas of strong surface forcing, large stability, and large-scale subsiding motion.
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025, https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025, https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Julie Carles, Nicolas Bellouin, Najda Villefranque, and Jean-Louis Dufresne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3642, https://doi.org/10.5194/egusphere-2024-3642, 2025
Short summary
Short summary
Cirrus and contrails affect Earth’s energy balance with a lot of remaining uncertainty. The balance between solar and terrestrial radiation is delicate to calculate, and factors as cloud optical depth, shape, Sun position are crucial to estimate the effect of those clouds on radiation. Also, often neglected three dimensional paths of radiation, or 3D effects, may be important to account for at climatic scale.
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024, https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation.
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024, https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3893, https://doi.org/10.5194/egusphere-2024-3893, 2024
Short summary
Short summary
Clouds reflect a substantial portion of the incoming solar radiation back into space. This capacity is determined by the number of cloud droplets, which in turn is influenced by the number of aerosol particles, forming the basis for aerosol-cloud-climate interactions. In this study, we use a simple mixed-layer approach to understand the effect of aerosol on cloud water in non-precipitating stratocumulus.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Cited articles
Anderberg, M. R.: Cluster Analysis for Applications. A volume in Probability
and Mathematical Statistics: A Series of Monographs and Textbooks, vol. 19,
Academic Press, New York, https://doi.org/10.1016/C2013-0-06161-0, 1973. a
Bender, F. A., Engström, A., Wood, R., and Charlson, R. J.: Evaluation
of hemispheric asymmetries in marine cloud radiative properties, J.
Climate, 30, 4131–4147, https://doi.org/10.1175/JCLI-D-16-0263.1, 2017. a, b
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah,
C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R.,
and Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new
generation Australian Community Climate and Earth System Simulator Coupled
Model, Journal of Southern Hemisphere Earth Systems Science, 70,
225–251,
https://doi.org/10.1071/es19040, 2020. a, b, c
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J. L., Klein,
S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.:
COSP: Satellite simulation software for model assessment, B.
Am. Meteorol. Soc., 92, 1023–1043,
https://doi.org/10.1175/2011BAMS2856.1, 2011. a, b
Bodas-Salcedo, A., Williams, K. D., Field, P. R., and Lock, A. P.: The surface
downwelling solar radiation surplus over the southern ocean in the met office
model: The role of midlatitude cyclone clouds, J. Climate, 25,
7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012. a
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N. S.,
Dufresne, J. L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.:
Origins of the solar radiation biases over the Southern Ocean in CFMIP2
models, J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1,
2014. a, b, c
Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V., and Ringer, M. A.: Cloud
liquid water path and radiative feedbacks over the Southern Ocean,
Geophys. Res. Lett., 43, 938–10, https://doi.org/10.1002/2016GL070770,
2016a. a
Bodas-Salcedo, A., Hill, P. G., Furtado, K., Williams, K. D., Field, P. R.,
Manners, J. C., Hyder, P., and Kato, S.: Large contribution of supercooled
liquid clouds to the solar radiation budget of the Southern Ocean, J. Climate, 29, 4213–4228, https://doi.org/10.1175/JCLI-D-15-0564.1,
2016b. a, b
Bodman, R. W., Karoly, D. J., Dix, M. R., Harman, I. N., Srbinovsky, J.,
Dobrohotoff, P. B., and Mackallah, C.: Evaluation of CMIP6 AMIP climate
simulations with the ACCESS-AM2 model, Journal of Southern Hemisphere Earth
Systems Science, 70, 166–179, https://doi.org/10.1071/ES19033, 2020. a, b
Bony, S. and Dufresne, J. L.: Marine boundary layer clouds at the heart of
tropical cloud feedback uncertainties in climate models, Geophys.
Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. a
Calinski, T. and Harabasz, J.: A dendrite method for cluster analysis,
Communications in Statistics, 3, 1–27,
https://doi.org/10.1080/03610927408827101, 1974. a
Cho, N., Tan, J., and Oreopoulos, L.: Classifying planetary cloudiness with an
updated set of modis cloud regimes, J. Appl. Meteorol.
