Articles | Volume 22, issue 18
https://doi.org/10.5194/acp-22-12025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-12025-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Summer variability of the atmospheric NO2 : NO ratio at Dome C on the East Antarctic Plateau
Albane Barbero
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering), IGE, Grenoble, France
Roberto Grilli
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering), IGE, Grenoble, France
Markus M. Frey
British Antarctic Survey, CB3 0ET Cambridge, UK
Camille Blouzon
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering), IGE, Grenoble, France
MirSense, Campus Minatec, Grenoble, France
Detlev Helmig
Boulder A.I.R. LLC, 2820 Lafayette Dr., Boulder, CO 80305, USA
Nicolas Caillon
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering), IGE, Grenoble, France
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP (Institute of Engineering), IGE, Grenoble, France
Related authors
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-845, https://doi.org/10.5194/acp-2022-845, 2023
Preprint under review for ACP
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In simple box model of HONO sources and sinks there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022, https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Short summary
A record of year-round atmospheric nitrate isotopic composition along with snow nitrate isotopic data from Summit, Greenland, revealed apparent enrichments in nitrogen isotopes in snow nitrate compared to atmospheric nitrate, in addition to a relatively smaller degree of changes in oxygen isotopes. The results suggest that at this site post-depositional processing takes effect, which should be taken into account when interpreting ice-core nitrate isotope records.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021, https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Short summary
After a multidecadal global decline in atmospheric abundance of ethane and propane (precursors of tropospheric ozone and aerosols), previous work showed a reversal of this trend in 2009–2015 in the Northern Hemisphere due to the growth in oil and natural gas production in North America. Here we show a temporary pause in the growth of atmospheric ethane and propane in 2015–2018 and highlight the critical need for additional top-down studies to further constrain ethane and propane emissions.
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere, 15, 4207–4220, https://doi.org/10.5194/tc-15-4207-2021, https://doi.org/10.5194/tc-15-4207-2021, 2021
Short summary
Short summary
We used a snow photochemistry model (TRANSITS) to simulate the seasonal nitrate snow profile at Summit, Greenland. Comparisons between model outputs and observations suggest that at Summit post-depositional processing is active and probably dominates the snowpack δ15N seasonality. We also used the model to assess the degree of snow nitrate loss and the consequences in its isotopes at present and in the past, which helps for quantitative interpretations of ice-core nitrate records.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Hélène Angot, Katelyn McErlean, Lu Hu, Dylan B. Millet, Jacques Hueber, Kaixin Cui, Jacob Moss, Catherine Wielgasz, Tyler Milligan, Damien Ketcherside, M. Syndonia Bret-Harte, and Detlev Helmig
Biogeosciences, 17, 6219–6236, https://doi.org/10.5194/bg-17-6219-2020, https://doi.org/10.5194/bg-17-6219-2020, 2020
Short summary
Short summary
We report biogenic volatile organic compounds (BVOCs) ambient levels and emission rates from key vegetation species in the Alaskan arctic tundra, providing a new data set to further constrain isoprene chemistry under low NOx conditions in models. We add to the growing body of evidence that climate-induced changes in the vegetation composition will significantly affect the BVOC emission potential of the tundra, with implications for atmospheric oxidation processes and climate feedbacks.
Wei Wang, Laurens Ganzeveld, Samuel Rossabi, Jacques Hueber, and Detlev Helmig
Atmos. Chem. Phys., 20, 11287–11304, https://doi.org/10.5194/acp-20-11287-2020, https://doi.org/10.5194/acp-20-11287-2020, 2020
Short summary
Short summary
Trees exchange with the atmosphere nitrogen oxides and ozone, affecting the tropospheric composition and consequently air quality and ecosystem health. We examined the leaf-level gas exchanges for four typical tree species (pine, maple, oak, aspen) found in northern Michigan, US. The leaves largely absorb the gases, showing little evidence of emission. We measured the uptake rates that can be used to improve model studies of the source and sink processes controlling these gases in forests.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Dean Howard, Yannick Agnan, Detlev Helmig, Yu Yang, and Daniel Obrist
Biogeosciences, 17, 4025–4042, https://doi.org/10.5194/bg-17-4025-2020, https://doi.org/10.5194/bg-17-4025-2020, 2020
Short summary
Short summary
The Arctic tundra represents a vast store of carbon that may be broken down by microbial activity into greenhouse gases such as CO2 and CH4. Though microbes are less active in winter, the long duration of the cold season makes this period very important for carbon cycling. We show that, under conditions of warmer winter air temperatures and greater snowfall, deeper soils can remain warm enough to sustain significantly enhanced CH4 emission. This could have large implications for future climates.
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020, https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Short summary
The transfer of the nitrogen stable isotopic composition in nitrate between the air and snow at low accumulation sites in Antarctica leaves an UV imprint in the snow. Quantifying how nitrate isotope values change allows us to interpret longer ice core records. Based on nitrate observations and modelling at Kohnen, East Antarctica, the dominant factors controlling the nitrate isotope signature in deep snow layers are the depth of light penetration into the snowpack and the snow accumulation rate.
Roberto Grilli, François Darchambeau, Jérôme Chappellaz, Ange Mugisha, Jack Triest, and Augusta Umutoni
Geosci. Instrum. Method. Data Syst., 9, 141–151, https://doi.org/10.5194/gi-9-141-2020, https://doi.org/10.5194/gi-9-141-2020, 2020
Short summary
Short summary
We report the results from the deployment of a newly developed in situ sensor for dissolved gas measurements. Its adaptation to high gas concentrations and dissolved gas pressures was proven. The campaign leads to a first continuous profile of methane on the first 150 m and allowed us to compare the data with previous measurements. The fast response of the instrument makes this technique a good candidate for regular monitoring of those type of lakes, for anticipating disastrous gas eruptions.
Ryan J. Pound, Tomás Sherwen, Detlev Helmig, Lucy J. Carpenter, and Mat J. Evans
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020, https://doi.org/10.5194/acp-20-4227-2020, 2020
Short summary
Short summary
Ozone is an important pollutant with impacts on health and the environment. Ozone is lost to plants, land and the oceans. Loss to the ocean is slow compared to all other types of land cover and has not received as much attention. We build on previous work to more accurately model ozone loss to the ocean. We find changes in the concentration of ozone over the oceans, notably the Southern Ocean, which improves model performance.
Markus M. Frey, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Xin Yang, Anna E. Jones, Michelle G. Nerentorp Mastromonaco, David H. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 20, 2549–2578, https://doi.org/10.5194/acp-20-2549-2020, https://doi.org/10.5194/acp-20-2549-2020, 2020
Short summary
Short summary
A winter sea ice expedition to Antarctica provided the first direct observations of sea salt aerosol (SSA) production during snow storms above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in Antarctica not explained otherwise. Defining SSA sources is important given the critical roles that aerosol plays for climate, for air quality and as a potential ice core proxy for sea ice conditions in the past.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Martin Jiskra, Jeroen E. Sonke, Yannick Agnan, Detlev Helmig, and Daniel Obrist
Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019, https://doi.org/10.5194/bg-16-4051-2019, 2019
Short summary
Short summary
The tundra plays a pivotal role in Arctic mercury cycling by storing atmospheric mercury deposition and shuttling it to the Arctic Ocean. We used the isotopic fingerprint of mercury to investigate the processes controlling atmospheric mercury deposition. We found that the uptake of atmospheric mercury by vegetation was the major deposition source. Direct deposition to snow or soils only played a minor role. These results improve our understanding of Arctic mercury cycling.
