Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-1015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Long-term variations in surface NOx and SO2 mixing ratios from 2006 to 2016 at a background site in the Yangtze River Delta region, China
Qingqing Yin
Key Laboratory of Ecology and Environment in Minority Areas, Minzu
University of China, National Ethnic Affairs Commission, Beijing 100081,
China
Qianli Ma
Lin'an Atmosphere Background National Observation and Research Station,
Zhejiang Meteorological Service, Hangzhou 311307, China
Key Laboratory of Ecology and Environment in Minority Areas, Minzu
University of China, National Ethnic Affairs Commission, Beijing 100081,
China
Xiaobin Xu
Key Laboratory for Atmospheric Chemistry, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
Jie Yao
Lin'an Atmosphere Background National Observation and Research Station,
Zhejiang Meteorological Service, Hangzhou 311307, China
Related authors
No articles found.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Gang Zhao, Ping Tian, Chunxiang Ye, Weili Lin, Yicheng Gao, Jie Sun, Yi Chen, Fengjun Shen, and Tong Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3012, https://doi.org/10.5194/egusphere-2025-3012, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Understanding aerosol size distribution helps us predict how aerosols move, grow, and interact with the environment and climate. We used "maximum entropy" to demonstrate that the aerosol particle number size distribution would follow the Weibull distribution in the clean atmosphere during the new particle formation and growth process. The observations showed good consistency with the theoretical analysis.
Tiantian Zhang, Peng Zuo, Yi Chen, Tong Liu, Linghan Zeng, Weili Lin, and Chunxiang Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-2210, https://doi.org/10.5194/egusphere-2025-2210, 2025
Short summary
Short summary
During the 2022 Beijing Winter Olympics, we conducted field observations of N2O5. By comparing pre- and post-Olympic pollutant levels, we evaluated the impact of emission reductions on nocturnal chemistry. The results showed that the reactivity of nitric oxide (NO) and volatile organic compounds (VOCs) with NO3 decreased, and that the heterogeneous uptake of N2O5 played a critical role in nocturnal nitrate formation.
Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3471, https://doi.org/10.5194/egusphere-2024-3471, 2024
Short summary
Short summary
We observed a strong increase in deseasonalized ozone at urban stations on the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibet Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the rapid increase in anthropogenic nitrogen oxide emissions.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
Shuzheng Guo, Chunxiang Ye, Weili Lin, Yi Chen, Limin Zeng, Xuena Yu, Jinhui Cui, Chong Zhang, Jing Duan, Haobin Zhong, Rujin Huang, Xuguang Chi, Wei Nie, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-262, https://doi.org/10.5194/egusphere-2024-262, 2024
Preprint archived
Short summary
Short summary
@Tibet field campaigns 2021 discovered surprisingly high levels and activity contributions of oxygenated volatile organic compounds on the southeast of the Tibetan Plateau, which suggests that OVOCs may play a larger role in the chemical reactions that occur in high-altitude regions than previously thought.
Jiyuan Yang, Guoyang Lei, Jinfeng Zhu, Yutong Wu, Chang Liu, Kai Hu, Junsong Bao, Zitong Zhang, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 24, 123–136, https://doi.org/10.5194/acp-24-123-2024, https://doi.org/10.5194/acp-24-123-2024, 2024
Short summary
Short summary
The atmospheric pollution and formation mechanisms of particulate-bound alkyl nitrate in Beijing were studied. C9–C16 long-chain n-alkyl nitrates negatively correlated with O3 but positively correlated with PM2.5 and NO2, so they may not be produced during gas-phase homogeneous reactions in the photochemical process but form through reactions between alkanes and nitrates on PM surfaces. Particulate-bound n-alkyl nitrates strongly affect both haze pollution and atmospheric visibility.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Yaru Wang, Yi Chen, Suzhen Chi, Jianshu Wang, Chong Zhang, Weixiong Zhao, Weili Lin, and Chunxiang Ye
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-192, https://doi.org/10.5194/amt-2023-192, 2023
Revised manuscript not accepted
Short summary
Short summary
We reported an optimized system (Mea-OPR) for direct measurement of ozone production rate, which showed a precise, sensitive and reliable measurement of OPR for at least urban and suburban atmosphere, and active O3 photochemical production in winter Beijing. Herein, the Mea-OPR system also shows its potential in exploring the fundamental O3 photochemistry, i.e., surprisingly high ozone production even under high-NOx conditions.
