Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13371-2022
https://doi.org/10.5194/acp-22-13371-2022
Research article
 | 
18 Oct 2022
Research article |  | 18 Oct 2022

Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China

Qian Liu, Guixing Chen, Lifang Sheng, and Toshiki Iwasaki

Related authors

The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015
Xiadong An, Lifang Sheng, Qian Liu, Chun Li, Yang Gao, and Jianping Li
Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020,https://doi.org/10.5194/acp-20-4667-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Long-term assessment of primary and secondary organic aerosols in the Shanghai megacity throughout China's Clean Air actions since 2010
Haifeng Yu, Yunhua Chang, Lin Cheng, Yusen Duan, and Jianlin Hu
Atmos. Chem. Phys., 25, 5355–5369, https://doi.org/10.5194/acp-25-5355-2025,https://doi.org/10.5194/acp-25-5355-2025, 2025
Short summary
The evolution of aerosol mixing state derived from a field campaign in Beijing: implications for particle aging timescales in urban atmospheres
Jieyao Liu, Fang Zhang, Jingye Ren, Lu Chen, Anran Zhang, Zhe Wang, Songjian Zou, Honghao Xu, and Xingyan Yue
Atmos. Chem. Phys., 25, 5075–5086, https://doi.org/10.5194/acp-25-5075-2025,https://doi.org/10.5194/acp-25-5075-2025, 2025
Short summary
Measurement report: Size-resolved particle effective density measured by an AAC-SMPS and implications for chemical composition
Yao Song, Jing Wei, Wenlong Zhao, Jinmei Ding, Xiangyu Pei, Fei Zhang, Zhengning Xu, Ruifang Shi, Ya Wei, Lu Zhang, Lingling Jin, and Zhibin Wang
Atmos. Chem. Phys., 25, 4755–4766, https://doi.org/10.5194/acp-25-4755-2025,https://doi.org/10.5194/acp-25-4755-2025, 2025
Short summary
Measurement report: Aircraft observations of aerosol and microphysical quantities of stratocumulus in autumn over Guangxi Province, China – daylight variation, vertical distribution, and aerosol–cloud interactions
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025,https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Hygroscopic aerosols amplify longwave downward radiation in the Arctic
Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt
Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025,https://doi.org/10.5194/acp-25-3889-2025, 2025
Short summary

Cited articles

An, X., Sheng, L., Liu, Q., Li, C., Gao, Y., and Li, J.: The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015, Atmos. Chem. Phys., 20, 4667–4680, https://doi.org/10.5194/acp-20-4667-2020, 2020. 
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, Proc. Nat. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019. 
Bai, L., Meng, Z., Huang, Y., Zhang, S., Niu, S., and Su, T.: Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study, J. Geophys. Res.-Atmos., 124, 2379–2396, https://doi.org/10.1029/2018JD029832, 2019. 
Cao, Z., Sheng, L., Liu, Q., Yao, X., and Wang, W.: Interannual increase of regional haze-fog in North China Plain in summer by intensified easterly winds and orographic forcing, Atmos. Environ., 122, 154–162, https://doi.org/10.1016/j.atmosenv.2015.09.042, 2015. 
Chen, H. and Wang, H.: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015. 
Download
Short summary
Air pollution can be cleaned up quickly by a cold air outbreak (CAO) but reappears after a CAO. By quantifying the CAO properties, we find the coldness and depth of the cold air mass are key factors affecting the rapid (slow) reappearance of air pollution through modulating the atmospheric boundary layer height and stability. We also find that the spatial pattern of CAO in high-latitude Eurasia a few days ahead can be recognized as a precursor for the reappearance of air pollution.
Share
Altmetrics
Final-revised paper
Preprint