Pär Jansson, Jack Triest, Roberto Grilli, Bénédicte Ferré, Anna Silyakova, Jürgen Mienert, and Jérôme Chappellaz
Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019, https://doi.org/10.5194/os-15-1055-2019, 2019
Short summary
Short summary
Methane seepage from the seafloor west of Svalbard was investigated with a fast-response membrane inlet laser spectrometer. The acquired data were in good agreement with traditional sparse discrete water sampling, subsequent gas chromatography, and with a new 2-D model based on echo-sounder data. However, the acquired high-resolution data revealed unprecedented details of the methane distribution, which highlights the need for high-resolution measurements for future climate studies.
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, https://doi.org/10.5194/acp-19-8407-2019, 2019
Short summary
Short summary
This is a comprehensive model–data comparison aiming to evaluate the proposed mechanism of sea salt aerosol (SSA) production from blowing snow on sea ice. Some key parameters such as snow salinity and blowing-snow size distribution were constrained by data collected in the Weddell Sea. The good agreement between modelled SSA and the cruise data strongly indicates that sea ice surface is a large SSA source in polar regions, a process which has not been considered in current climate models.
Loic Lechevallier, Roberto Grilli, Erik Kerstel, Daniele Romanini, and Jérôme Chappellaz
Atmos. Meas. Tech., 12, 3101–3109, https://doi.org/10.5194/amt-12-3101-2019, https://doi.org/10.5194/amt-12-3101-2019, 2019
Short summary
Short summary
In this work we describe a highly sensitive optical spectrometer for simultaneous measurement of methane, ethane, and the isotopic composition of methane. The coupling of the spectrometer with a dissolved gas extraction system will provide a suitable tool for understanding the origins of the dissolved hydrocarbons and discriminate between the different sources (e.g., biogenic vs. thermogenic).
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Shaojie Song, Hélène Angot, Noelle E. Selin, Hubert Gallée, Francesca Sprovieri, Nicola Pirrone, Detlev Helmig, Joël Savarino, Olivier Magand, and Aurélien Dommergue
Atmos. Chem. Phys., 18, 15825–15840, https://doi.org/10.5194/acp-18-15825-2018, https://doi.org/10.5194/acp-18-15825-2018, 2018
Short summary
Short summary
Mercury is a trace metal with adverse health effects on human and wildlife. Its unique property makes it undergo long-range transport, and even remote Antarctica receives significant inputs. This paper presents the first model that aims to understand mercury behavior over the Antarctic Plateau. We find that mercury is quickly cycled between snow and air in the sunlit period, likely driven by bromine chemistry, and that several uncertain processes contribute to its behavior in the dark period.
Yannick Agnan, Thomas A. Douglas, Detlev Helmig, Jacques Hueber, and Daniel Obrist
The Cryosphere, 12, 1939–1956, https://doi.org/10.5194/tc-12-1939-2018, https://doi.org/10.5194/tc-12-1939-2018, 2018
Short summary
Short summary
In this study, we investigated mercury dynamics in an interior arctic tundra at Toolik Field Station (200 km from the Arctic Ocean) during two full snow seasons. We continuously measured atmospheric, snow gas phase, and soil pores mercury concentrations. We observed consistent concentration declines from the atmosphere to snowpack to soils, indicating that soils are continuous sinks of mercury. We suggest that interior arctic snowpacks may be negligible sources of mercury.
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue
Atmos. Meas. Tech., 11, 2159–2171, https://doi.org/10.5194/amt-11-2159-2018, https://doi.org/10.5194/amt-11-2159-2018, 2018
Short summary
Short summary
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long standing issue in molecular spectroscopy with a direct impact in atmospheric and planetary sciences. Using highly sensitive laser spectrometers, the water self continuum has been determined with unprecedented sensitivity in infrared atmospheric transparency windows.
Hoi Ga Chan, Markus M. Frey, and Martin D. King
Atmos. Chem. Phys., 18, 1507–1534, https://doi.org/10.5194/acp-18-1507-2018, https://doi.org/10.5194/acp-18-1507-2018, 2018
Short summary
Short summary
Emissions of reactive nitrogen from snowpacks influence remote air quality. Two physical air–snow models for nitrate were developed. One assumes that below a threshold temperature the air–snow grain interface is pure ice and above it a disordered interface emerges. The other assumes an air–ice interface below melting and that any liquid present is concentrated in micropockets. Only the latter matches observations at two Antarctic lcoations covering a wide range of environmental conditions.
Yaoxian Huang, Shiliang Wu, Louisa J. Kramer, Detlev Helmig, and Richard E. Honrath
Atmos. Chem. Phys., 17, 14661–14674, https://doi.org/10.5194/acp-17-14661-2017, https://doi.org/10.5194/acp-17-14661-2017, 2017
Short summary
Short summary
A global chemical transport model (GEOS-Chem) was employed to simulate surface ozone and its precursors at Summit, Greenland in the Arctic and compare them with 2-year in situ surface observations. The model performed well in simulating certain species (such as carbon monoxide and propane), but some significant discrepancies were identified for other species (e.g., nitrogen oxides, ethane, PAN, and ozone). We further investigated the exact causes for model–data biases.
Rachael H. Rhodes, Xin Yang, Eric W. Wolff, Joseph R. McConnell, and Markus M. Frey
Atmos. Chem. Phys., 17, 9417–9433, https://doi.org/10.5194/acp-17-9417-2017, https://doi.org/10.5194/acp-17-9417-2017, 2017
Short summary
Short summary
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this opens up the possibility of reconstructing sea ice history using sea salt recorded in ice cores. We use a chemical transport model to demonstrate that the sea ice source of aerosol is important in the Arctic. For the first time, we simulate realistic Greenland ice core sea salt in a process-based model. The importance of the sea ice source increases from south to north across the Greenland ice sheet.
Mike J. Newland, Patricia Martinerie, Emmanuel Witrant, Detlev Helmig, David R. Worton, Chris Hogan, William T. Sturges, and Claire E. Reeves
Atmos. Chem. Phys., 17, 8269–8283, https://doi.org/10.5194/acp-17-8269-2017, https://doi.org/10.5194/acp-17-8269-2017, 2017
Short summary
Short summary
We report increasing levels of alkyl nitrates in the Northern Hemisphere atmosphere between 1960 and the mid-1990s. These increases are symptomatic of large-scale changes to the chemical composition of the atmosphere, particularly with regards to the amounts of short-lived, reactive species. The observed increases are likely driven by increasing levels of nitrogen oxides. These changes have direct implications for the lifetimes of climate-relevant species in the atmosphere, such as methane.