Wanyun Xu, Yuxuan Bian, Weili Lin, Yingjie Zhang, Yaru Wang, Zhiqiang Ma, Xiaoyi Zhang, Gen Zhang, Chunxiang Ye, and Xiaobin Xu
Atmos. Chem. Phys., 23, 7635–7652, https://doi.org/10.5194/acp-23-7635-2023, https://doi.org/10.5194/acp-23-7635-2023, 2023
Short summary
Short summary
Tropospheric ozone (O3) and peroxyacetyl nitrate (PAN) are both photochemical pollutants harmful to the ecological environment and human health, especially in the Tibetan Plateau (TP). However, the factors determining their variations in the TP have not been comprehensively investigated. Results from field measurements and observation-based models revealed that day-to-day variations in O3 and PAN were in fact controlled by distinct physiochemical processes.
Jiyuan Yang, Guoyang Lei, Chang Liu, Yutong Wu, Kai Hu, Jinfeng Zhu, Junsong Bao, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, https://doi.org/10.5194/acp-23-3015-2023, 2023
Short summary
Short summary
The characteristics of n-alkanes and the contributions of various sources of PM2.5 in the atmosphere in Beijing were studied. There were marked seasonal and diurnal differences in the n-alkane concentrations (p<0.01). Particulate-bound n-alkanes were supplied by anthropogenic and biogenic sources; fossil fuel combustion was the dominant contributor. Vehicle exhausts strongly affect PM2.5 pollution. Controlling vehicle exhaust emissions is key to control n-alkane and PM2.5 pollution in Beijing.
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187, https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
We develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. It can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022, https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Short summary
Significant decreases in annual mean NOx from 2011 to 2016 and SO2 from 2008 to 2016 confirm the effectiveness of relevant control measures on the reduction in NOx and SO2 emissions in the North China Plain (NCP). NOx at SDZ had a weaker influence than SO2 on the emission reduction in Beijing and other areas in the NCP. An increase in the number of motor vehicles and weak traffic restrictions have caused vehicle emissions of NOx, which indicates that NOx emission control should be strengthened.
Ziru Lan, Weili Lin, Weiwei Pu, and Zhiqiang Ma
Atmos. Chem. Phys., 21, 4561–4573, https://doi.org/10.5194/acp-21-4561-2021, https://doi.org/10.5194/acp-21-4561-2021, 2021
Short summary
Short summary
Haze related to particulate matter has become a big problem in eastern China, and ammonia (NH3) plays an important role in secondary particulate matter formation. In this work, variations in the NH3 mixing ratio showed that the contributions of NH3 sources and sinks in urban and suburban areas were quite different, although the areas were under the influence of similar weather systems. This study furthers the understanding of the behavior of NH3 in a megacity environment.
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-32, https://doi.org/10.5194/tc-2021-32, 2021
Preprint withdrawn
Short summary
Short summary
Field observations found that released NOx on the glacier surface of the Tibetan Plateau, an important snow-covered region in the northern mid-latitudes, had a higher concentration than in Antarctic and Arctic regions. Such evidence, and such high fluxes as observed here on the Tibetan plateau is novel. That such high concentrations of nitrogen oxides can be found in remote areas is interesting and important for the oxidative budget of the boundary layer.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Cited articles
Agnieszka, P. T. and Gruszecka-Kosowska: The Condition of Air Pollution in
Kraków, Poland, in 2005–2020, with Health Risk Assessment, Int. J. Env.
Res. Pub. He., 17, E6063, https://doi.org/10.3390/ijerph17176063, 2020.
Bai, J., Wu, J., Chai, W., Wang, P., and Wang, G.: Long-Term Variation of
Trace Gases and Particulate Matter at an Atmospheric Background Station in
North China, Front. Earth Sci., 248–263,
https://doi.org/10.12677/ag.2015.53025, 2015.
Chen, L.: Measure and Study on the Atmospheric Pollutants in Three Typical Regional Background Stations of China, M.S. thesis, Lanzhou University, China, 69 pp., 2012.
