Articles | Volume 22, issue 19
https://doi.org/10.5194/acp-22-13087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
Qian Lu
Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Joint International Research Laboratory of Climate and Environment
Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation
of Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science and Technology, Nanjing 210044, China
Key Laboratory of Meteorology and Ecological Environment of Hebei
Province, Shijiazhuang 050021, China
Chengde Meteorological Service of Hebei Province, Chengde, Hebei
067000, China
Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Joint International Research Laboratory of Climate and Environment
Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation
of Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science and Technology, Nanjing 210044, China
Chunhua Shi
Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Joint International Research Laboratory of Climate and Environment
Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation
of Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science and Technology, Nanjing 210044, China
Dong Guo
Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Joint International Research Laboratory of Climate and Environment
Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation
of Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science and Technology, Nanjing 210044, China
Guiqin Fu
Key Laboratory of Meteorology and Ecological Environment of Hebei
Province, Shijiazhuang 050021, China
Ji Wang
Beijing Regional Climate Center, Beijing 100089, China
Zhuoqi Liang
Key Laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Joint International Research Laboratory of Climate and Environment
Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation
of Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science and Technology, Nanjing 210044, China
Related authors
Qian Lu, Jian Rao, Chunhua Shi, and Chaim I. Garfinkel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1123, https://doi.org/10.5194/egusphere-2025-1123, 2025
Short summary
Short summary
Stratospheric water vapor has been proven to have significant climate effects as a greenhouse gas. Tropical stratospheric water vapor exhibits a clear imprint of the Quasi-Biennial Oscillation (QBO). This study compares the water vapor variations associated with the QBO between boreal winter and summer, and the seasonal difference in the water vapor QBO signals is revealed.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Rongzhao Lu and Jian Rao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1178, https://doi.org/10.5194/egusphere-2025-1178, 2025
Short summary
Short summary
The downward impact of sudden stratospheric warming events (SSWs) on the troposphere is still controversial. We further classify downward-propagating SSWs (DWs) into three types that are followed by cold surges over Eurasia (EA), over North America (NA), and over both (BOTH), respectively. This study reveals the diversity of the DWs and distinguishes their potential impact on both continents in the Northern Hemisphere.
Qian Lu, Jian Rao, Chunhua Shi, and Chaim I. Garfinkel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1123, https://doi.org/10.5194/egusphere-2025-1123, 2025
Short summary
Short summary
Stratospheric water vapor has been proven to have significant climate effects as a greenhouse gas. Tropical stratospheric water vapor exhibits a clear imprint of the Quasi-Biennial Oscillation (QBO). This study compares the water vapor variations associated with the QBO between boreal winter and summer, and the seasonal difference in the water vapor QBO signals is revealed.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Y. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 6, 171–195, https://doi.org/10.5194/wcd-6-171-2025, https://doi.org/10.5194/wcd-6-171-2025, 2025
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere is coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too weak; however downward coupling from the lower stratosphere to the near surface is too strong.
Rongzhao Lu and Jian Rao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2179, https://doi.org/10.5194/egusphere-2024-2179, 2024
Preprint archived
Short summary
Short summary
The SSWs are classified into downward-propagating (DW) SSWs with noticeable impacts on the troposphere and non-downward-propagating (NDW). The DW events are further classified into three types. This study improves our understanding of the diversity of the SSWs.
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023, https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Yuan Xia, Jing Jiao, Satonori Nozawa, Xuewu Cheng, Jihong Wang, Chunhua Shi, Lifang Du, Yajuan Li, Haoran Zheng, Faquan Li, and Guotao Yang
Atmos. Chem. Phys., 22, 13817–13831, https://doi.org/10.5194/acp-22-13817-2022, https://doi.org/10.5194/acp-22-13817-2022, 2022
Short summary
Short summary
The layer of sodium atoms is generally located above 80 km. This study reports the significant enhancements of the sodium layer below 75 km where sodium atoms are short-lived. The neutral chemical reactions were suggested as making a critical contribution. The reported results provide clear observational evidence for the role of planetary waves in the variation of metal layers, and have implications for the response of the metal layers to perturbations in the lower atmosphere.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022, https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
Short summary
Chemical transport models forced with (re)analysis meteorological fields are ideally suited for interpreting the influence of important physical processes on the ozone variability. We use TOMCAT forced by ECMWF ERA-Interim and ERA5 reanalysis data sets to investigate the effects of reanalysis forcing fields on ozone changes. Our results show that models forced by ERA5 reanalyses may not yet be capable of reproducing observed changes in stratospheric ozone, particularly in the lower stratosphere.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Cited articles
Alfons, A., Ateş, N. Y., and Groenen, P. J. F.: A Robust bootstrap test
for mediation analysis, Organ. Res. Methods, 25, 591–617,
https://doi.org/10.1177/1094428121999096, 2022.