Sakiko Ishino, Shohei Hattori, Joel Savarino, Bruno Jourdain, Susanne Preunkert, Michel Legrand, Nicolas Caillon, Albane Barbero, Kota Kuribayashi, and Naohiro Yoshida
Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, https://doi.org/10.5194/acp-17-3713-2017, 2017
Short summary
Short summary
We show the first simultaneous observations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica. The contrasting seasonal trends between oxygen isotopes of ozone and those of sulfate and nitrate indicate that these signatures in sulfate and nitrate are mainly controlled by changes in oxidation chemistry. We also discuss the specific oxidation chemistry induced by the unique phenomena at the site.
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, https://doi.org/10.5194/acp-16-8249-2016, 2016
Short summary
Short summary
While the Arctic has been extensively monitored, there is still much to be learned from the Antarctic continent regarding the processes that govern the budget of atmospheric mercury species. We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. The striking reactivity observed on the Antarctic plateau most likely influences the cycle of atmospheric mercury on a continental scale.
Michel Legrand, Susanne Preunkert, Joël Savarino, Markus M. Frey, Alexandre Kukui, Detlev Helmig, Bruno Jourdain, Anna E. Jones, Rolf Weller, Neil Brough, and Hubert Gallée
Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, https://doi.org/10.5194/acp-16-8053-2016, 2016
Short summary
Short summary
Surface ozone, the most abundant atmospheric oxidant, has been measured since 2004 at the coastal East Antarctic site of Dumont d’Urville, and since 2007 at the Concordia station located on the high East Antarctic plateau. Long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites are discussed. Influences like sea ice extent and outflow from inland Antarctica are discussed.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
Joël Savarino, William C. Vicars, Michel Legrand, Suzanne Preunkert, Bruno Jourdain, Markus M. Frey, Alexandre Kukui, Nicolas Caillon, and Jaime Gil Roca
Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, https://doi.org/10.5194/acp-16-2659-2016, 2016
Short summary
Short summary
Atmospheric nitrate is collected on the East Antarctic ice sheet. Nitrogen and oxygen stable isotopes and concentrations of nitrate are measured. Using a box model, we show that there is s systematic discrepancy between observations and model results. We suggest that this discrepancy probably results from unknown NOx chemistry above the Antarctic ice sheet. However, possible misconception in the stable isotope mass balance is not completely excluded.
E. Gautier, J. Savarino, J. Erbland, A. Lanciki, and P. Possenti
Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016, https://doi.org/10.5194/cp-12-103-2016, 2016
Short summary
Short summary
We evaluate the local-scale variability of a sulfate profile at a low-accumulation site (Dome C, Antarctica) to assess the representativeness of one ice core for volcanic reconstructions. Peak statistical occurrence, depth and flux variability are evaluated from five cores. Due to local-scale variability, 64 volcanic peaks can be identified by a five-cores analysis, while only half of them can be assessed from two cores. Using five cores, the uncertainty of the mean flux is reduced to 29 %.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins, and M. S. Johnson
Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, https://doi.org/10.5194/acp-15-11243-2015, 2015
Short summary
Short summary
In this field study at Dome C, Antarctica, we investigated the effect of solar UV photolysis on the stable isotopes of nitrate in snow via comparison of two identical snow pits while exposing only one to solar UV. From the difference between the average isotopic fractionations calculated for each pit, we determined a purely photolytic nitrogen isotopic fractionation of -55.8‰, in good agreement with what has been recently determined in a laboratory study.
M. M. Frey, H. K. Roscoe, A. Kukui, J. Savarino, J. L. France, M. D. King, M. Legrand, and S. Preunkert
Atmos. Chem. Phys., 15, 7859–7875, https://doi.org/10.5194/acp-15-7859-2015, https://doi.org/10.5194/acp-15-7859-2015, 2015
Short summary
Short summary
Surprisingly large concentrations and flux of atmospheric nitrogen oxides were measured at Dome C, East Antarctica. It was found that the surface snow holds a significant reservoir of photochemically produced NOx and is a sink of gas-phase ozone. Main drivers of NOx snow emissions were large snow nitrate concentrations, with contributions of increased UV from decreases in stratospheric ozone. Observed halogen and hydroxyl radical concentrations were too low to explain large NO2:NO ratios.
H. G. Chan, M. D. King, and M. M. Frey
Atmos. Chem. Phys., 15, 7913–7927, https://doi.org/10.5194/acp-15-7913-2015, https://doi.org/10.5194/acp-15-7913-2015, 2015
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, https://doi.org/10.5194/acp-15-6827-2015, 2015
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. Preunkert, M. Legrand, M. M. Frey, A. Kukui, J. Savarino, H. Gallée, M. King, B. Jourdain, W. Vicars, and D. Helmig
Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, https://doi.org/10.5194/acp-15-6689-2015, 2015
Short summary
Short summary
During two austral summers HCHO was investigated in air, snow, and interstitial air at the Concordia site located on the East Antarctic Plateau. Snow emission fluxes were estimated to be around 1 to 2 and 3 to 5 x 10^12 molecules m-2 s-1 at night and at noon, respectively. Shading experiments suggest that the photochemical HCHO production in the snowpack at Concordia remains negligible. The mean HCHO level of 130pptv observed at 1m above the surface is quite well reproduced by 1-D simulations.
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
K. Dzepina, C. Mazzoleni, P. Fialho, S. China, B. Zhang, R. C. Owen, D. Helmig, J. Hueber, S. Kumar, J. A. Perlinger, L. J. Kramer, M. P. Dziobak, M. T. Ampadu, S. Olsen, D. J. Wuebbles, and L. R. Mazzoleni
Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, https://doi.org/10.5194/acp-15-5047-2015, 2015
Short summary
Short summary
Aerosol was sampled at the Pico Mountain Observatory located at 2.2km amsl on Pico Island of the North Atlantic Azores archipelago. Two aerosol samples characterized by ultrahigh resolution mass spectrometry had biomass burning and marine emissions origins, as corroborated by collocated gas- and particle-phase measurements, air masses analyses and satellites. The paper presents the first molecular characterization of aged and processed aerosol intercepted at a remote lower free troposphere
R. Ahmadov, S. McKeen, M. Trainer, R. Banta, A. Brewer, S. Brown, P. M. Edwards, J. A. de Gouw, G. J. Frost, J. Gilman, D. Helmig, B. Johnson, A. Karion, A. Koss, A. Langford, B. Lerner, J. Olson, S. Oltmans, J. Peischl, G. Pétron, Y. Pichugina, J. M. Roberts, T. Ryerson, R. Schnell, C. Senff, C. Sweeney, C. Thompson, P. R. Veres, C. Warneke, R. Wild, E. J. Williams, B. Yuan, and R. Zamora
Atmos. Chem. Phys., 15, 411–429, https://doi.org/10.5194/acp-15-411-2015, https://doi.org/10.5194/acp-15-411-2015, 2015
Short summary
Short summary
High 2013 wintertime O3 pollution events associated with oil/gas production within the Uinta Basin are studied using a 3D model. It's able quantitatively to reproduce these events using emission estimates of O3 precursors based on ambient measurements (top-down approach), but unable to reproduce them using a recent bottom-up emission inventory for the oil/gas industry. The role of various physical and meteorological processes, chemical species and pathways contributing to high O3 are quantified.