Cheng, L., Ji, D., He, J., Li, L., Du, L., Cui, Y., Zhang, H., Zhou, L., Li,
Z., and Zhou, Y.: Characteristics of air pollutants and greenhouse gases at
a regional background station in Southwestern China, Aerosol. Air. Qual.
Res, 19, 1007–1023, https://doi.org/10.4209/aaqr.2018.11.0397, 2019.
Chen, Y., Ma, Q., Lin, W., Xu, X., Yao, J., and Gao, W.: Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region, Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, 2020.
Cristofanelli, P., Landi, T. C., Calzolari, F., Duchi, R., Marinoni, A.,
Rinaldi, M., and Bonasoni, P.: Summer atmospheric composition over the
Mediterranean basin: Investigation on transport processes and pollutant
export to the free troposphere by observations at the WMO/GAW Mt. Cimone
global station (Italy, 2165 m a.s.l.), Atmos. Environ., 141, 139–152,
https://doi.org/10.1016/j.atmosenv.2016.06.048, 2016.
Cui, Y., Lin, J., Song, C., Liu, M., Yan, Y., Xu, Y., and Huang, B.: Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013, Atmos. Chem. Phys., 16, 6207–6221, https://doi.org/10.5194/acp-16-6207-2016, 2016.
Davuliene, L., Jasineviciene, D., Garbariene, I., Andriejauskiene, J.,
Ulevicius, V., and Bycenkiene, S.: Long-term air pollution trend analysis in
the South-eastern Baltic region, 1981–2017, Atmos. Res., 247, 105191,
https://doi.org/10.1016/j.atmosres.2020.105191, 2021.
Deng, J., Guo, H., Zhang, H., Zhu, J., Wang, X., and Fu, P.: Source
apportionment of black carbon aerosols from light absorption observation and
source-oriented modeling: an implication in a coastal city in China, Atmos.
Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020,
2020.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2006,
available at: http://sthjt.zj.gov.cn/art/2007/6/5/art_1201912_13471624.html, last access: 24 June 2021a.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2007,
available at: http://sthjt.zj.gov.cn/art/2008/6/5/art_1201912_13471634.html, last access: 24 June 2021b.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2008,
available at: http://sthjt.zj.gov.cn/art/2009/6/5/art_1201912_13471647.html, last access: 24 June 2021c.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2009,
available at: http://sthjt.zj.gov.cn/art/2010/6/5/art_1201912_13471671.html, last access: 24 June 2021d.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2010,
available at: http://sthjt.zj.gov.cn/art/2011/6/3/art_1201912_13471687.html, last access: 24 June 2021e.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2011,
available at: http://sthjt.zj.gov.cn/art/2012/6/4/art_1201912_15028444.html, last access: 24 June 2021f.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2012,
available at: http://sthjt.zj.gov.cn/art/2013/6/5/art_1201912_15028442.html, last access: 24 June 2021g.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2013,
available at: http://sthjt.zj.gov.cn/art/2014/6/4/art_1201912_13471699.html, last access: 24 June 2021h.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2014,
available at: http://sthjt.zj.gov.cn/art/2015/6/3/art_1201912_13471712.html, last access: 24 June 2021i.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2015,
available at: http://sthjt.zj.gov.cn/art/2016/6/2/art_1201912_13471725.html, last access: 24 June 2021j.
Department of Ecology and Environment of Zhejiang Province, Bulletin on the
ecological environment of Zhejiang Province in 2016,
available at: http://sthjt.zj.gov.cn/art/2017/6/2/art_1201912_13471748.html, last access: 24 June 2021k.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2006,
available at: http://hbt.jiangsu.gov.cn/art/2007/3/28/art_1649_3939925.html, last access: 24 June 2021a.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2007,
available at: http://hbt.jiangsu.gov.cn/art/2008/3/28/art_1649_3939926.html, last access: 24 June 2021b.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2008,
available at: http://hbt.jiangsu.gov.cn/art/2009/6/5/art_1649_3939927.html, last access: 24 June 2021c.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2009,
available at: http://hbt.jiangsu.gov.cn/art/2010/6/22/art_1649_3939928.html, last access: 24 June 2021d.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2010,
available at: http://hbt.jiangsu.gov.cn:8080/art/2011/6/2/art_1677_4232467.html, last access: 24 June 2021e.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2011,
available at: http://www.jiangsu.gov.cn/art/2012/5/30/art_46750_2680095.html, last access: 24 June 2021f.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2012,
available at: http://hbt.jiangsu.gov.cn/art/2013/6/5/art_1649_3939931.html, last access: 24 June 2021g.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2013,
available at: https://news.bjx.com.cn/html/20140604/515937.shtml, last access: 24 June
2021h.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2014,
available at: https://huanbao.bjx.com.cn/news/20150604/626623.shtml, last access: 24 June
2021i.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2015,
available at: http://www.jiangsu.gov.cn/art/2016/6/24/art_46580_2555980.html, last access: 24 June 2021j.