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation
from the stratosphere to the troposphere, J. Geophys. Res., 104,
30937–30946, https://doi.org/10.1029/1999JD900445, 1999.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584,
https://doi.org/10.1126/science.1063315, 2001.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
stratospheric warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020rg000708, 2021.
Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M., and Ren, H.: Global
PM2.5-attributable health burden from 1990 to 2017: Estimates from the
global burden of disease study 2017, Environ. Res., 197, 111123,
https://doi.org/10.1016/j.envres.2021.111123, 2021.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc.,
96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., and Long, C. S.:
Differences between the 2018 and 2019 stratospheric polar vortex split
events, Q. J. Roy. Meteor. Soc., 146, 3503–3521,
https://doi.org/10.1002/qj.3858, 2020.
Cao, C., Chen, Y., Rao, J., Liu, S., Li, S., and Ma, M.: Statistical
characteristics of major sudden stratospheric warming events in CESM1-WACCM:
A comparison with the JRA55 and NCEP/NCAR reanalyses, Atmosphere, 10, 519, https://doi.org/10.3390/atmos10090519,
2019.
Chang, L., Wu, Z., and Xu, J.: A comparison of haze pollution variability in
China using haze indices based on observations, Sci. Total Environ., 715,
136929, https://doi.org/10.1016/j.scitotenv.2020.136929, 2020.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: climatology and modeling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1215/S0012-7094-69-03643-6, 2007.
Chen, L., Zhu, J., Liao, H., Yang, Y., and Yue, X.: Meteorological
influences on PM2.5 and O3 trends and associated health burden since China's
clean air actions, Sci. Tot. Environ., 744, 140837,
https://doi.org/10.1016/j.scitotenv.2020.140837, 2020.
Dang, R. and Liao, H.: Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801–10816, https://doi.org/10.5194/acp-19-10801-2019, 2019.
de La Cámara, A., Birner, T., and Albers, J. R.: Are sudden
stratospheric warmings preceded by anomalous tropospheric wave activity?, J.
Climate, 32, 7173–7189, https://doi.org/10.1175/JCLI-D-19-0269.1, 2019.
Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X.-Q., Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant reduction of PM2.5 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018, Atmos. Chem. Phys., 19, 11791–11801, https://doi.org/10.5194/acp-19-11791-2019, 2019.
Fan, H., Zhao, C., Yang, Y., and Yang, X.: Spatio-temporal variations of the
PM2.5 PM10 ratios and its application to air pollution type classification
in China, Front. Environ. Sci., 9, 692440,
https://doi.org/10.3389/fenvs.2021.692440, 2021.
Feng, J., Quan, J., Liao, H., Li, Y., and Zhao, X.: An air stagnation index
to qualify extreme haze events in northern China, J. Atmos. Sci., 75,
3489–3505, https://doi.org/10.1175/JAS-D-17-0354.1, 2018.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hu, B., Chen, R., Xu, J., Yang, G., Xu, D., Chen, C., and Zhao, Y.: Health
effects of ambient ultrafine (nano) particles in haze, Chin. Sci. Bull., 60,
2808–2823, https://doi.org/10.1360/N972014-01404, 2015.
Hu, J., Ren, R., and Xu, H.: Occurrence of winter stratospheric sudden
warming events and the seasonal timing of spring stratospheric final
warming, J. Atmos. Sci., 71, 2319–2334,
https://doi.org/10.1175/JAS-D-13-0349.1, 2014.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2015.
Huang, W., Yu, Y., Yin, Z., Chen, H., and Gao, M.: Appreciable role of
stratospheric polar vortex in the abnormal diffusion of air pollutant in
North China in 2015/2016 winter and implications for prediction, Atmos.
Environ., 259, 118549, https://doi.org/10.1016/j.atmosenv.2021.118549, 2021.
Huang, X., Wang, Z., and Ding, A.: Impact of aerosol-PBL interaction on haze
pollution: multiyear observational evidences in North China, Geophys. Res.
Lett., 45, 8596–8603, https://doi.org/10.1029/2018GL079239, 2018.
Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.:
Amplified transboundary transport of haze by aerosol–boundary layer
interaction in China, Nat. Geosci., 13, 428–434,
https://doi.org/10.1038/s41561-020-0583-4, 2020.
Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and
Vitart, F.: Predicting Sudden Stratospheric Warming 2018 and its climate
impacts with a multimodel ensemble, Geophys. Res. Lett., 45, 13538–13546,
https://doi.org/10.1029/2018GL081091, 2018.
Krzywinski, M. and Altman, N.: Points of significance: significance, p
values and t-tests, Nat. Methods, 10, 1041–1042,
https://doi.org/10.1038/nmeth.2698, 2013.
Li, J., Liao, H., Hu, J., and Li, N.: Severe particulate pollution days in
China during 2013–2018 and the associated typical weather patterns in
Beijing-Tianjin-Hebei and the Yangtze River Delta regions, Environ.
Pollut., 248, 74–81, https://doi.org/10.1016/j.envpol.2019.01.124, 2019.
Li, K., Liao, H., Cai, W., and Yang, Y.: Attribution of anthropogenic
influence on atmospheric patterns conducive to recent most severe haze over
eastern China, Geophys. Res. Lett., 45, 2072–2081,
https://doi.org/10.1002/2017GL076570, 2018.
Li, M. and Zhang, L.: Haze in China: Current and future challenges, Environ.
Pollut., 189, 85–86, https://doi.org/10.1016/j.envpol.2014.02.024, 2014.
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Liang, Z., Rao, J., Guo, D., and Lu, Q.: Simulation and projection of the
sudden stratospheric warming events in different scenarios by CESM2-WACCM,
Clim. Dynam., https://doi.org/10.1007/s00382-022-06293-2, 2022.
Liu, S. M., Chen, Y. H., Rao, J., Cao, C., Li, S. Y., Ma, M. H., and Wang,
Y. B.: Parallel comparison of major sudden stratospheric warming events in
CESM1-WACCM and CESM2-WACCM, Atmosphere, 10, 679,
https://doi.org/10.3390/atmos10110679, 2019.
Lu, Q., Rao, J., Guo, D., Yu, M., and Yu, Y.: Downward propagation of sudden
stratospheric warming signals and the local environment in the
Beijing-Tianjin-Hebei region: A comparative study of the 2018 and 2019
winter cases, Atmos. Res., 254, 105514,
https://doi.org/10.1016/j.atmosres.2021.105514, 2021a.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, C., and Wang,
T.: The sudden stratospheric warming in January 2021b, Environ. Res. Lett.,
16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021b.
Lu, Q., Rao, J., Shi, C., Guo, D., Wang, J., Liang, Z., and Wang, T.:
Observational subseasonal variability of the PM2.5 concentration in the
Beijing-Tianjin-Hebei area during the January 2021 sudden stratospheric
warming, Adv. Atmos. Sci., 39, 1623–1636,
https://doi.org/10.1007/s00376-022-1393-y, 2022.
Matthewman, N. J., Esler, J. G., Charlton-Perez, A. J., and Polvani, L. M.:
A new look at stratospheric sudden warmings. Part III: Polar vortex
evolution and vertical structure, J. Climate, 22, 1566–1585,
https://doi.org/10.1175/2008JCLI2365.1, 2009.
Mei, L., Rozanov, V., Vountas, M., Burrows, J. P., and Richter, A.: XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation, Atmos. Chem. Phys., 18, 2511–2523, https://doi.org/10.5194/acp-18-2511-2018, 2018.
Mitchell, D. M., Charlton-Perez, A. J., and Gray, L. J.: Characterizing the
variability and extremes of the stratospheric polar vortices using 2D moment
analysis, J. Atmos. Sci., 68, 1194–1213,
https://doi.org/10.1175/2010JAS3555.1, 2011.
Ou, Y., Li, Z., Chen, C., Zhang, Y., Li, K., Shi, Z., Dong, J., Xu, H.,
Peng, Z., Xie, Y., and Luo, J.: Evaluation of MERRA2 aerosol optical and
component properties over China using SONET and PARASOL/GRASP data, Remote
Sens., 14, 821, https://doi.org/10.3390/rs14040821, 2022.
Rao, J. and Garfinkel, C. I.: CMIP5/6 models project little change in the
statistical characteristics of sudden stratospheric warmings in the 21st
century, Environ. Res. Lett., 16, 034024,
https://doi.org/10.1088/1748-9326/abd4fe, 2021.
