Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China
Qian Liu
School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
Guixing Chen
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
Lifang Sheng
Department of Marine Meteorology, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
Toshiki Iwasaki
Department of Geophysics, Graduate School of Science, Tohoku
University, Sendai 980-8577, Japan
Related authors
No articles found.
Yuxuan Qi, Wenshuai Li, Wen Qu, Haizhou Zhang, Wenqing Zhu, Jinhui Shi, Daizhou Zhang, Yanjing Zhang, Lifang Sheng, Wencai Wang, Yunhui Zhao, Yuanyuan Ma, Danyang Ren, Guanru Wu, Xinfeng Wang, Xiaohong Yao, and Yang Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-4005, https://doi.org/10.5194/egusphere-2025-4005, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The Yellow-Bohai Sea region lies downwind of heavily polluted East Asia. Research reveals how land and ship pollution impact coastal air in Qingdao and nearby seas. Ship and coal emissions worsen marine air quality, with summer zinc and arsenic levels exceeding land. Spring carries city pollution seaward, summer pushes ship emissions ashore. Using 81 air samples, the study shows seasonal shifts between dust, industry & combustion sources, highlighting growing human impacts on marine ecosystems.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Xiadong An, Wen Chen, Tianjiao Ma, and Lifang Sheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-285, https://doi.org/10.5194/egusphere-2025-285, 2025
Short summary
Short summary
Air pollution in the North China Plain is tends to be influenced by El Niño-Southern Oscillation (ENSO) and stratospheric Quasi-Biennial Oscillation (QBO). During El Niño and easterly QBO, pollution rises, while La Niña and easterly QBO improve air quality through changes in atmospheric circulation and weather conditions.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, https://doi.org/10.5194/acp-22-6507-2022, 2022
Short summary
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Cited articles
An, X., Sheng, L., Liu, Q., Li, C., Gao, Y., and Li, J.: The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015, Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020, 2020.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, Proc. Nat. Acad. Sci.
USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Bai, L., Meng, Z., Huang, Y., Zhang, S., Niu, S., and Su, T.: Convection
initiation resulting from the interaction between a quasi-stationary dryline
and intersecting gust fronts: A case study, J. Geophys. Res.-Atmos., 124,
2379–2396, https://doi.org/10.1029/2018JD029832, 2019.
Cao, Z., Sheng, L., Liu, Q., Yao, X., and Wang, W.: Interannual increase of
regional haze-fog in North China Plain in summer by intensified easterly
winds and orographic forcing, Atmos. Environ., 122, 154–162,
https://doi.org/10.1016/j.atmosenv.2015.09.042, 2015.
Chen, H. and Wang, H.: Haze days in North China and the associated
atmospheric circulations based on daily visibility data from 1960 to 2012,
J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Dang, R. and Liao, H.: Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801–10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M.,
Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X.
G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, Y. S., Zhang, R.
J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C.
B.: Enhanced haze pollution by black carbon in megacities in China, Geophys.
Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Ding, Y. and Liu, Y.: Analysis of long-term variations of fog and haze in
China in recent 50 years and their relations with atmospheric humidity, Sci.
China Earth Sci., 57, 36–46, https://doi.org/10.1007/s11430-013-4792-1, 2014.
Gao, M., Carmichael, G. R., Saide, P. E., Lu, Z., Yu, M., Streets, D. G., and Wang, Z.: Response of winter fine particulate matter concentrations to emission and meteorology changes in North China, Atmos. Chem. Phys., 16, 11837–11851, https://doi.org/10.5194/acp-16-11837-2016, 2016.
Guan, W. J., Zheng, X. Y., Chung, K. F., and Zhong, N. S.: Impact of air
pollution on the burden of chronic respiratory diseases in China: time for
urgent action, Lancet, 388, 1939–1951, https://doi.org/10.1016/S0140-6736(16)31597-5,
2016.
Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng, Y., Sun,
T., and Zhang, X.: Satellite-derived PM2. 5 concentration trends over
Eastern China from 1998 to 2016: Relationships to emissions and
meteorological parameters, Environ. Pollut., 247, 1125–1133,
https://doi.org/10.1016/j.envpol.2019.01.056, 2019.
Guo, J., Zhang, J., Yang, K., Liao, H., Zhang, S., Huang, K., Lv, Y., Shao, J., Yu, T., Tong, B., Li, J., Su, T., Yim, S. H. L., Stoffelen, A., Zhai, P., and Xu, X.: Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses, Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, 2021.
Holzworth, G. C.: Mixing depths, wind speeds and air pollution potential for
selected locations in the United States, J. Appl. Meteorol., 6, 1039–1044,
https://doi.org/10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2,
1967.