Department of Ecology and Environment of Jiangsu Province, Bulletin on the
ecological environment of Jiangsu Province in 2016,
available at: http://hbt.jiangsu.gov.cn/art/2017/4/15/art_1649_3939935.html, last access: 24 June 2021k.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2006,
available at: https://link.sthj.sh.gov.cn/file/2006bulletin/contents.htm, last access: 24
June 2021a.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2007,
available at: https://link.sthj.sh.gov.cn/file/2007bulletin/index.htm, last access: 24
June 2021b.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2008,
available at: https://link.sthj.sh.gov.cn/file/2008bulletin/index.html, last access: 24
June 2021c.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2009,
available at: https://link.sthj.sh.gov.cn/file/2009bulletin/index.html, last access: 24
June 2021d.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2010,
available at: https://link.sthj.sh.gov.cn/file/2010bulletin/ch/cont.html, last access: 24
June 2021e.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2011,
available at: https://link.sthj.sh.gov.cn/file/2011bulletin/index.html, last access: 24
June 2021f.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2013,
available at: https://link.sthj.sh.gov.cn/file/2014bulletin/index.html, last access: 24
June 2021g.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2014,
available at: https://sthj.sh.gov.cn/assets/html/117972-02.pdf, last access: 24 June 2021h.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2015,
available at: https://sthj.sh.gov.cn/hbzhywpt1143/hbzhywpt1144/20160329/0024-141845.html,
last access: 24 June 2021i.
Department of Ecology and Environment of Shanghai city, Bulletin on the
ecological environment of Shanghai city in 2016,
available at: https://sthj.sh.gov.cn/hbzhywpt1143/hbzhywpt1144/20170601/0024-141846.html,
last access: 24 June 2021j.
Duan, L., Yan, L., and Xiu, G.: Online Measurement of PM2.5 at an Air
Monitoring Supersite in Yangtze River Delta: Temporal Variation and Source
Identification, Atmosphere, 11, 789, https://doi.org/10.3390/atmos11080789,
2020.
Fan, Q., Zhang, Y., Ma, W., Ma, H., Feng, J., Yu, Q., Yang, X., Ng, S. K.
W., Fu, Q., and Chen, L.: Spatial and Seasonal Dynamics of Ship Emissions
over the Yangtze River Delta and East China Sea and Their Potential
Environmental Influence, Env. Sci. Technol., 50, 1322–1329,
https://doi.org/10.1021/acs.est.5b03965, 2016.
Fang, G., Wang, Q., and Tian, L.: Green development of Yangtze River Delta in China under Population-Resources-Environment-Development-Satisfaction perspective, Sci. Tot. Env., 727, 138710, https://doi.org/10.1016/j.scitotenv.2020.138710, 2020.
Gao, W., Tie, X., Xu, J., Huang, R., Mao, X., Zhou, G. C., and Chang, L.: Long-term trend of O3 in a mega City (Shanghai), China:
Characteristics, causes, and interactions with precursors, Sci. Tot. Env.,
603–604, 425–433, https://doi.org/10.1016/j.scitotenv.2017.06.099, 2017.
Ge, Y. F., Shi, X. W., Ma, Y., Zhang, W. Q., Ren, X. R., Zheng, J., and Zhang, Y. C.:
Seasonality of nitrous acid near an industry zone in the Yangtze River Delta
region of China: Formation mechanisms and contribution to the atmospheric
oxidation capacity, Atmos. Environ., 254, 118420,
https://doi.org/10.1016/j.atmosenv.2021.118420, 2021.