Clim., 60, 981–997, https://doi.org/10.1175/JAMC-D-20-0247.1, 2021. a
Chubb, T. H., Jensen, J. B., Siems, S. T., and Manton, M. J.: In situ
observations of supercooled liquid clouds over the Southern Ocean during the
HIAPER Pole-to-Pole Observation campaigns, Geophys. Res. Lett., 40,
5280–5285, https://doi.org/10.1002/grl.50986, 2013. a
Davies, D. L. and Bouldin, D. W.: A Cluster Separation Measure, IEEE
T. Pattern Anal., PAMI-1, 224–227,
https://doi.org/10.1109/TPAMI.1979.4766909, 1979. a
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary
enhanced temporal interpolation for ceres flux products, J.
Atmos. Ocean. Tech., 30, 1072–1090,
https://doi.org/10.1175/JTECH-D-12-00136.1, 2013. a
Doelling, D. R., Sun, M., Nguyen, L. T., Nordeen, M. L., Haney, C. O., Keyes,
D. F., and Mlynczak, P. E.: Advances in geostationary-derived longwave
fluxes for the CERES synoptic (SYN1deg) product, J. Atmos.
Ocean. Tech., 33, 503–521, https://doi.org/10.1175/JTECH-D-15-0147.1, 2016. a
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model, Q. J.
Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107,
1996. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020. a
Fiddes, S. L.: ACCESS-AM2 Southern Ocean cloud and radiation data for k-means clustering and analysis, Zenodo [data set], https://doi.org/10.5281/zenodo.6004062, 2022. a
Fiddes, S. L., Woodhouse, M. T., Nicholls, Z., Lane, T. P., and Schofield, R.: Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide, Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, 2018. a, b
Field, P. R. and Wood, R.: Precipitation and cloud structure in midlatitude
cyclones, J. Climate, 20, 233–254, https://doi.org/10.1175/JCLI3998.1, 2007. a, b, c
Frey, W. R., Maroon, E. A., Pendergrass, A. G., and Kay, J. E.: Do Southern
Ocean Cloud Feedbacks Matter for 21st Century Warming?, Geophys. Res.
Lett., 44, 447–12, https://doi.org/10.1002/2017GL076339, 2017. a
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp,
P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N.,
Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L.,
Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi,
K.: The marker quantification of the Shared Socioeconomic Pathway 2: A
middle-of-the-road scenario for the 21st century, Global Environmental
Change, 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017. a
Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J.,
Bretherton, C., McFarquhar, G., Twohy, C., D'Alessandro, J., and Wu, W.:
Simulating Observations of Southern Ocean Clouds and Implications for
Climate, J. Geophys. Res.-Atmos., 125, e2020JD032619,
https://doi.org/10.1029/2020JD032619, 2020. a, b, c, d
Gong, S. L.: A parameterization of sea-salt aerosol source function for sub-
and super-micron particles, Global Biogeochem. Cy., 17, 1097,
https://doi.org/10.1029/2003GB002079, 2003. a
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and Stability-Dependent
Closure, Mon. Weather Rev., 118, 1483–1506,
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990. a
Hawcroft, M., Haywood, J. M., Collins, M., Jones, A., Jones, A. C., and
Stephens, G.: Southern Ocean albedo, inter-hemispheric energy transports and
the double ITCZ: global impacts of biases in a coupled model, Clim.
