Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE
Sanhita Ghosh
Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Shubha Verma
CORRESPONDING AUTHOR
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Jayanarayanan Kuttippurath
Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Laurent Menut
Laboratoire de Météorologie Dynamique, IPSL, CNRS/Ecole Polytechnique/Sorbonne Université/Ecole Normale Supérieure, 91128 Palaiseau CEDEX, France
Related authors
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3087, https://doi.org/10.5194/egusphere-2024-3087, 2024
Short summary
Short summary
In the study, we estimate the emissions of nitrogen oxides from lightning (LNOx) over the northern hemisphere and study its impact on tropospheric ozone (O3). We evaluate the present state of modelling the lightning, using a classical parametrization scheme and the model CHIMERE. The comparison of the simulated O3 to measurements shows that the inclusion of LNOx emissions remarkably improves the tropospheric O3 distribution, reducing the bias significantly, particularly in the free troposphere.
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3087, https://doi.org/10.5194/egusphere-2024-3087, 2024
Short summary
Short summary
In the study, we estimate the emissions of nitrogen oxides from lightning (LNOx) over the northern hemisphere and study its impact on tropospheric ozone (O3). We evaluate the present state of modelling the lightning, using a classical parametrization scheme and the model CHIMERE. The comparison of the simulated O3 to measurements shows that the inclusion of LNOx emissions remarkably improves the tropospheric O3 distribution, reducing the bias significantly, particularly in the free troposphere.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Raina Roy, Pankaj Kumar, Jayanarayanan Kuttippurath, and Franck Lefevre
Atmos. Chem. Phys., 24, 2377–2386, https://doi.org/10.5194/acp-24-2377-2024, https://doi.org/10.5194/acp-24-2377-2024, 2024
Short summary
Short summary
We assess the interannual variability of ozone loss and chlorine activation in the Antarctic winters of 2013–2020. The analysis shows significant interannual variability in the Antarctic ozone during this period as compared to the previous decade (2000–2010). Dynamics and chemistry of the winters play their respective roles in the ozone loss process. The winter of 2019 is an example of favourable chemistry helping in the large loss of ozone, though the dynamical conditions were unfavourable.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023, https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary
Short summary
We show that a new advection scheme named PPM + W (piecewise parabolic method + Walcek) offers geoscientific modellers an alternative, high-performance scheme designed for Cartesian-grid advection, with improved performance over the classical PPM scheme. The computational cost of PPM + W is not higher than that of PPM. With improved accuracy and controlled computational cost, this new scheme may find applications in chemistry-transport models, ocean models or atmospheric circulation models.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Juan Cuesta, Lorenzo Costantino, Matthias Beekmann, Guillaume Siour, Laurent Menut, Bertrand Bessagnet, Tony C. Landi, Gaëlle Dufour, and Maxim Eremenko
Atmos. Chem. Phys., 22, 4471–4489, https://doi.org/10.5194/acp-22-4471-2022, https://doi.org/10.5194/acp-22-4471-2022, 2022
Short summary
Short summary
We present the first comprehensive study integrating satellite observations of near-surface ozone pollution, surface in situ measurements, and a chemistry-transport model for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020. It confirms the occurrence of a net enhancement of ozone in central Europe and a reduction elsewhere, except for some hotspots, linked with the reduction of precursor emissions from Europe and the Northern Hemisphere.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021, https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary
Short summary
Based on modeling, the transport dynamics of ozone and fine particles in central Chile are investigated. Santiago emissions are found to influence air quality along a 1000 km plume as far as Argentina and northern Chile. In turn, emissions outside the metropolis contribute significantly to its recorded particles concentration. Emissions of precursors from Santiago are found to lead to the formation of a persistent ozone bubble in altitude, a phenomenon which is described for the first time.
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021, https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
Short summary
This paper presents a new interpolator useful for geophysics applications. It can explore N-dimensional meshes, grids or look-up tables. The code accepts irregular but structured grids. Written in Fortran, it is easy to implement in existing codes and very fast and portable. We have compared it with a Python library. Python is convenient but suffers from portability and is sometimes not optimized enough. As an application case, this method is applied to atmospheric sciences.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020, https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary
Short summary
Biomass burning emissions are a major source of trace gases and aerosols that need to be accounted for in air quality assessment and forecasting. The APIFLAME model presented in this paper allows the calculation of these emissions based on merged satellite observations at hourly time steps and kilometer scales. Implementing emissions in a chemistry transport model allows realistic simulations of fire plumes as illustrated for wildfires in Portugal in August 2016 using the CHIMERE model.