Hao, Y. and Song, X.: Research on trends and spatial distribution of
vehicular emissions and its control measure assessment in the Yangtze River
Delta, China, for 1999–2015, Env. Sci. Pollut. R., 25, 36503–36517,
https://doi.org/10.1007/s11356-018-3476-y, 2018.
Jung, J., Lee, J., Kim, B., and Oh, S.: Seasonal variations in the NO2
artifact from chemiluminescence measurements with a molybdenum converter at
a suburban site in Korea (downwind of the Asian continental outflow) during
2015–2016, Atmos. Environ., 165, 290–300,
https://doi.org/10.1016/j.atmosenv.2017.07.010, 2017.
Kan, H., Chen, R., and Tong, S.: Ambient air pollution, climate change, and
population health in China, Environ. Int., 42, 10–19,
https://doi.org/10.1016/j.envint.2011.03.003, 2012.
Kan, H., Chen, B., and Hong, C.: Health Impact of Outdoor Air Pollution in
China: Current Knowledge and Future Research Needs, Environ. Health. Persp.,
117, A187, https://doi.org/10.1289/ehp.12737, 2009.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020, 2020.
Li, L., Zhao, Q., Zhang, J., Li, H., Liu, Q., Li, C., Chen, F., Qiao, Y.,
and Han, J.: Bottom-up emission inventories of multiple air pollutants from
open straw burning: A case study of Jiangsu province, Eastern
China(Article), Atmos. Pollut. Res., 10, 501–507,
https://doi.org/10.1016/j.apr.2018.09.011, 2019.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, M., Fang, W., Li, J., and Yang, F.: The overall variation
characteristics of Akedala atmospheric background station of pollutants,
Env. Ecol., 1, 80–84, 2019.
Li, R., Mei, X., Chen, L., Wang, L., Wang, Z., and Jing, Y.: Long-Term
(2005–2017) View of Atmospheric Pollutants in Central China Using Multiple
Satellite Observations, Remote Sens.-Basel, 12, 1041,
https://doi.org/10.3390/rs12061041, 2020.
Liang, D., Wang, Y.-q., Wang, Y.-j., and Ma, C.: National air pollution
distribution in China and related geographic, gaseous pollutant, and
socio-economic factors, Env. Pollut., 250, 998–1009,
https://doi.org/10.1016/j.envpol.2019.03.075, 2019.
Lin, W., Xu, X., Yu, D., Dai, X., Zhang, Z., Meng, Z., and Wang, Y.: Quality
Control for Reactive Gases Observation at Longfengshan Regional Atmospheric
Background Monitoring Station, Meteo. Mon., 35, 93–100, 2009.
Lin, W., Xu, X., Sun, J., Li, Y., and Meng, Z.: Characteristics of gaseous
pollutants at Jinsha, a remote mountain site in Central China, Sci. China,
41, 136–144, https://doi.org/10.1360/032010-521, 2011.
Lin, J.-T., Martin, R. V., Boersma, K. F., Sneep, M., Stammes, P., Spurr, R., Wang, P., Van Roozendael, M., Clémer, K., and Irie, H.: Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide, Atmos. Chem. Phys., 14, 1441–1461, https://doi.org/10.5194/acp-14-1441-2014, 2014.
Lin, J.-T., Liu, M.-Y., Xin, J.-Y., Boersma, K. F., Spurr, R., Martin, R., and Zhang, Q.: Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints, Atmos. Chem. Phys., 15, 11217–11241, https://doi.org/10.5194/acp-15-11217-2015, 2015.
Lin, W., Ma, Z., Pu, W., Gao, W., Ma, Q., and Yu, D.: Quality Control Methods for Atmospheric Composition Observations – Reactive Gases, in: Meteorological industry standards in the People's Republic of China, China Meteorological Press, QX/T 510-2019, 2019.
Liu, M., Lin, J., Boersma, K. F., Pinardi, G., Wang, Y., Chimot, J., Wagner, T., Xie, P., Eskes, H., Van Roozendael, M., Hendrick, F., Wang, P., Wang, T., Yan, Y., Chen, L., and Ni, R.: Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile, Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, 2019.