Dynam., 48, 2279–2295, https://doi.org/10.1007/s00382-016-3205-5, 2017. a, b
Haynes, J. M., Jakob, C., Rossow, W. B., Tselioudis, G., and Brown, J. B.:
Major characteristics of Southern Ocean cloud regimes and their effects on
the energy budget, J. Climate, 24, 5061–5080,
https://doi.org/10.1175/2011JCLI4052.1, 2011. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hinkelman, L. M. and Marchand, R.: Evaluation of CERES and CloudSat Surface
Radiative Fluxes Over Macquarie Island, the Southern Ocean, Earth and Space
Science, 7, e2020EA001224, https://doi.org/10.1029/2020EA001224, 2020. a
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018. a
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., Nagle, F., and Wang, C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, 2016. a
Huang, Y., Siems, S. T., Manton, M. J., Protat, A., and Delanoë, J.: A
study on the low-altitude clouds over the Southern Ocean using the
DARDAR-MASK, J. Geophys. Res.-Atmos., 117, D18204,
https://doi.org/10.1029/2012JD017800, 2012. a
Hubanks, P., Pincus, R., Platnick, S., and Meyer, K.: Level-3 COSP Cloud
Properties (MCD06COSP_L3) Combined Terra & Aqua MODIS Global Gridded
Product for Climate Studies User Guide, Tech. Rep., NASA,
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/documents/L3_MCD06COSP_UserGuide_v13.pdf (last access: 20 July 2021),
2020. a, b
Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of cloud condensation nuclei, Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, 2021. a
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new
sea surface temperature and sea ice boundary dataset for the community
atmosphere model, J. Climate, 21, 5145–5153,
https://doi.org/10.1175/2008JCLI2292.1, 2008. a, b
Hwang, Y. T. and Frierson, D. M.: Link between the double-intertropical
convergence zone problem and cloud biases over the southern ocean,
P. Natl. Acad. Sci. USA, 110, 4935–4940, https://doi.org/10.1073/pnas.1213302110, 2013. a
Hyder, P., Edwards, J. M., Allan, R. P., Hewitt, H. T., Bracegirdle, T. J.,
Gregory, J. M., Wood, R. A., Meijers, A. J., Mulcahy, J., Field, P., Furtado,
K., Bodas-Salcedo, A., Williams, K. D., Copsey, D., Josey, S. A., Liu, C.,
Roberts, C. D., Sanchez, C., Ridley, J., Thorpe, L., Hardiman, S. C., Mayer,
M., Berry, D. I., and Belcher, S. E.: Critical Southern Ocean climate model
biases traced to atmospheric model cloud errors, Nat. Commun., 9, 3625,
https://doi.org/10.1038/s41467-018-05634-2, 2018. a
Jakob, C. and Tselioudis, G.: Objective identification of cloud regimes in the
Tropical Western Pacific, Geophys. Res. Lett., 30, 2082,
https://doi.org/10.1029/2003GL018367, 2003. a
Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., and
Bitz, C.: Global climate impacts of fixing the Southern Ocean shortwave
radiation bias in the Community Earth System Model (CESM), J.
Climate, 29, 4617–4636, https://doi.org/10.1175/JCLI-D-15-0358.1, 2016. a
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B. C.,
Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.:
Cloud and aerosol properties, precipitable water, and profiles of
temperature and water vapor from MODIS, IEEE T. Geosci.
Remote, 41, 442–456, https://doi.org/10.1109/TGRS.2002.808226, 2003. a
Kuma, P., McDonald, A. J., Morgenstern, O., Alexander, S. P., Cassano, J. J., Garrett, S., Halla, J., Hartery, S., Harvey, M. J., Parsons, S., Plank, G., Varma, V., and Williams, J.: Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations, Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, 2020. a, b, c
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global
Biogeochem. Cy., 25, GB1004, https://doi.org/10.1029/2010GB003850, 2011. a
Leinonen, J., Lebsock, M. D., Oreopoulos, L., and Cho, N.: Interregional
differences in MODIS-derived cloud regimes, J. Geophys. Res.,
121, 11648–11665, https://doi.org/10.1002/2016JD025193, 2016. a
Liss, P. S. and Merlivat, L.: Air-Sea Gas Exchange Rates: Introduction and
Synthesis, in: The Role of Air-Sea Exchange in Geochemical Cycling, edited
by: Buat-Ménard, P., Springer Netherlands, Dordrecht, 113–127,
https://doi.org/10.1007/978-94-009-4738-2_5, 1986. a
Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T., and King, J.: Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations, Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019, 2019. a
Mace, G. G. and Protat, A.: Clouds over the Southern Ocean as observed from
the R/V Investigator during CAPRICORN. Part I: Cloud occurrence and phase
partitioning, J. Appl. Meteorol. Clim., 57,
1783–1803, https://doi.org/10.1175/JAMC-D-17-0194.1, 2018. a
Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I. M.,
Ward, J., Selleck, P., Keywood, M., and McFarquhar, G. M.: Southern Ocean
Cloud Properties Derived From CAPRICORN and MARCUS Data, J.