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The stratospheric sudden
warming event in February 2018 and its prediction by a climate system model,
J. Geophys. Res. Atmos., 123, 13332–13345,
https://doi.org/10.1029/2018JD028908, 2018.
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.: The 2019 new year
stratospheric sudden warming and its real-time predictions in multiple S2S
models, J. Geophys. Res.-Atmos., 124, 11155–11174,
https://doi.org/10.1029/2019JD030826, 2019a.
Rao, J., Ren, R., Chen, H., Liu, X., Yu, Y., Hu, J., and Zhou, Y.:
Predictability of stratospheric sudden warmings in the Beijing climate
center forecast system with statistical error corrections, J. Geophys. Res.-Atmos., 124, 8385–8400, https://doi.org/10.1029/2019JD030900, 2019b.
Rao, J., Garfinkel, C. I., and White, I. P.: Predicting the downward and
surface influence of the February 2018 and January 2019 sudden stratospheric
warming events in subseasonal to seasonal (S2S) models, J. Geophys. Res.-Atmos., 125, e2019JD031919, https://doi.org/10.1029/2019JD031919, 2020.
Rao, J., Garfinkel, C. I., Wu, T., Lu, Y., Lu, Q., and Liang, Z.: The
January 2021 sudden stratospheric warming and its prediction in subseasonal
to seasonal models, J. Geophys. Res.-Atmos., 126, e2021JD035057,
https://doi.org/10.1029/2021JD035057, 2021a.
Rao, J., Liu, S., and Chen, Y.: Northern Hemisphere sudden stratospheric
warming and its downward impact in four Chinese CMIP6 models, Adv. Atmos.
Sci., 38, 187–202, https://doi.org/10.1007/s00376-020-0250-0, 2021b.
Rao, J., Garfinkel, C. I., Wu, T., Lu, Y., and Chu, M.: Mean state of the
Northern Hemisphere stratospheric polar vortex in three generations of CMIP
models, J. Climate, 35, 4603–4625, https://doi.org/10.1175/JCLI-D-21-0694.1,
2022.
Seviour, W. J. M., Gray, L. J., and Mitchell, D. M.: Stratospheric polar
vortex splits and displacements in the high-top CMIP5 climate models, J.
Geophys. Res.-Atmos., 121, 1400–1413, https://doi.org/10.1002/2015JD024178,
2016.
Wang, H.-J. and Chen, H.-P.: Understanding the recent trend of haze pollution in eastern China: roles of climate change, Atmos. Chem. Phys., 16, 4205–4211, https://doi.org/10.5194/acp-16-4205-2016, 2016.
Wu, P., Ding, Y., and Liu, Y.: Atmospheric circulation and dynamic mechanism
for persistent haze events in the Beijing–Tianjin–Hebei region, Adv.
Atmos. Sci., 34, 429–440, https://doi.org/10.1007/s00376-016-6158-z, 2017.
Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China
in recent decades: Roles of variations in meteorological parameters and
anthropogenic emissions, J. Geophys. Res.-Atmos., 121, 13050–13065,
https://doi.org/10.1002/2016JD025136, 2016.
Yin, Z. and Wang, H.: Role of atmospheric circulations in haze pollution in December 2016, Atmos. Chem. Phys., 17, 11673–11681, https://doi.org/10.5194/acp-17-11673-2017, 2017.
Yin, Z., Wang, H., and Yuan, D.: Interdecadal increase of haze in winter
over North China and the Huang-huai Area and the weakening of the East Asia
Winter Monsoon, Chin. Sci. Bull., 60, 1395–1400,
https://doi.org/10.1360/N972014-01348, 2015.
Yin, Z., Wang, H., and Chen, H.: Understanding severe winter haze events in the North China Plain in 2014: roles of climate anomalies, Atmos. Chem. Phys., 17, 1641–1651, https://doi.org/10.5194/acp-17-1641-2017, 2017.
Yu, Y., Ren, R., and Cai, M.: Dynamic linkage between cold air outbreaks and
intensity variations of the meridional mass circulation, J. Atmos. Sci., 72,
3214–3232, https://doi.org/10.1175/JAS-D-14-0390.1, 2015.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhao, C., Wang, Y., Shi, X., Zhang, D., Wang, C., Jiang, J. H., Zhang, Q.,
and Fan, H.: Estimating the contribution of local primary emissions to
particulate pollution using high-density station observations, J. Geophys.
Res.-Atmos., 124, 1648–1661, https://doi.org/10.1029/2018JD028888, 2019.
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the...
Altmetrics
Final-revised paper
Preprint