S. J. Lawson, P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski
Atmos. Chem. Phys., 15, 223–240, https://doi.org/10.5194/acp-15-223-2015, https://doi.org/10.5194/acp-15-223-2015, 2015
Short summary
Short summary
Glyoxal and methylglyoxal are short-lived organic trace gases and important precursors of secondary organic aerosol. Measurements over oceans are sparse. We present the first in situ glyoxal and methylglyoxal observations over remote temperate oceans, alongside observations of precursor gases. Precursor gases cannot explain observed mixing ratios, highlighting an unknown source. We show a large discrepancy between calculated vertical column densities of glyoxal and those retrieved by satellite.
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
A. Kukui, M. Legrand, S. Preunkert, M. M. Frey, R. Loisil, J. Gil Roca, B. Jourdain, M. D. King, J. L. France, and G. Ancellet
Atmos. Chem. Phys., 14, 12373–12392, https://doi.org/10.5194/acp-14-12373-2014, https://doi.org/10.5194/acp-14-12373-2014, 2014
Short summary
Short summary
Concentrations of OH radicals and the sum of peroxy radicals, RO2, were measured in the boundary layer for the first time on the East Antarctic Plateau at the Concordia Station during the austral summer 2011/2012. The concentrations of radicals were comparable to those observed at the South Pole, confirming that the elevated oxidative capacity of the Antarctic atmospheric boundary layer found at the South Pole is not restricted to the South Pole but common over the high Antarctic plateau.
M. Legrand, S. Preunkert, M. Frey, Th. Bartels-Rausch, A. Kukui, M. D. King, J. Savarino, M. Kerbrat, and B. Jourdain
Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, https://doi.org/10.5194/acp-14-9963-2014, 2014
S. J. Oltmans, A. Karion, R. C. Schnell, G. Pétron, C. Sweeney, S. Wolter, D. Neff, S. A. Montzka, B. R. Miller, D. Helmig, B. J. Johnson, and J. Hueber
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20117-2014, https://doi.org/10.5194/acpd-14-20117-2014, 2014
Revised manuscript not accepted
J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun
The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014, https://doi.org/10.5194/tc-8-1205-2014, 2014
P. Boylan, D. Helmig, and J.-H. Park
Atmos. Meas. Tech., 7, 1231–1244, https://doi.org/10.5194/amt-7-1231-2014, https://doi.org/10.5194/amt-7-1231-2014, 2014
B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath
Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014, https://doi.org/10.5194/acp-14-2267-2014, 2014
D. Helmig, V. Petrenko, P. Martinerie, E. Witrant, T. Röckmann, A. Zuiderweg, R. Holzinger, J. Hueber, C. Thompson, J. W. C. White, W. Sturges, A. Baker, T. Blunier, D. Etheridge, M. Rubino, and P. Tans
Atmos. Chem. Phys., 14, 1463–1483, https://doi.org/10.5194/acp-14-1463-2014, https://doi.org/10.5194/acp-14-1463-2014, 2014
A. Kumar, S. Wu, M. F. Weise, R. Honrath, R. C. Owen, D. Helmig, L. Kramer, M. Val Martin, and Q. Li
Atmos. Chem. Phys., 13, 12537–12547, https://doi.org/10.5194/acp-13-12537-2013, https://doi.org/10.5194/acp-13-12537-2013, 2013
P. M. Edwards, C. J. Young, K. Aikin, J. deGouw, W. P. Dubé, F. Geiger, J. Gilman, D. Helmig, J. S. Holloway, J. Kercher, B. Lerner, R. Martin, R. McLaren, D. D. Parrish, J. Peischl, J. M. Roberts, T. B. Ryerson, J. Thornton, C. Warneke, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, https://doi.org/10.5194/acp-13-8955-2013, 2013
S. Masclin, M. M. Frey, W. F. Rogge, and R. C. Bales
Atmos. Chem. Phys., 13, 8857–8877, https://doi.org/10.5194/acp-13-8857-2013, https://doi.org/10.5194/acp-13-8857-2013, 2013
J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins
Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, https://doi.org/10.5194/acp-13-6403-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
L. Hu, D. B. Millet, S. Y. Kim, K. C. Wells, T. J. Griffis, E. V. Fischer, D. Helmig, J. Hueber, and A. J. Curtis
Atmos. Chem. Phys., 13, 3379–3392, https://doi.org/10.5194/acp-13-3379-2013, https://doi.org/10.5194/acp-13-3379-2013, 2013
M. M. Frey, N. Brough, J. L. France, P. S. Anderson, O. Traulle, M. D. King, A. E. Jones, E. W. Wolff, and J. Savarino
Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, https://doi.org/10.5194/acp-13-3045-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Real-time measurements of non-methane volatile organic compounds in the central Indo-Gangetic basin, Lucknow, India: source characterisation and their role in O3 and secondary organic aerosol formation
Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime
Measurement report: Volatile organic compound characteristics of the different land-use types in Shanghai: spatiotemporal variation, source apportionment and impact on secondary formations of ozone and aerosol
O3–precursor relationship over multiple patterns of timescale: a case study in Zibo, Shandong Province, China
High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes
Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019
Pandemic restrictions in 2020 highlight the significance of non-road NOx sources in central London
Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States
Experimental chemical budgets of OH, HO2, and RO2 radicals in rural air in western Germany during the JULIAC campaign 2019
Chemical and dynamical identification of emission outflows during the HALO campaign EMeRGe in Europe and Asia
Flaring efficiencies and NOx emission ratios measured for offshore oil and gas facilities in the North Sea
Measurement report: Long-range transport and the fate of dimethyl sulfide oxidation products in the free troposphere derived from observations at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes
Formaldehyde and hydroperoxide distribution around the Arabian Peninsula – evaluation of EMAC model results with ship-based measurements
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO2–O3 photostationary state
Measurement report: Molecular-level investigation of atmospheric cluster ions at the tropical high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes
Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires
Unexpectedly high concentrations of atmospheric mercury species in Lhasa, the largest city on the Tibetan Plateau
Chemical identification of new particle formation and growth precursors through positive matrix factorization of ambient ion measurements
The unexpected high frequency of nocturnal surface ozone enhancement events over China: characteristics and mechanisms
Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California
Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China
Formation and impacts of nitryl chloride in Pearl River Delta
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes
Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany
Observations of biogenic volatile organic compounds over a mixed temperate forest during the summer to autumn transition
Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO2 radicals in Shenzhen in 2018
Reconciling the total carbon budget for boreal forest wildfire emissions using airborne observations
Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: characteristics, sources, and implications for pollution control
Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign
Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network
Measurement report: Observations of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign
Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California
Analysis of regional CO2 contributions at the high Alpine observatory Jungfraujoch by means of atmospheric transport simulations and δ13C
Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower
Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies
Sulfuric acid in the Amazon basin: measurements and evaluation of existing sulfuric acid proxies
Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles
The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley
Distribution of hydrogen peroxide over Europe during the BLUESKY aircraft campaign
Eddy covariance measurements highlight sources of nitrogen oxide emissions missing from inventories for central London
Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China
Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Zhensen Zheng, Kangwei Li, Bo Xu, Jianping Dou, Liming Li, Guotao Zhang, Shijie Li, Chunmei Geng, Wen Yang, Merched Azzi, and Zhipeng Bai