Geophys. Res.-Atmos., 126, e2020JD033368, https://doi.org/10.1029/2020JD033368, 2021. a
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010. a
Mann, G. W., Carslaw, K. S., Ridley, D. A., Spracklen, D. V., Pringle, K. J., Merikanto, J., Korhonen, H., Schwarz, J. P., Lee, L. A., Manktelow, P. T., Woodhouse, M. T., Schmidt, A., Breider, T. J., Emmerson, K. M., Reddington, C. L., Chipperfield, M. P., and Pickering, S. J.: Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model, Atmos. Chem. Phys., 12, 4449–4476, https://doi.org/10.5194/acp-12-4449-2012, 2012. a
Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.: MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP, Atmos. Meas. Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016, 2016. a, b
McDonald, A. J., Cassano, J. J., Jolly, B., Parsons, S., and Schuddeboom, A.:
An automated satellite cloud classification scheme using self-organizing
maps: Alternative ISCCP weather states, J. Geophys. Res.,
121, 13009–13030, https://doi.org/10.1002/2016JD025199, 2016. a
McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J.,
Alexander, S. P., Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang,
Y., Wood, R., Rauber, R. M., Lasher-Trapp, S., Jensen, J., Stith, J. L.,
Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A., Sanchez,
K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R. L., Bardeen,
C. G., Moore, K. A., Hill, T. C. J., Humphries, R. S., Keywood, M. D.,
Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D.,
Kreidenweis, S. M., Rainwater, B., D’Alessandro, J., Wang, Y., Wu, W.,
Saliba, G., Levin, E. J. T., Ding, S., Lang, F., Truong, S. C. H., Wolff, C.,
Haggerty, J., Harvey, M. J., Klekociuk, A. R., and McDonald, A.:
Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over
the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES,
B. Am. Meteorol. Soc., 102, E894–E928,
https://doi.org/10.1175/BAMS-D-20-0132.1, 2021. a, b
Min, Q., Joseph, E., Lin, Y., Min, L., Yin, B., Daum, P. H., Kleinman, L. I., Wang, J., and Lee, Y.-N.: Comparison of MODIS cloud microphysical properties with in-situ measurements over the Southeast Pacific, Atmos. Chem. Phys., 12, 11261–11273, https://doi.org/10.5194/acp-12-11261-2012, 2012. a, b
Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A.,
Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E.,
Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol
Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J.
Adv. Model. Earth Sy., 10, 2786–2805,
https://doi.org/10.1029/2018MS001464, 2018. a
Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma,
P.-L., Nam, C., Kretzschmar, J., Hörnig, S., and Quaas, J.: An
underestimated negative cloud feedback from cloud lifetime changes, Nat.
Clim. Change, 11, 508–513, https://doi.org/10.1038/s41558-021-01038-1, 2021. a
NASA: CERES Data Products, NASA [data set], https://ceres.larc.nasa.gov/data/, last access: 25 March 2022a. a
NASA: LAADS DAAC, NASA [data set], https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MCD06COSP_D3_MODIS/, last access: 25 March 2022b. a
Noble, S. R. and Hudson, J. G.: MODIS comparisons with northeastern Pacific in
situ stratocumulus microphysics, J. Geophys. Res.-Atmos., 120, 8332–8344, https://doi.org/10.1002/2014JD022785, 2015. a, b, c
Oreopoulos, L., Cho, N., Lee, D., Kato, S., and Huffman, G. J.: An examination
of the nature of global MODIS cloud regimes, J. Geophys.