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020, https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary
Short summary
Modelling of mineral dust is often done using one single mean species. In this study, differentiated mineral species with their chemical composition are implemented in the CHIMERE regional chemistry-transport model by using global databases. Simulations are carried out to quantify the realism and gain of such mineralogy.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 20, 4681–4694, https://doi.org/10.5194/acp-20-4681-2020, https://doi.org/10.5194/acp-20-4681-2020, 2020
Short summary
Short summary
Based on measurements and modeling, this study shows that recent record-breaking peak events of fine particles in Santiago, Chile, can be traced back to massive barbecue cooking by its inhabitants during international soccer games. Decontamination plans in Santiago focus on decreasing emissions of pollutants from traffic, industry, and residential heating. This study implies that cultural habits such as barbecue cooking also need to be taken into account.
Laurent Menut, Paolo Tuccella, Cyrille Flamant, Adrien Deroubaix, and Marco Gaetani
Atmos. Chem. Phys., 19, 14657–14676, https://doi.org/10.5194/acp-19-14657-2019, https://doi.org/10.5194/acp-19-14657-2019, 2019
Short summary
Short summary
Aerosol direct and indirect effects are studied over west Africa in the summer of 2016 using the coupled WRF-CHIMERE regional model including aerosol–cloud interaction parameterization. Sensitivity experiments are designed to gain insights into the impact of the aerosols dominating the atmospheric composition in southern west Africa. It is shown that the decrease of anthropogenic emissions along the coast has an impact on the mineral dust load over west Africa by increasing their emissions.
Henda Guermazi, Pasquale Sellitto, Juan Cuesta, Maxim Eremenko, Mathieu Lachatre, Sylvain Mailler, Elisa Carboni, Giuseppe Salerno, Tommaso Caltabiano, Laurent Menut, Mohamed Moncef Serbaji, Farhat Rekhiss, and Bernard Legras
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-341, https://doi.org/10.5194/amt-2019-341, 2019
Revised manuscript not accepted
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Short summary
The present study provided information on specific glaciers over the Hindu Kush Himalayan region identified as being vulnerable to BC-induced impacts (affected by high BC-induced snow albedo reduction in addition to being sensitive to BC-induced impacts), thus impacting the downstream hydrology. The source-specific contribution to atmospheric BC aerosols by emission sources led to identifying the potential emission source, which was distinctive over south and north to 30° N.
Soumendra N. Bhanja, Abhijit Mukherjee, R. Rangarajan, Bridget R. Scanlon, Pragnaditya Malakar, and Shubha Verma
Hydrol. Earth Syst. Sci., 23, 711–722, https://doi.org/10.5194/hess-23-711-2019, https://doi.org/10.5194/hess-23-711-2019, 2019
Short summary
Short summary
Groundwater depletion in India has been a much-debated issue in recent years. Here we investigate long-term, spatiotemporal variation in prevailing groundwater recharge rates across India. Groundwater recharge rates have been estimated based on field-scale groundwater-level measurements and the tracer injection approach; recharge rates from the two estimates compared favorably. The role of precipitation in controlling groundwater recharge is studied.
Marwa Majdi, Solene Turquety, Karine Sartelet, Carole Legorgeu, Laurent Menut, and Youngseob Kim
Atmos. Chem. Phys., 19, 785–812, https://doi.org/10.5194/acp-19-785-2019, https://doi.org/10.5194/acp-19-785-2019, 2019
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Joel Brito, Cyrielle Denjean, Volker Dreiling, Andreas Fink, Corinne Jambert, Norbert Kalthoff, Peter Knippertz, Russ Ladkin, Sylvain Mailler, Marlon Maranan, Federica Pacifico, Bruno Piguet, Guillaume Siour, and Solène Turquety
Atmos. Chem. Phys., 19, 473–497, https://doi.org/10.5194/acp-19-473-2019, https://doi.org/10.5194/acp-19-473-2019, 2019
Short summary
Short summary
This article presents a detailed analysis of anthropogenic and biomass burning pollutants over the Gulf of Guinea coastal region, using observations from the DACCIWA field campaign and modeling. The novelty is that we focus on how these two pollution sources are mixed and transported further inland. We show that during the day pollutants are accumulated along the coastline and transported northward as soon as the daytime convection in the atmospheric boundary layer ceases (16:00 UTC).