Atmos. Chem. Phys., 23, 2649–2665, https://doi.org/10.5194/acp-23-2649-2023, https://doi.org/10.5194/acp-23-2649-2023, 2023
Short summary
Short summary
Previous box model studies applied different timescales of observational datasets to identify the O3–precursor relationship, but there is a lack of comparison among these different timescales regarding the impact of O3 formation chemistry. Through a case study at Zibo in China, we find that the O3 formation regime showed overall consistency but non-negligible variability among various patterns of timescale. This would be complementary in developing more accurate O3 pollution control strategies.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary
Short summary
Particulate nitrate is a growing issue in air pollution. Based on comprehensive field measurement, we show heavy nitrate pollution in eastern China in summer. OH reacting with NO2 at daytime dominates nitrate formation on clean days, while N2O5 hydrolysis largely enhances and become comparable with that of OH reacting with O2 on polluted days (67.2 % and 30.2 %). Model simulation indicates that VOC : NOx = 2 : 1 is effective in mitigating the O3 and nitrate pollution coordinately.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2022-1182, https://doi.org/10.5194/egusphere-2022-1182, 2022
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from Jan to May 2018 at high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. Combined with state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-750, https://doi.org/10.5194/acp-2022-750, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Lhasa is the largest city on the Tibetan Plateau and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, and Eleanor C. Browne
EGUsphere, https://doi.org/10.5194/egusphere-2022-1318, https://doi.org/10.5194/egusphere-2022-1318, 2022
Short summary
Short summary
Ambient ion chemical composition measurements provide insight into trace gases that are precursors for the formation and growth of new aerosol particles. We use a new data analysis approach to increase the chemical information from these measurements. We analyze results from an agricultural region – an understudied land use type that is ~41 % of global land use – and find that the composition of gases important for aerosol formation and growth differ significantly from those in other ecosystems.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Greg T. Drozd, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 14987–15019, https://doi.org/10.5194/acp-22-14987-2022, https://doi.org/10.5194/acp-22-14987-2022, 2022
Short summary
Short summary
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase compounds in the atmosphere during an 11 d period in a Bay Area suburb. We separated compounds based on variability in time to arrive at 13 distinct sources. Some compounds emitted from plants are found in greater quantities as fragrance compounds in consumer products. The wide volatility range of these measurements enables the construction of more complete source profiles.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022, https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
Short summary
Understanding tropospheric ozone trends is crucial for accurate predictions of future air quality and climate, but drivers of trends are not well understood. We analyze global tropospheric ozone trends since 1980 using ozonesonde and surface measurements, and we evaluate two models for their ability to reproduce trends. We find observational evidence of increasing tropospheric ozone, but models underestimate these increases. This hinders our ability to estimate ozone radiative forcing.
Yue Tan and Tao Wang
Atmos. Chem. Phys., 22, 14455–14466, https://doi.org/10.5194/acp-22-14455-2022, https://doi.org/10.5194/acp-22-14455-2022, 2022
Short summary
Short summary
We present a timely analysis of the effects of the recent lockdown in Shanghai on ground-level ozone (O3). Despite a huge reduction in human activity, O3 concentrations frequently exceeded the O3 air quality standard during the 2-month lockdown, implying that future emission reductions similar to those that occurred during the lockdown will not be sufficient to eliminate O3 pollution in many urban areas without the imposition of additional VOC controls or substantial decreases in NOx emissions.
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022, https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Short summary
Low-cost sensors see additional pollution that is not seen with traditional regional air quality monitoring stations. This additional local pollution is sufficient to cause exceedance of the World Health Organization exposure thresholds. Analysis shows that a significant amount of the NO2 pollution we observe is local, mainly due to road traffic. This article demonstrates how networks of nodes containing low-cost pollution sensors can powerfully extend existing monitoring programmes.
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022, https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary
Short summary
Accounting for the continuing long-term decrease of pollution ozone and the large 2020 Arctic stratospheric ozone depletion event improves estimates of background ozone changes caused by COVID-19-related emission reductions; they are smaller than reported earlier. Cooperative, international emission control efforts aimed at maximizing the ongoing decrease in hemisphere-wide background ozone may be the most effective approach to improving ozone pollution in northern midlatitude countries.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Michael P. Vermeuel, Gordon A. Novak, Delaney B. Kilgour, Megan S. Claflin, Brian M. Lerner, Amy M. Trowbridge, Jonathan Thom, Patricia A. Cleary, Ankur R. Desai, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2022-1015, https://doi.org/10.5194/egusphere-2022-1015, 2022
Short summary
Short summary
Reactive carbon species that are emitted from natural sources such as forests play an important role in the chemistry of the atmosphere. Although we can predict emissions of these chemicals by knowing meteorology and plant type, it is difficult to predict during seasonal transitions. Because of this we made measurements of reactive carbon in a forest during the summer to autumn transition and learned that concentrations and emissions are larger than we would have predicted in models.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Marcel Zauner-Wieczorek, Martin Heinritzi, Manuel Granzin, Timo Keber, Andreas Kürten, Katharina Kaiser, Johannes Schneider, and Joachim Curtius
Atmos. Chem. Phys., 22, 11781–11794, https://doi.org/10.5194/acp-22-11781-2022, https://doi.org/10.5194/acp-22-11781-2022, 2022
Short summary
Short summary
We present measurements of ambient ions in the free troposphere and lower stratosphere over Europe in spring 2020. We observed nitrate and hydrogen sulfate, amongst others. From their ratio, the number concentrations of gaseous sulfuric acid were inferred. Nitrate increased towards the stratosphere, whilst sulfuric acid was slightly decreased there. The average values for sulfuric acid were 1.9 to 7.8 × 105 cm-3. Protonated pyridine was identified in an altitude range of 4.6 to 8.5 km.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys., 22, 11033–11047, https://doi.org/10.5194/acp-22-11033-2022, https://doi.org/10.5194/acp-22-11033-2022, 2022
Short summary
Short summary
We examine emissions of volatile organic compounds from 2020 wildfires in forested regions of Australia (AU). We find that biomass burning in temperate regions of the US and AU emit similar species in similar proportion, both in natural and lab settings. This suggests studies of wildfires in one region may be used to help improve air quality models in other parts of the world. We observe time series of ozone and nitrogen dioxide. Last, we look at which compounds contribute most to OH reactivity.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Simone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 22, 10721–10749, https://doi.org/10.5194/acp-22-10721-2022, https://doi.org/10.5194/acp-22-10721-2022, 2022
Short summary
Short summary
Understanding regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580 m a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009–2017 with stable carbon isotope (δ13C–CO2) information.