Meng, Z. Y., Xu, X. B., Yan, P., Ding, G. A., Tang, J., Lin, W. L., Xu, X. D., and Wang, S. F.: Characteristics of trace gaseous pollutants at a regional background station in Northern China, Atmos. Chem. Phys., 9, 927–936, https://doi.org/10.5194/acp-9-927-2009, 2009.
Mi, C. and Qin, X.: Annual Report on Motor Vehicle Pollution Prevention and Control in China (2010), People's Republic of China Yearbook Editorial Department, China, 2011.
Pandey, S. K., Kim, K.-H., Chung, S. Y., Cho, S. J., Kim, M. Y., and Shon, Z.-H.: Long-term study of NOx behavior at urban roadside and background
locations in Seoul, Korea, Atmos. Environ., 42, 607–622,
https://doi.org/10.1016/j.atmosenv.2007.10.015, 2008.
Qi, H., Lin, W., Xu, X., Yu, X., and Ma, Q.: Significant downward trend of
SO2 observed from 2005 to 2010 at a background station in the Yangtze
Delta region, China, Science China Chemistry, 55, 1451–1458,
https://doi.org/10.1007/s11426-012-4524-y, 2012.
Qiu, Y. L., Ma, Z. Q., Lin, W. L., Quan, W. J., Pu, W. W., Li, Y. R., Zhou,
L. Y., and Shi, Q. F.: A study of peroxyacetyl nitrate at a rural site in Beijing
based on continuous observations from 2015 to 2019 and the WRF-Chem model,
Front. Environ. Sci. Eng., 14, 180–190,
https://doi.org/10.1007/s11783-020-1250-0, 2020.
Resmi, C., Nishanth, T., Satheesh Kumar, M., Balachandramohan, M., and
Valsaraj, K.: Long-Term Variations of Air Quality Influenced by Surface
Ozone in a Coastal Site in India: Association with Synoptic Meteorological
Conditions with Model Simulations, Atmosphere, 11, 193,
https://doi.org/10.3390/atmos11020193, 2020.
Shen, J., He, L., Chen, P., Xie, M., Jiang, M., Chen, D., and Zhou, G.:
Characteristics of Ozone Concentration Variation in the Northern Background
Site of the Pearl River Delta, Eco. Environ. Sci., 28, 2006–2011,
https://doi.org/10.16258/j.cnki.1674-5906.2019.10.010, 2019.
Shi, Y., Zhu, S., Li, L., Chen, Y., An, J., and Fu, Z.: Historical trends and spatial distributions of major air pollutants in the Yangtze River Delta, J. Lanzhou Univ. (Natural Sci.), 54, 184–191, https://doi.org/10.13885/j.issn.0455-2059.2018.02.007, 2018.
Squizzato, S., Masiol, M., Rich, D. Q., and Hopke, P. K.: PM2.5 and
gaseous pollutants in New York State during 2005–2016: spatial variability,
temporal trends, and economic influences, Atoms. Environ., 183, 209–224,
https://doi.org/10.1016/j.atmosenv.2018.03.045, 2018.
Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S., Buchmann, B., Ordóñez, C., Prevot, A. S. H., and Hueglin, C.: Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques, J. Geophys. Res.-Atmos., 112, D11307, https://doi.org/10.1029/2006JD007971, 2007.
Su, B., Liu, X., and Tao, J.: Background characteristics of SO2,
NOx and CO in forest and alpine background areas of eastern China,
Environ. Monit. China, 6, 15–21, 2013.
Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C., and Zheng, J.: Long-Term
Trends of Anthropogenic SO2, NOx, CO, and NMVOCs Emissions in
China(Article), Earths Future, 6, 1112–1133,
https://doi.org/10.1029/2018ef000822, 2018.
Swartz, J. S., Van Zyl, P. G., Beukes, J. P., Labuschagne, C., Brunke, E.-G.,
Portafaix, T., Galy-Lacaux, C., and Pienaar, J. J.: Twenty-one years of
passive sampling monitoring of SO2, NO2 and O3 at the Cape
Point GAW station, South Africa, Atmos. Environ., 222, 117128, https://doi.org/10.1016/j.atmosenv.2019.117128, 2020a.