Cyrille Flamant, Adrien Deroubaix, Patrick Chazette, Joel Brito, Marco Gaetani, Peter Knippertz, Andreas H. Fink, Gaëlle de Coetlogon, Laurent Menut, Aurélie Colomb, Cyrielle Denjean, Rémi Meynadier, Philip Rosenberg, Regis Dupuy, Pamela Dominutti, Jonathan Duplissy, Thierry Bourrianne, Alfons Schwarzenboeck, Michel Ramonet, and Julien Totems
Atmos. Chem. Phys., 18, 12363–12389, https://doi.org/10.5194/acp-18-12363-2018, https://doi.org/10.5194/acp-18-12363-2018, 2018
Short summary
Short summary
This work sheds light on the complex mechanisms by which coastal shallow circulations distribute atmospheric pollutants over the densely populated southern West African region. Pollutants of concern are anthropogenic emissions from coastal cities, as well as biomass burning aerosol and dust associated with long-range transport. The complex vertical distribution of aerosols over coastal southern West Africa is investigated using airborne observations and numerical simulations.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Alessandro Anav, Chiara Proietti, Laurent Menut, Stefano Carnicelli, Alessandra De Marco, and Elena Paoletti
Atmos. Chem. Phys., 18, 5747–5763, https://doi.org/10.5194/acp-18-5747-2018, https://doi.org/10.5194/acp-18-5747-2018, 2018
Short summary
Short summary
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, the role of water availability is often neglected in atmospheric chemistry modelling studies.
We show how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in semi-arid environments. Despite the fact that dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere.
Laurent Menut, Cyrille Flamant, Solène Turquety, Adrien Deroubaix, Patrick Chazette, and Rémi Meynadier
Atmos. Chem. Phys., 18, 2687–2707, https://doi.org/10.5194/acp-18-2687-2018, https://doi.org/10.5194/acp-18-2687-2018, 2018
Short summary
Short summary
During the DACCIWA project, the tropospheric chemical composition in large cities along the Gulf of Guinea is modelled using WRF and CHIMERE, with and without biomass burning emissions. The difference shows the net impact of fires on air quality in Lagos and Abidjan.
Adrien Deroubaix, Cyrille Flamant, Laurent Menut, Guillaume Siour, Sylvain Mailler, Solène Turquety, Régis Briant, Dmitry Khvorostyanov, and Suzanne Crumeyrolle
Atmos. Chem. Phys., 18, 445–465, https://doi.org/10.5194/acp-18-445-2018, https://doi.org/10.5194/acp-18-445-2018, 2018
Short summary
Short summary
CO and PM2.5 are analyzed over the Guinean Gulf coastal region during the beginning of the 2006 West African monsoon. A biomass burning plume from Central Africa is observed since June at the Guinean coast. In June, the modeled anthropogenic PM2.5 concentrations are higher than in May or July. An important part of the pollution emitted along the coastline is transported to the north at night within the surface layer and within the nocturnal low-level jet.
Florian Couvidat, Bertrand Bessagnet, Marta Garcia-Vivanco, Elsa Real, Laurent Menut, and Augustin Colette
Geosci. Model Dev., 11, 165–194, https://doi.org/10.5194/gmd-11-165-2018, https://doi.org/10.5194/gmd-11-165-2018, 2018
Short summary
Short summary
This paper includes the development of a new aerosol module in the air quality model CHIMERE to improve particulate matter (PM) simulation. The results of the model are compared to numerous measurements over Europe to evaluate the strengths and weaknesses of the model.
Sylvain Mailler, Laurent Menut, Dmitry Khvorostyanov, Myrto Valari, Florian Couvidat, Guillaume Siour, Solène Turquety, Régis Briant, Paolo Tuccella, Bertrand Bessagnet, Augustin Colette, Laurent Létinois, Kostantinos Markakis, and Frédérik Meleux
Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017, https://doi.org/10.5194/gmd-10-2397-2017, 2017
Short summary
Short summary
CHIMERE is a chemistry-transport model initially designed for box-modelling of the regional atmospheric composition. In the recent years, CHIMERE has been extended to be able to model atmospheric composition at all scales from urban to hemispheric scale, which implied major changes on the coordinate systems as well as on physical processes. This study describes how and why these changes have been brought to the model, largely increasing the range of its possible use.