Xiao-Bing Li, Bin Yuan, Sihang Wang, Chunlin Wang, Jing Lan, Zhijie Liu, Yongxin Song, Xianjun He, Yibo Huangfu, Chenglei Pei, Peng Cheng, Suxia Yang, Jipeng Qi, Caihong Wu, Shan Huang, Yingchang You, Ming Chang, Huadan Zheng, Wenda Yang, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 10567–10587, https://doi.org/10.5194/acp-22-10567-2022, https://doi.org/10.5194/acp-22-10567-2022, 2022
Short summary
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Short summary
Gaseous oxygenated organic molecules (OOMs) are able to form atmospheric aerosols, which will impact on human health and climate change. Here, we find that OOMs in urban Beijing are dominated by anthropogenic sources, i.e. aromatic (29 %–41 %) and aliphatic (26 %–41 %) OOMs. They are also the main contributors to the condensational growth of secondary organic aerosols (SOAs). Therefore, the restriction on anthropogenic VOCs is crucial for the reduction of SOAs and haze formation.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Keming Pan and Ian C. Faloona
Atmos. Chem. Phys., 22, 9681–9702, https://doi.org/10.5194/acp-22-9681-2022, https://doi.org/10.5194/acp-22-9681-2022, 2022
Short summary
Short summary
This work represents a unique analysis of 10 existing air quality network sites and meteorological sites, two AmeriFlux sites, and a radio acoustic sounding system in the Central Valley of California during five consecutive fire seasons, June through September, from 2016 to 2020. We find that the ozone production rate increases by ~ 50 % during wildfire influenced periods. Wildfire smoke also decreases the heat flux by 30 % and results in 12 % lower mixed-layer height.
Zaneta T. Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 9483–9497, https://doi.org/10.5194/acp-22-9483-2022, https://doi.org/10.5194/acp-22-9483-2022, 2022
Short summary
Short summary
Hydrogen peroxide plays a pivotal role in the chemistry of the atmosphere. Together with organic hydroperoxides, it forms a reservoir for peroxy radicals, which are known to be the key contributors to the self-cleaning processes of the atmosphere. Hydroperoxides were measured over Europe during the BLUESKY campaign in May–June 2020. The paper gives an overview of the distribution of the species in the troposphere and investigates the impact of wet scavenging and deposition on the budget of H2O2.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022, https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
Short summary
Tropospheric ozone is an air pollutant that is detrimental to human health, vegetation and ecosystem productivity. A comprehensive characterisation of the spatial and temporal distribution of tropospheric ozone is critical to our understanding of these issues. Here we summarise this distribution over China from the available observational records to the extent possible. This study provides insights into efficient future ozone control strategies in China.
Cited articles
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a
Anderson, P. S. and Bauguitte, S. J.-B.: Behaviour of tracer diffusion in simple atmospheric boundary layer models, Atmos. Chem. Phys., 7, 5147–5158, https://doi.org/10.5194/acp-7-5147-2007, 2007. a, b
Atkinson, D. B.: Solving chemical problems of environmental importance using
Cavity Ring-Down Spectroscopy, The Analyst, 128, 117–125,
https://doi.org/10.1039/b206699h, 2003. a
Atkinson, R.: Atmospheric chemistry of VOCs and NOV, Atmos.
Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 1998. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a, b
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007. a
Barbero, A.: Data Set for the 2019–2020 summer campaign: Summer variability of the atmospheric NO2:NO ratio
at Dome C, on the East Antarctic Plateau, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.942015, 2022. a, b
Barbero, A., Blouzon, C., Savarino, J., Caillon, N., Dommergue, A., and Grilli, R.: A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications, Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, 2020. a, b, c, d, e, f, g, h
Bartels, T., Eichler, B., Zimmermann, P., Gäggeler, H. W., and Ammann, M.: The adsorption of nitrogen oxides on crystalline ice, Atmos. Chem. Phys., 2, 235–247, https://doi.org/10.5194/acp-2-235-2002, 2002. a
Bartels-Rausch, T., Wren, S. N., Schreiber, S., Riche, F., Schneebeli, M., and Ammann, M.: Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries, Atmos. Chem. Phys., 13, 6727–6739, https://doi.org/10.5194/acp-13-6727-2013, 2013. a
Bauguitte, S. J.-B., Bloss, W. J., Evans, M. J., Salmon, R. A., Anderson, P. S., Jones, A. E., Lee, J. D., Saiz-Lopez, A., Roscoe, H. K., Wolff, E. W., and Plane, J. M. C.: Summertime NOx measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?, Atmos. Chem. Phys., 12, 989–1002, https://doi.org/10.5194/acp-12-989-2012, 2012. a, b, c
Beine, H. J., Honrath, R. E., Dominé, F., Simpson, W. R., and Fuentes, J. D.:
NOx during background and ozone depletion periods at Alert: Fluxes
above the snow surface, J. Geophys. Res., 107, 4584–4596,
https://doi.org/10.1029/2002JD002082, 2002. a
Berhanu, T. A., Savarino, J., Erbland, J., Vicars, W. C., Preunkert, S., Martins, J. F., and Johnson, M. S.: Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, 2015. a
Berresheim, H. and Eisele, F. L.: Sulfur Chemistry in the Antarctic
Troposphere Experiment: An overview of project SCATE, J.
Geophys. Res.-Atmos., 103, 1619–1627, https://doi.org/10.1029/97JD00103,
1998. a
Bloss, W. J., Lee, J. D., Heard, D. E., Salmon, R. A., Bauguitte, S. J.-B., Roscoe, H. K., and Jones, A. E.: Observations of OH and HO2 radicals in coastal Antarctica, Atmos. Chem. Phys., 7, 4171–4185, https://doi.org/10.5194/acp-7-4171-2007, 2007. a
Bloss, W. J., Camredon, M., Lee, J. D., Heard, D. E., Plane, J. M. C., Saiz-Lopez, A., Bauguitte, S. J.-B., Salmon, R. A., and Jones, A. E.: Coupling of HOx, NOx and halogen chemistry in the antarctic boundary layer, Atmos. Chem. Phys., 10, 10187–10209, https://doi.org/10.5194/acp-10-10187-2010, 2010. a
Bock, J., Savarino, J., and Picard, G.: Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica, Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, 2016. a
Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele,
F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B., and McMurry, P.:
Unexpected high levels of NO observed at South Pole, Geophys.
Res. Lett., 28, 3625–3628, https://doi.org/10.1029/2000GL012584, 2001. a
Davis, D., Eisele, F., Chen, G., Crawford, J., Huey, G., Tanner, D., Slusher,
D., Mauldin, L., Oncley, S., Lenschow, D., Semmer, S., Shetter, R., Lefer,
B., Arimoto, R., Hogan, A., Grube, P., Lazzara, M., Bandy, A., Thornton, D.,
Berresheim, H., Bingemer, H., Hutterli, M., McConnell, J., Bales, R., Dibb,
J., Buhr, M., Park, J., McMurry, P., Swanson, A., Meinardi, S., and Blake,
D.: An overview of ISCAT 2000, Atmos. Environ., 38, 5363–5373,
https://doi.org/10.1016/j.atmosenv.2004.05.037, 2004. a
Davis, D., Seelig, J., Huey, G., Crawford, J., Chen, G., Wang, Y., Buhr, M.,
Helmig, D., Neff, W., and Blake, D.: A reassessment of Antarctic plateau
reactive nitrogen based on ANTCI 2003 airborne and ground based
measurements, Atmos. Environ., 42, 2831–2848,
https://doi.org/10.1016/j.atmosenv.2007.07.039, 2008. a, b
Eisele, F., Davis, D., Helmig, D., Oltmans, S., Neff, W., Huey, G., Tanner, D.,
Chen, G., Crawford, J., and Arimoto, R.: Antarctic Tropospheric Chemistry
Investigation (ANTCI) 2003 overview, Atmos. Environ., 42,
2749–2761, https://doi.org/10.1016/j.atmosenv.2007.04.013, 2008. a
EPICA community members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004. a
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., Vince, E., and Martins, J. M. F.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, 2013. a, b
Erbland, J., Savarino, J., Morin, S., France, J. L., Frey, M. M., and King, M. D.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records, Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, 2015. a
Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan,
K. A.: The heterogeneous hydrolysis of NO2 in laboratory systems and in
outdoor and indoor atmospheres: an integrated mechanism, Phys. Chem.