Swartz, J.-S., van Zyl, P. G., Beukes, J. P., Galy-Lacaux, C., Ramandh, A., and Pienaar, J. J.: Measurement report: Statistical modelling of long-term trends of atmospheric inorganic gaseous species within proximity of the pollution hotspot in South Africa, Atmos. Chem. Phys., 20, 10637–10665, https://doi.org/10.5194/acp-20-10637-2020, 2020b.
Tong, S., Hou, S., Zhang, Y., Chu, B. W., Liu, Y. C., He, H., Zhao, P. S., and Ge, M. F.: Comparisons of measured nitrous acid
(HONO) concentrations in a pollution period at urban and suburban Beijing,
in autumn of 2014, Sci. China Chem., 58, 1393–1402,
https://doi.org/10.1007/s11426-015-5454-2, 2015.
US EPA: Quality Assurance Handbook for Air Pollution Measurement Systems,
Volume II, Ambient Air Quality Monitoring Program, EPA-454/B-17-001, available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100R631.PDF?Dockey=P100R631.PDF (last access: 16 January 2022), 2017.
Wan, Z., Ji, S., Liu, Y., Zhang, Q., Chen, J., and Wang, Q.: Shipping
emission inventories in China's Bohai Bay, Yangtze River Delta, and Pearl
River Delta in 2018, Mar. Pollution. Bulletin., 151, 110882, https://doi.org/10.1016/j.marpolbul.2019.110882, 2020.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y.,
Chen, J. M., Wang, Q., Tao, S. K., Chen, C. H., Li, L., and Huang, C.:
Chemical composition of PM2.5 and meteorological impact among three years in
urban Shanghai, China, J. Clean. Prod., 112, 1302–1311,
https://doi.org/10.1016/j.jclepro.2015.04.099, 2016.
Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating
O3 pollution due to NOx emission control in eastern China, Sci. Total.
Environ., 677, 732–744, https://doi.org/10.1016/j.scitotenv.2019.04.388,
2019.
Wang, T., He, H., Xia, Z., Wu, M., and Zhang, Q.: Pollution characteristics
of SO2, NO2, CO and O3 in Nanjing in 2015, Chinese J.
Environ. Engi., 11, 4155–4161, 2017.
Wang, Y. Q.: MeteoInfo: GIS software for meteorological data visualization
and analysis, Meteorol. Appl., 21, 360–368, https://doi.org/10.1002/met.13, 2014.
World Meteorological Organization: WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023, WMO, CH-1211 Geneva 2, Switzerland, Open File Rep. 228, 84 pp., 2017.
Xie, Z.: Global Financial Crisis Making a V-Shaped Fluctuation in NO2
Pollution over the Yangtze River Delta, J. Meteorol. Res., 31, 438–447,
https://doi.org/10.1007/s13351-017-6053-2, 2017b.
Xin, Y. J., Wang, G. C., and Chen, L.: Identification of Long-Range
Transport Pathways and Potential Sources of PM10 in Tibetan Plateau
Uplift Area: Case Study of Xining, China in 2014, Aerosol. Air. Qual. Res.,
16, 1044–1054, https://doi.org/10.4209/aaqr.2015.05.0296, 2016
Xu, X., Lin,
W., Yan, P., Zhang, Z., and Yu, X.: Long-term Changes of Acidic Gases in
China's Yangtze Delta and Northeast Plain Regions During 1994–2006, Adv.
Clim. Change. Res., 4, 195–201, 2008.
Xu, X., Yang, B., Shi, S., Wang, X., and He, H.: Analysis on the Current
Situation of Acid Rain Pollution in Lin'an District of Hangzhou City, J.
Anhui. Agricul. Sci., 47, 86–89,
https://doi.org/10.3969/j.issn.0517-6611.2019.09.025, 2019.
Xue, R., Wang, S. L., Danran, Zou, Z., Chan, K. L., Valks, P., Saiz-Lopez,
Alfonso, and Zhou, B.: Spatio-temporal variations in NO2 and SO2
over Shanghai and Chongming Eco-Island measured by Ozone Monitoring
Instrument (OMI) during 2008–2017, J. Clean. Prod., 258, 120563, https://doi.org/10.1016/j.jclepro.2020.120563, 2020.