Laurent Menut, Sylvain Mailler, Bertrand Bessagnet, Guillaume Siour, Augustin Colette, Florian Couvidat, and Frédérik Meleux
Geosci. Model Dev., 10, 1199–1208, https://doi.org/10.5194/gmd-10-1199-2017, https://doi.org/10.5194/gmd-10-1199-2017, 2017
Short summary
Short summary
A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted.
Régis Briant, Paolo Tuccella, Adrien Deroubaix, Dmitry Khvorostyanov, Laurent Menut, Sylvain Mailler, and Solène Turquety
Geosci. Model Dev., 10, 927–944, https://doi.org/10.5194/gmd-10-927-2017, https://doi.org/10.5194/gmd-10-927-2017, 2017
Short summary
Short summary
This paper presents the coupling of the CHIMERE chemistry-transport model with the WRF meteorological model, using the OASIS3-MCT coupler. WRF meteorological fields along with CHIMERE aerosol optical properties are exchanged through the coupler at a high frequency in order to model the aerosol direct and semi-direct effects.
Laurent Menut, Guillaume Siour, Sylvain Mailler, Florian Couvidat, and Bertrand Bessagnet
Atmos. Chem. Phys., 16, 12961–12982, https://doi.org/10.5194/acp-16-12961-2016, https://doi.org/10.5194/acp-16-12961-2016, 2016
Short summary
Short summary
The aerosol is modelled during the summer 2013 with the WRF and CHIMERE models and over a large area encompassing Africa, Mediterranean sea and west Europe. The modelled aerosol is compared to available measurements such as the AERONET and EMEP networks. The model ability to estimate the aerosol speciation and size distribution is quantified.
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Short summary
The EURODELTA III exercise allows a very comprehensive intercomparison and evaluation of air quality models' performance. On average, the models provide a rather good picture of the particulate matter (PM) concentrations over Europe even if the highest concentrations are underestimated. The meteorology is responsible for model discrepancies, while the lack of emissions, particularly in winter, is mentioned as the main reason for the underestimations of PM.
Vincent E. P. Lemaire, Augustin Colette, and Laurent Menut
Atmos. Chem. Phys., 16, 2559–2574, https://doi.org/10.5194/acp-16-2559-2016, https://doi.org/10.5194/acp-16-2559-2016, 2016
Short summary
Short summary
Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change. Its impact is typically assessed using deterministic chemistry-transport models forced by an ensemble of climate projection. Because of the high computational cost of such initiative, elaborated techniques are required to optimize the exploration of ensemble of future projections. We develop such a technique, which also allows quantifying uncertainties in climate and air quality projections.
S. Mailler, L. Menut, A. G. di Sarra, S. Becagli, T. Di Iorio, B. Bessagnet, R. Briant, P. Formenti, J.-F. Doussin, J. L. Gómez-Amo, M. Mallet, G. Rea, G. Siour, D. M. Sferlazzo, R. Traversi, R. Udisti, and S. Turquety
Atmos. Chem. Phys., 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, https://doi.org/10.5194/acp-16-1219-2016, 2016
Short summary
Short summary
We studied the impact of aerosols on tropospheric photolysis rates at Lampedusa during the CharMEx/ADRIMED campaign in June 2013. It is shown by using the CHIMERE chemistry-transport model (CTM) as well as in situ and remote-sensing measurements that taking into account the radiative effect of the tropospheric aerosols improves the ability of the model to reproduce the observed photolysis rates. It is hence important for CTMs to include the radiative effect of aerosols on photochemistry.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, M. L. Santee, L. Froidevaux, and A. Hauchecorne
Atmos. Chem. Phys., 15, 10385–10397, https://doi.org/10.5194/acp-15-10385-2015, https://doi.org/10.5194/acp-15-10385-2015, 2015
Short summary
Short summary
Our study finds large interannual variability in Antarctic ozone loss in the recent decade, with a number of winters showing shallow ozone holes but also with the year of the largest ozone hole in the last decades. These smaller ozone holes or ozone losses are mainly related to the year-to-year changes in dynamical processes rather than the variations in anthropogenic ozone-depleting substances (ODSs), as the change in ODS levels during the study period was very small.