Chem. Phys., 5, 223–242, https://doi.org/10.1039/b208564j, 2003. a
Frey, M. M.: Frey, M.M., Atmospheric NOx mixing ratios at Dome C
(East Antarctica) during the OPALE campaign in austral summer
2011/12’, Polar Data Centre, Natural Environment Research Council, UK
Research & Innovation [data set], submitted, 2021. a
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.: Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009. a
Frey, M. M., Brough, N., France, J. L., Anderson, P. S., Traulle, O., King, M. D., Jones, A. E., Wolff, E. W., and Savarino, J.: The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions, Atmos. Chem. Phys., 13, 3045–3062, https://doi.org/10.5194/acp-13-3045-2013, 2013. a, b, c, d, e, f, g, h, i
Frey, M. M., Roscoe, H. K., Kukui, A., Savarino, J., France, J. L., King, M. D., Legrand, M., and Preunkert, S.: Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. Phys., 15, 7859–7875, https://doi.org/10.5194/acp-15-7859-2015, 2015. a, b, c, d, e, f, g, h, i, j, k
Gallée, H. and Gorodetskaya, I. V.: Validation of a limited area model over
Dome C, Antarctic Plateau, during winter, Clim. Dynam., 34,
61–72, https://doi.org/10.1007/s00382-008-0499-y, 2010. a
Gallée, H., Barral, H., Vignon, E., and Genthon, C.: A case study of a low-level jet during OPALE, Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015, 2015a. a
Gallée, H., Preunkert, S., Argentini, S., Frey, M. M., Genthon, C., Jourdain, B., Pietroni, I., Casasanta, G., Barral, H., Vignon, E., Amory, C., and Legrand, M.: Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign, Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, 2015b. a, b
Genthon, C., Town, M. S., Six, D., Favier, V., Argentini, S., and Pellegrini,
A.: Meteorological atmospheric boundary layer measurements and ECMWF
analyses during summer at Dome C, Antarctica, J. Geophys.
Res., 115, D05104, https://doi.org/10.1029/2009JD012741, 2010. a
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007. a
Helmig, D., Johnson, B., Warshawsky, M., Morse, T., Neff, W., Eisele, F., and
Davis, D.: Nitric oxide in the boundary-layer at South Pole during the
Antarctic Tropospheric Chemistry Investigation (ANTCI), Atmos.
Environ., 42, 2817–2830, https://doi.org/10.1016/j.atmosenv.2007.03.061, 2008. a
Helmig, D., Liptzin, D., Hueber, J., and Savarino, J.: Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica, The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, 2020. a, b
Jones, A. E., Wolff, E. W., Salmon, R. A., Bauguitte, S. J.-B., Roscoe, H. K., Anderson, P. S., Ames, D., Clemitshaw, K. C., Fleming, Z. L., Bloss, W. J., Heard, D. E., Lee, J. D., Read, K. A., Hamer, P., Shallcross, D. E., Jackson, A. V., Walker, S. L., Lewis, A. C., Mills, G. P., Plane, J. M. C., Saiz-Lopez, A., Sturges, W. T., and Worton, D. R.: Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign, Atmos. Chem. Phys., 8, 3789–3803, https://doi.org/10.5194/acp-8-3789-2008, 2008. a, b
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal NOy budget in coastal Antarctica and its link with surface snow and ice core nitrate: results from the CHABLIS campaign, Atmos. Chem. Phys., 11, 9271–9285, https://doi.org/10.5194/acp-11-9271-2011, 2011. a
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X.: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, 2021. a
Kukui, A., Legrand, M., Preunkert, S., Frey, M. M., Loisil, R., Gil Roca, J., Jourdain, B., King, M. D., France, J. L., and Ancellet, G.: Measurements of OH and RO2 radicals at Dome C, East Antarctica, Atmos. Chem. Phys., 14, 12373–12392, https://doi.org/10.5194/acp-14-12373-2014, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m
Kuttippurath, J., Goutail, F., Pommereau, J.-P., Lefèvre, F., Roscoe, H. K., Pazmiño, A., Feng, W., Chipperfield, M. P., and Godin-Beekmann, S.: Estimation of Antarctic ozone loss from ground-based total column measurements, Atmos. Chem. Phys., 10, 6569–6581, https://doi.org/10.5194/acp-10-6569-2010, 2010. a
Legrand, M., Preunkert, S., Jourdain, B., Gallée, H., Goutail, F., Weller, R.,
and Savarino, J.: Year-round record of surface ozone at coastal (Dumont
d'Urville) and inland (Concordia) sites in East Antarctica, J. Geophys. Res., 114, D20306, https://doi.org/10.1029/2008JD011667, 2009. a, b, c, d, e, f
Legrand, M., Preunkert, S., Frey, M., Bartels-Rausch, Th., Kukui, A., King, M. D., Savarino, J., Kerbrat, M., and Jourdain, B.: Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (East Antarctic Plateau) in summer: a strong source from surface snow?, Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, 2014. a, b, c, d
Legrand, M., Preunkert, S., Savarino, J., Frey, M. M., Kukui, A., Helmig, D., Jourdain, B., Jones, A. E., Weller, R., Brough, N., and Gallée, H.: Inter-annual variability of surface ozone at coastal (Dumont d'Urville, 2004–2014) and inland (Concordia, 2007–2014) sites in East Antarctica, Atmos. Chem. Phys., 16, 8053–8069, https://doi.org/10.5194/acp-16-8053-2016, 2016. a, b, c, d
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a, b
Libois, Q., Picard, G., Dumont, M., Arnaud, L., Sergent, C., Pougatch, E.,
Sudul, M., and Vial, D.: Experimental determination of the absorption
enhancement parameter of snow, J. Glaciol., 60, 714–724,
https://doi.org/10.3189/2014JoG14J015, 2014. a, b
Mauldin, R. L., Eisele, F. L., Tanner, D. J., Kosciuch, E., Shetter, R., Lefer,
B., Hall, S. R., Nowak, J. B., Buhr, M., Chen, G., Wang, P., and Davis, D.:
Measurements of OH, H2SO4 and MSA at the South Pole during
ISCAT, Geophys. Res. Lett., 28, 3629–3632,
https://doi.org/10.1029/2000GL012711, 2001. a
Meusinger, C., Berhanu, T. A., Erbland, J., Savarino, J., and Johnson, M. S.:
Laboratory study of nitrate photolysis in Antarctic snow. I. Observed
quantum yield, domain of photolysis, and secondary chemistry, J.