Hu, Y., Wang, S., Ning, G., Zhang, Y., Wang, J., and Shang, Z.: A
quantitative assessment of the air pollution purification effect of a super
strong cold-air outbreak in January 2016 in China, Air Qual. Atmos. Health,
11, 907–923, https://doi.org/10.1007/s11869-018-0592-2, 2018.
Iwasaki, T., Shoji, T., Kanno, Y., Sawada, M., Ujiie, M., and Takaya, K.:
Isentropic analysis of polar cold airmass streams in the Northern
Hemispheric winter, J. Atmos. Sci., 71, 2230–2243,
https://doi.org/10.1175/JAS-D-13-058.1, 2014.
Japan Meteorological Agency: Japanese 55-year reanalysis, Japan Meteorolocical Agency [data set], https://jra.kishou.go.jp/JRA-55, last access: 14 October 2022.
Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan, C., Zhu, T., and Yu, B.: Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China, Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019, 2019.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.
H.: Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 6504, https://doi.org/10.1126/science.abb7431,
2020.
Li, M., Yao, Y., Simmonds, I., Luo, D., Zhong, L., and Pei, L.: Linkages between the atmospheric transmission originating from the North Atlantic Oscillation and persistent winter haze over Beijing, Atmos. Chem. Phys., 21, 18573–18588, https://doi.org/10.5194/acp-21-18573-2021, 2021.
Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime
fog–haze days across central and eastern China and its relation with East
Asian winter monsoon, Int. J. Climatol., 36, 346–354, https://doi.org/10.1002/joc.4350,
2016.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.
Liu, Q., Cao, Z., and Xu, H.: Clearance capacity of the atmosphere: the
reason that the number of haze days reaches a ceiling, Environ. Sci. Pollut.
Res., 23, 8044–8052, https://doi.org/10.1007/s11356-016-6061-2, 2016.
Liu, Q., Sheng, L., Cao, Z., Diao, Y., Wang, W., and Zhou, Y.: Dual effects
of the winter monsoon on haze-fog variations in eastern China, J. Geophys.
Res.-Atmos., 122, 5857–5869, https://doi.org/10.1002/2016JD026296, 2017.
Liu, Q., Chen, G., and Iwasaki, T.: Quantifying the impacts of cold airmass
on aerosol concentrations over North China using isentropic analysis, J.
Geophys. Res.-Atmos., 124, 7308–7326, https://doi.org/10.1029/2018JD029367, 2019.
Liu, Q., Liu, Q., and Chen, G.: Isentropic analysis of regional cold events
over northern China, Adv. Atmos. Sci., 37, 718–734,
https://doi.org/10.1007/s00376-020-9226-3, 2020.
Liu, Q., Chen, G., Wang, L., Kanno, Y., and Iwasaki, T.: Southward cold
airmass flux associated with the East Asian winter monsoon: diversity and
impacts, J. Climate, 34, 3239–3254, https://doi.org/10.1175/JCLI-D-20-0319.1, 2021.
Ma, S., Shao, M., Zhang, Y., Dai, Q., and Xie, M.: Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North
China Plain, Sci. Total Environ., 792, 148474,
https://doi.org/10.1016/j.scitotenv.2021.148474, 2021.
Ministry of Ecology and Environment of the People Republic of China: Air quality index (AQI), China National Environmental Monitoring Center [data set], https://air.cnemc.cn:18007/, last access: 14 October 2022.
Petäjä, T., Järvi, L., Kerminen, V. M., Ding, A. J., Sun, J. N.,
Nie, W., Kujansuu, J., Virkkula, A., Yang, X. Q., Fu, C. B., Zilitinkevich,
S., and Kulmala, M.: Enhanced air pollution via aerosol-boundary layer
feedback in China, Sci. Rep., 6, 18998, https://doi.org/10.1038/srep18998, 2016.
Qu, W., Wang, J., Zhang, X., Yang, Z., and Gao, S.: Effect of cold wave on
winter visibility over eastern China, J. Geophys. Res.-Atmos., 120,
2394–2406, https://doi.org/10.1002/2014JD021958, 2015.
Shoji, T., Kanno, Y., Iwasaki, T., and Takaya, K.: An isentropic analysis of
the temporal evolution of East Asian cold air outbreaks, J. Climate, 27,
9337–9348, https://doi.org/10.1175/JCLI-D-14-00307.1, 2014.
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., Tang, X., Fu, P., and Wang,
Z.: Rapid formation and evolution of an extreme haze episode in Northern
China during winter 2015, Sci. Rep., 6, 27151, https://doi.org/10.1038/srep27151, 2016.
Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
Tie, X., Huang, R. J., Dai, W., Cao, J., Long, X., Su, X., Zhao, S., Wang,
Q., and Li, G.: Effect of heavy haze and aerosol pollution on rice and wheat
productions in China, Sci. Rep., 6, 29612, https://doi.org/10.1038/srep29612, 2016.