Res.-Atmos., 119, 8362–8383, https://doi.org/10.1002/2013JD021409, 2014. a
Oreopoulos, L., Cho, N., Lee, D., and Kato, S.: Radiative effects of global
MODIS cloud regimes, J. Geophys. Res.-Atmos., 121,
2299–2317, https://doi.org/10.1002/2015JD024502, 2016. a, b
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116, D24206,
https://doi.org/10.1029/2011JD016155, 2011. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 12, 2825–2830, 2011. a
Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S., and Patrick Hofmann,
R. J.: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and
the limits of instrument simulators, J. Climate, 25, 4699–4720,
https://doi.org/10.1175/JCLI-D-11-00267.1, 2012. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products:
Collection 6 Updates and Examples From Terra and Aqua, IEEE T.
Geosci. Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522,
2017. a, b, c, d, e
Protat, A., Schulz, E., Rikus, L., Sun, Z., Xiao, Y., and Keywood, M. D.:
Shipborne observations of the radiative effect of Southern Ocean clouds,
J. Geophys. Res.-Atmos., 122, 318–328,
https://doi.org/10.1002/2016JD026061, 2017. a
Saponaro, G., Sporre, M. K., Neubauer, D., Kokkola, H., Kolmonen, P., Sogacheva, L., Arola, A., de Leeuw, G., Karset, I. H. H., Laaksonen, A., and Lohmann, U.: Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions, Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020, 2020. a
Schuddeboom, A., McDonald, A. J., Morgenstern, O., Harvey, M., and Parsons, S.:
Regional Regime-Based Evaluation of Present-Day General Circulation Model
Cloud Simulations Using Self-Organizing Maps, J. Geophys.
Res.-Atmos., 123, 4259–4272, https://doi.org/10.1002/2017JD028196, 2018. a, b, c, d, e, f, g, h, i
Simmons, J. B., Humphries, R. S., Wilson, S. R., Chambers, S. D., Williams, A. G., Griffiths, A. D., McRobert, I. M., Ward, J. P., Keywood, M. D., and Gribben, S.: Summer aerosol measurements over the East Antarctic seasonal ice zone, Atmos. Chem. Phys., 21, 9497–9513, https://doi.org/10.5194/acp-21-9497-2021, 2021. a
Sporre, M. K., O'Connor, E. J., Håkansson, N., Thoss, A., Swietlicki, E., and Petäjä, T.: Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland, Atmos. Meas. Tech., 9, 3193–3203, https://doi.org/10.5194/amt-9-3193-2016, 2016. a, b
Tselioudis, G., Rossow, W., Zhang, Y., and Konsta, D.: Global weather states
and their properties from passive and active satellite cloud retrievals,
J. Climate, 26, 7734–7746, https://doi.org/10.1175/JCLI-D-13-00024.1, 2013. a
Tselioudis, G., Rossow, W. B., Jakob, C., Remillard, J., Tropf, D., and Zhang,
Y.: Evaluation of Clouds, Radiation, and Precipitation in CMIP6 Models Using
Global Weather States Derived from ISCCP-H Cloud Property Data, J.
Climate, 34, 7311–7324, https://doi.org/10.1175/JCLI-D-21-0076.1, 2021. a, b, c
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Elsevier, 3rd
edn., ISBN 978-0-12-815823-4, https://doi.org/10.1016/B978-0-12-385022-5.00026-9, 2011. a
Williams, K. D. and Tselioudis, G.: GCM intercomparison of global cloud
regimes: Present-day evaluation and climate change response, Clim.
Dynam., 29, 231–250, https://doi.org/10.1007/s00382-007-0232-2, 2007. a, b
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and
Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation scheme.
I: Scheme description, Q. J. Roy. Meteor.
Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008. a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J.
Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235,
2014. a
Woodward, S.: Modeling the atmospheric life cycle and radiative impact of
mineral dust in the Hadley Centre climate model, J. Geophys.
Res.-Atmos., 106, 18155–18166, https://doi.org/10.1029/2000JD900795,
2001. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019GL085782, 2020.
a, b
Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., Rasch, P. J., Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for aerosol–climate model intercomparison studies, Atmos. Chem. Phys., 14, 8631–8645, https://doi.org/10.5194/acp-14-8631-2014, 2014. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(10216 KB) - Full-text XML
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight...
Altmetrics
Final-revised paper
Preprint