Yan, F., Chen, W., Jia, S., Zhong, B., Yang, L., Mao, J., Chang, M., Shao,
M., Yuan, B., Situ, S., Wang, X., and Wang, D. C. X.: Stabilization for the
secondary species contribution to PM2.5 in the Pearl River Delta (PRD)
over the past decade, China: A meta-analysis, Atoms. Environ., 242, 117817,
https://doi.org/10.1016/j.atmosenv.2020.117817, 2020.
Yang, B. and Luo, R.: Research progress of air pollution in Yangtze River
Delta, Environ. Ecol., 1, 74–78, 2019.
Yang, J., Xin, J., Ji, D., and Zhu, B.: Variation Analysis of Background
Atmospheric Pollutants in North China During the Summer of 2008 to 2011,
Environ. Sci., 11, 3693–3704, 2012.
Yang, Q.: Characteristics and Causes of Acid Rain Changes in Xiaoshan
District, 2008–2017, Overs. Dig., 18, 91–94, 2018.
Yin, Q., Ma, Q., Lin, W., Xu, X., and Yao, J.: Replication Data for:
Measurement report: Long-term variations in surface NOX and SO2 mixing
ratios from 2006 to 2016 at a background site in the Yangtze River Delta
region, China, V1, Harvard Dataverse [data set],
https://doi.org/10.7910/DVN/DQTBT0, 2021.
Yu, Y., Wang, Z., Cui, X., Chen, F., and Xu, H.: Effects of Emission
Reductions of Key Sources on the PM2.5 Concentrations in the Yangtze
River Delta, Environ. Sci., 40, 11–23,
https://doi.org/10.13227/j.hjkx.201804105, 2019.
Zhao, B., Wang, S., Wang, J., Fu, J. S., Liu, T., Xu, J., Fu, X., and Hao,
J.: Impact of national NOx and SO2 control policies on particulate
matter pollution in China, Atmos. Env., 77, 453–463,
https://doi.org/10.1016/j.atmosenv.2013.05.012, 2013.
Zhao, M., Qiao, T., Huang, Z., Zhu, M., Xu, W., Xiu, G., Tao, J., and Lee,
S.: Comparison of ionic and carbonaceous compositions of PM2.5 in 2009
and 2012 in Shanghai, China, Sci. Tot. Env., 536, 695–703,
doi.org/10.1016/j.scitotenv.2015.07.100, 2015.
Zhao, P., Tuygun, G. T., Li, B., Liu, J., Yuan, L., Luo, Y., Xiao, H., and
Zhou, Y.: The effect of environmental regulations on air quality: A
long-term trend analysis of SO2 and NO2 in the largest urban
agglomeration in Southwest China, Atmos. Pollut. Res., 10, 2030–2039, https://doi.org/10.1016/j.apr.2019.09.011, 2019.
Zhao, S., Liu, S., Hou, X., Cheng, F., Wu, X., Dong, S., and Beazley, R.:
Temporal dynamics of SO2 and NOx pollution and contributions of
driving forces in urban areas in China, Environ. Pollut., 242, 239–248,
https://doi.org/10.1016/j.envpol.2018.06.085, 2018.
Zheng, S., Yi, H., and Li, H.: The impacts of provincial energy and
environmental policies on air pollution control in China, Renew. Sust.
Energ. Rev., 49, 386–394, https://doi.org/10.1016/j.rser.2015.04.088, 2015.
Zhou, D., Tian, X., Cai, Z., Wang, X., Li, Y., Liu, Y., and Jiang, F.:
Evaluation of Ozone Change and Control Effects in Yangtze River Delta Region
During G20 Submit, Environ. Monit. in China, 36, 41–49,
https://doi.org/10.19316/j.issn.1002-6002.2020.02.06, 2020.
Short summary
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx and SO2 measurements from 2006 to 2016 at the Lin’an World Meteorological Organization Global Atmospheric Watch station were used to characterize the seasonal and diurnal variations and study the long-term trends. This study reaffirms China’s success in controlling both NOx and SO2 in the Yangtze River Delta but indicates at the same time a necessity to strengthen the NOx emission control.
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx...
Altmetrics
Final-revised paper
Preprint