University of Wyoming: Radio sounding data, University of Wyoming [data set], http://www.weather.uwyo.edu/upperair/sounding.html, last access: 14 October 2022.
Wang, H.-J. and Chen, H.-P.: Understanding the recent trend of haze pollution in eastern China: roles of climate change, Atmos. Chem. Phys., 16, 4205–4211, https://doi.org/10.5194/acp-16-4205-2016, 2016.
Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y.,
Hu, B., and Xin, J.: Mechanism for the formation of the January 2013 heavy
haze pollution episode over central and eastern China, Sci. China Earth
Sci., 57, 14–25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
Wang, Y., Wen, Y., Wang, Y., Zhang, S., Zhang, K. M., Zheng, H., Xing, J.,
Wu, Y., and Hao, J.: Four-month changes in air quality during and after the
COVID-19 lockdown in six megacities in China, Environ. Sci. Technol. Lett.,
7, 802–808, https://doi.org/10.1021/acs.estlett.0c00605, 2020.
Xu, P., Chen, Y., and Ye, X.: Haze, air pollution, and health in China,
Lancet, 382, 2067, https://doi.org/10.1016/S0140-6736(13)62693-8, 2013.
Yamaguchi, J., Kanno, Y., Chen, G., and Iwasaki, T.: Cold air mass analysis
of the record-breaking cold surge event over East Asia in January 2016, J.
Meteor. Soc. Jpn., 97, 275–293, https://doi.org/10.2151/jmsj.2019-015, 2019.
Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China
in recent decades: Roles of variations in meteorological parameters and
anthropogenic emissions, J. Geophys. Res.-Atmos., 121, 13050–13065,
https://doi.org/10.1002/2016JD025136, 2016.
Yang, Y., Zheng, X., Gao, Z., Wang, H., Wang, T., Li, Y., Lau, G. N. C., and
Yim, S. H. L.: Long-term trends of persistent synoptic circulation events in
planetary boundary layer and their relationships with haze pollution in
winter half year over eastern China, J. Geophys. Res.-Atmos., 123,
10991–11007, https://doi.org/10.1029/2018JD028982, 2018.
Yin, Z. and Wang, H.: Role of atmospheric circulations in haze pollution in December 2016, Atmos. Chem. Phys., 17, 11673–11681, https://doi.org/10.5194/acp-17-11673-2017, 2017.
Zhang, R., Li, Q., and Zhang, R.: Meteorological conditions for the
persistent severe fog and haze event over eastern China in January 2013,
Sci. China Earth Sci., 57, 26–35, https://doi.org/10.1007/s11430-013-4774-3, 2014.
Zhang, S., Zeng, G., Yang, X., Wu, R., and Yin, Z.: Comparison of the influence of two types of cold surge on haze dispersion in eastern China, Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021, 2021.
Zhang, W., Li, W., An, X., Zhao, Y., Sheng, L., Hai, S., Li, X., Wang, F.,
Zi, Z., and Chu, M.: Numerical study of the amplification effects of
cold-front passage on air pollution over the North China Plain, Sci. Total
Environ., 833, 155231, https://doi.org/10.1016/j.scitotenv.2022.155231, 2022.
Zhang, X., Sun, J., Wang, Y., Li, W., Zhang, Q., Wang, W., Quan, J., Cao,
G., Wang, J., Yang, Y., and Zhang, Y.: Factors contributing to haze and fog
in China Chin, Sci. Bull., 58, 1178–1187, https://doi.org/10.1360/972013-150, 2013.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012.
Zhang, Y., Yin, Z., and Wang, H.: Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010, Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020, 2020.
Zhang, Y., Ma, Z., Gao, Y., and Zhang, M.: Impacts of the meteorological
condition versus emissions reduction on the PM2.5 concentration over
Beijing–Tianjin–Hebei during the COVID-19 lockdown, Atmos. Ocean. Sci.
Lett., 14, 100014, https://doi.org/10.1016/j.aosl.2020.100014, 2021.
Zhao, N., Wang, G., Li, G., Lang, J., and Zhang, H.: Air pollution episodes
during the COVID-19 outbreak in the Beijing–Tianjin–Hebei region of China:
an insight into the transport pathways and source distribution, Environ.
Pollut., 267, 115617, https://doi.org/10.1016/j.envpol.2020.115617, 2020.
Zhong, W., Yin, Z., and Wang, H.: The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region, Atmos. Chem. Phys., 19, 5941–5957, https://doi.org/10.5194/acp-19-5941-2019, 2019.
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO....
Altmetrics
Final-revised paper
Preprint