V. Marécal, V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beekmann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux, A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin, H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss, C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W. Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe, I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Parmentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson, L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Timmermans, Á. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira, and A. Ung
Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, https://doi.org/10.5194/gmd-8-2777-2015, 2015
Short summary
Short summary
This paper describes the air quality forecasting system over Europe put in place in the Monitoring Atmospheric Composition and Climate projects. It provides daily and 4-day forecasts and analyses for the previous day for major gas and particulate pollutants and their main precursors. These products are based on a multi-model approach using seven state-of-the-art models developed in Europe. An evaluation of the performance of the system is discussed in the paper.
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015, https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
G. Rea, S. Turquety, L. Menut, R. Briant, S. Mailler, and G. Siour
Atmos. Chem. Phys., 15, 8013–8036, https://doi.org/10.5194/acp-15-8013-2015, https://doi.org/10.5194/acp-15-8013-2015, 2015
L. Menut, G. Rea, S. Mailler, D. Khvorostyanov, and S. Turquety
Atmos. Chem. Phys., 15, 7897–7911, https://doi.org/10.5194/acp-15-7897-2015, https://doi.org/10.5194/acp-15-7897-2015, 2015
Short summary
Short summary
The atmospheric composition was extensively studied in the European Mediterranean region and during summer 2013 within the framework of the ADRIMED project. During the campaign experiment, the WRF and CHIMERE models were used in forecast mode in order to help scientists to decide whether intensive observation periods should be triggered or not. This study quantifies the origin of the forecast error by comparing several forecast leads to the corresponding measurements.
F. Hourdin, M. Gueye, B. Diallo, J.-L. Dufresne, J. Escribano, L. Menut, B. Marticoréna, G. Siour, and F. Guichard
Atmos. Chem. Phys., 15, 6775–6788, https://doi.org/10.5194/acp-15-6775-2015, https://doi.org/10.5194/acp-15-6775-2015, 2015
Short summary
Short summary
New parameterizations of the convective boundary layer are used to better represent the diurnal cycle of near-surface wind over Sahara and Sahel in a climate model and the associated emission of dust.
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, P. Formenti, and F. Meleux
Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, https://doi.org/10.5194/acp-15-6159-2015, 2015
Short summary
Short summary
The ozone and aerosol concentration variability is studied over the Euro-Mediterranean area during the months of June and July 2013 and in the framework of the ADRIMED project. A first analysis is performed using meteorological variables, ozone and aerosol concentrations using routine network station, satellite and specific ADRIMED project airborne measurements. This analysis is complemented by modeling using the WRF and CHIMERE regional models.
K. Haustein, R. Washington, J. King, G. Wiggs, D. S. G. Thomas, F. D. Eckardt, R. G. Bryant, and L. Menut
Geosci. Model Dev., 8, 341–362, https://doi.org/10.5194/gmd-8-341-2015, https://doi.org/10.5194/gmd-8-341-2015, 2015
Short summary
Short summary
In this paper, the performance of three commonly used dust emissions schemes is investigated using a box model environment and observational data obtained in Botswana (Sua Pan). The results suggest that all schemes fail to reproduce the observed horizontal dust flux properly. They overestimate its magnitude by several orders of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds.
E. Terrenoire, B. Bessagnet, L. Rouïl, F. Tognet, G. Pirovano, L. Létinois, M. Beauchamp, A. Colette, P. Thunis, M. Amann, and L. Menut
Geosci. Model Dev., 8, 21–42, https://doi.org/10.5194/gmd-8-21-2015, https://doi.org/10.5194/gmd-8-21-2015, 2015
Short summary
Short summary
The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural than urban background stations.
The fractional biases show that the model performs slightly better at RB sites than at UB sites for NO2, O3 and PM10.
At UB sites, CHIMERE reproduces PM2.5 better than PM10.
This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties on SOA chemistry and their precursor emissions, dust and sea salt.
