Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14603-2022
https://doi.org/10.5194/acp-22-14603-2022
Research article
 | 
17 Nov 2022
Research article |  | 17 Nov 2022

Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?

Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse

Related authors

The ACCESS-AM2 climate model strongly underestimates aerosol concentration in the Southern Ocean, but improving it could be problematic for the modelled climate system
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125,https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
A machine learning approach for evaluating Southern Ocean cloud radiative biases in a global atmosphere model
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024,https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023,https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the Great Barrier Reef: a modelling study
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022,https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021,https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024,https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024,https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024,https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024,https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary

Cited articles

Anderberg, M. R.: Cluster Analysis for Applications. A volume in Probability and Mathematical Statistics: A Series of Monographs and Textbooks, vol. 19, Academic Press, New York, https://doi.org/10.1016/C2013-0-06161-0, 1973. a
Bender, F. A., Engström, A., Wood, R., and Charlson, R. J.: Evaluation of hemispheric asymmetries in marine cloud radiative properties, J. Climate, 30, 4131–4147, https://doi.org/10.1175/JCLI-D-16-0263.1, 2017. a, b
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model, Journal of Southern Hemisphere Earth Systems Science, 70, 225–251, https://doi.org/10.1071/es19040, 2020. a, b, c
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J. L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. a, b
Bodas-Salcedo, A., Williams, K. D., Field, P. R., and Lock, A. P.: The surface downwelling solar radiation surplus over the southern ocean in the met office model: The role of midlatitude cyclone clouds, J. Climate, 25, 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Altmetrics
Final-revised paper
Preprint