Chem. Phys., 140, 244305, https://doi.org/10.1063/1.4882898, 2014. a
Mills, G. P., Sturges, W. T., Salmon, R. A., Bauguitte, S. J.-B., Read, K. A., and Bandy, B. J.: Seasonal variation of peroxyacetylnitrate (PAN) in coastal Antarctica measured with a new instrument for the detection of sub-part per trillion mixing ratios of PAN, Atmos. Chem. Phys., 7, 4589–4599, https://doi.org/10.5194/acp-7-4589-2007, 2007. a
Pommereau, J. P. and Goutail, F.: Stratospheric O3 and NO2
observations at the southern polar circle in summer and fall 1988,
Geophys. Res. Lett., 15, 895–897, https://doi.org/10.1029/GL015i008p00895,
1988. a
Powell, M. J. D.: An efficient method for finding the minimum of a function of
several variables without calculating derivatives, Comput. J., 7,
155–162, https://doi.org/10.1093/comjnl/7.2.155, 1964. a, b
Preunkert, S., Ancellet, G., Legrand, M., Kukui, A., Kerbrat, M.,
Sarda-Estève, R., Gros, V., and Jourdain, B.: Oxidant Production over
Antarctic Land and its Export (OPALE) project: an overview of the
2010–2011 summer campaign: overview of the OPALE project 2010–2011, J. Geophys. Res.-Atmos., 117, 307–319,
https://doi.org/10.1029/2011JD017145, 2012. a, b, c
Preunkert, S., Legrand, M., Frey, M. M., Kukui, A., Savarino, J., Gallée, H., King, M., Jourdain, B., Vicars, W., and Helmig, D.: Formaldehyde (HCHO) in air, snow, and interstitial air at Concordia (East Antarctic Plateau) in summer, Atmos. Chem. Phys., 15, 6689–6705, https://doi.org/10.5194/acp-15-6689-2015, 2015. a
Read, K. A., Lewis, A. C., Bauguitte, S., Rankin, A. M., Salmon, R. A., Wolff, E. W., Saiz-Lopez, A., Bloss, W. J., Heard, D. E., Lee, J. D., and Plane, J. M. C.: DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production, Atmos. Chem. Phys., 8, 2985–2997, https://doi.org/10.5194/acp-8-2985-2008, 2008. a
Reed, C., Evans, M. J., Di Carlo, P., Lee, J. D., and Carpenter, L. J.: Interferences in photolytic NO2 measurements: explanation for an apparent missing oxidant?, Atmos. Chem. Phys., 16, 4707–4724, https://doi.org/10.5194/acp-16-4707-2016, 2016. a
Ridley, B., Walega, J., Montzka, D., Grahek, F., Atlas, E., Flocke, F., Stroud,
V., Deary, J., Gallant, A., Boudries, H., Bottenheim, J., Anlauf, K., Worthy,
D., Sumner, A. L., Splawn, B., and Shepson, P.: Is the Arctic surface layer
a source and sink of NOx in Winter/Spring?, J. Atmos.
Chem., 36, 1–22, https://doi.org/10.1023/A:1006301029874, 2000. a, b
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017. a
Roscoe, H., Brough, N., Jones, A., Wittrock, F., Richter, A., Van Roozendael,
M., and Hendrick, F.: Characterisation of vertical BrO distribution during
events of enhanced tropospheric BrO in Antarctica, from combined remote
and in-situ measurements, J. Quant. Spectrosc. Ra., 138, 70–81, https://doi.org/10.1016/j.jqsrt.2014.01.026, 2014. a
Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S., Bauguitte, S. J.-B., Jones, A. E., Roscoe, H. K., Salmon, R. A., Bloss, W. J., Lee, J. D., and Heard, D. E.: On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime, Atmos. Chem. Phys., 8, 887–900, https://doi.org/10.5194/acp-8-887-2008, 2008. a, b
Salmon, R. A., Bauguitte, S. J.-B., Bloss, W., Hutterli, M. A., Jones, A. E., Read, K., and Wolff, E. W.: Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica, Atmos. Chem. Phys., 8, 4085–4093, https://doi.org/10.5194/acp-8-4085-2008, 2008. a
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945, https://doi.org/10.5194/acp-7-1925-2007, 2007. a
Savarino, J., Vicars, W. C., Legrand, M., Preunkert, S., Jourdain, B., Frey, M. M., Kukui, A., Caillon, N., and Gil Roca, J.: Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, 2016. a
Schönhardt, A., Richter, A., Wittrock, F., Kirk, H., Oetjen, H., Roscoe, H. K., and Burrows, J. P.: Observations of iodine monoxide columns from satellite, Atmos. Chem. Phys., 8, 637–653, https://doi.org/10.5194/acp-8-637-2008, 2008. a
Schönhardt, A., Begoin, M., Richter, A., Wittrock, F., Kaleschke, L., Gómez Martín, J. C., and Burrows, J. P.: Simultaneous satellite observations of IO and BrO over Antarctica, Atmos. Chem. Phys., 12, 6565–6580, https://doi.org/10.5194/acp-12-6565-2012, 2012. a
Spolaor, A., Burgay, F., Fernandez, R. P., Turetta, C., Cuevas, C. A., Kim, K.,
Kinnison, D. E., Lamarque, J.-F., de Blasi, F., Barbaro, E., Corella, J. P.,
Vallelonga, P., Frezzotti, M., Barbante, C., and Saiz-Lopez, A.: Antarctic
ozone hole modifies iodine geochemistry on the Antarctic Plateau, Nat.
Commun., 12, 5836–5845, https://doi.org/10.1038/s41467-021-26109-x, 2021. a, b
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion
Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
a
Ulrich, T., Ammann, M., Leutwyler, S., and Bartels-Rausch, T.: The adsorption of peroxynitric acid on ice between 230 K and 253 K, Atmos. Chem. Phys., 12, 1833–1845, https://doi.org/10.5194/acp-12-1833-2012, 2012. a
Vicars, W. C. and Savarino, J.: Quantitative constraints on the
17O-excess (Δ17O) signature of surface ozone: Ambient
measurements from 50∘ N to 50∘ S using the nitrite-coated filter
technique, Geochim. Cosmochim. Ac., 135, 270–287,
https://doi.org/10.1016/j.gca.2014.03.023, 2014. a
Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M., Gregory Huey, L., and Neff,
W.: Assessing the photochemical impact of snow NOx emissions over
Antarctica during ANTCI 2003, Atmos. Environ., 41, 3944–3958,
https://doi.org/10.1016/j.atmosenv.2007.01.056, 2007. a
Werle, P., Mücke, R., and Slemr, F.: The limits of signal averaging in
atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption
Spectroscopy (TDLAS), Appl. Phys. B-Photo.,
57, 131–139, https://doi.org/10.1007/BF00425997, 1993. a
Wolff, E. W.: Nitrate in Polar Ice, in: Ice Core Studies of Global
Biogeochemical Cycles, edited by: Delmas, R. J., Springer Berlin Heidelberg, 195–224, ISBN 978-3-642-51172-1, https://doi.org/10.1007/978-3-642-51172-1_10,
1995. a
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008. a
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of...
Altmetrics
Final-revised paper
Preprint