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, and P. Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23075-2014, https://doi.org/10.5194/acpd-14-23075-2014, 2014
Revised manuscript not accepted
R. Briant, L. Menut, G. Siour, and C. Prigent
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-3441-2014, https://doi.org/10.5194/gmdd-7-3441-2014, 2014
Revised manuscript not accepted
L. Menut, R. Vautard, A. Colette, D. Khvorostyanov, A. Potier, L. Hamaoui-Laguel, N. Viovy, and M. Thibaudon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10891-2014, https://doi.org/10.5194/acpd-14-10891-2014, 2014
Revised manuscript not accepted
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
S. Turquety, L. Menut, B. Bessagnet, A. Anav, N. Viovy, F. Maignan, and M. Wooster
Geosci. Model Dev., 7, 587–612, https://doi.org/10.5194/gmd-7-587-2014, https://doi.org/10.5194/gmd-7-587-2014, 2014
J. C. Péré, B. Bessagnet, M. Mallet, F. Waquet, I. Chiapello, F. Minvielle, V. Pont, and L. Menut
Atmos. Chem. Phys., 14, 1999–2013, https://doi.org/10.5194/acp-14-1999-2014, https://doi.org/10.5194/acp-14-1999-2014, 2014
M. Boichu, L. Menut, D. Khvorostyanov, L. Clarisse, C. Clerbaux, S. Turquety, and P.-F. Coheur
Atmos. Chem. Phys., 13, 8569–8584, https://doi.org/10.5194/acp-13-8569-2013, https://doi.org/10.5194/acp-13-8569-2013, 2013
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, https://doi.org/10.5194/gmd-6-981-2013, 2013
S. Mailler, D. Khvorostyanov, and L. Menut
Atmos. Chem. Phys., 13, 5987–5998, https://doi.org/10.5194/acp-13-5987-2013, https://doi.org/10.5194/acp-13-5987-2013, 2013
S. Stromatas, S. Turquety, L. Menut, H. Chepfer, J. C. Péré, G. Cesana, and B. Bessagnet
Geosci. Model Dev., 5, 1543–1564, https://doi.org/10.5194/gmd-5-1543-2012, https://doi.org/10.5194/gmd-5-1543-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of East Asian Winter Monsoon circulation
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Steady-State Mixing State of Black Carbon Aerosols from a Particle-Resolved Model
The effectiveness of solar radiation management for marine cloud brightening geoengineering by fine sea spray in worldwide different climatic regions
Accounting for Black Carbon Aging Process in a Two-way Coupled Meteorology – Air Quality Model
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2493, https://doi.org/10.5194/egusphere-2024-2493, 2024
Short summary
Short summary
We proposed a composite statistical method to discern the long-term moving spatial distribution with Quasi-weekly oscillation (QWO) of regional PM2.5 transport over China. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian Winter Monsoon circulation with the periodic activities of Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Zhe Song, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, Pengfei Li, Daniel Rosenfeld, and Shaocai Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2263, https://doi.org/10.5194/egusphere-2024-2263, 2024
Short summary
Short summary
Our results with injected sea-salt aerosols for five open oceans show that the sea-salt aerosols with low injection amounts dominated the shortwave radiation mainly through the indirect effects. As indirect aerosol effects saturated with increasing injection rates, direct effects exceeded indirect effects. This implies that marine cloud brightening was best implemented in areas with extensive cloud cover, while the aerosol direct scattering effects remained dominant when clouds were scarce.
Yuzhi Jin, Jiandong Wang, David C. Wong, Chao Liu, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2372, https://doi.org/10.5194/egusphere-2024-2372, 2024
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full account. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing Bare/Coated BC species and their conversion. Our findings show that BC mixing states have distinct spatiotemporal distribution characteristics, and BC wet deposition is dominated by Coated BC. Accounting for BC aging process improves aerosol optics simulation accuracy.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923, https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Short summary
The Mongolian cyclone, compared to the cold high-pressure system, caused more frequent and severe dust weather in North China during the spring seasons of 2015–2023. Different intensities of 500 hPa cyclonic and anticyclonic anomalies, control near-surface meteorological conditions, leading to two dust weather types in North China. The common predictor for the two types of dust weather successfully captured 76.1 % of dust days and provided a dust signal two days in advance.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Cited articles
Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal,
K. R., Reddy, L. S. S., Narasimhulu, K., and Kumar, K. R.: Black carbon
aerosols and gaseous pollutants in an urban area in North India during fog
period, Atmos. Res., 85, 209–216, https://doi.org/10.1016/j.atmosres.2006.12.007,
2007. a
Bano, T., Singh, S., Gupta, N. C., Soni, K., Tanwar, R. S., Nath, S., Arya,
B. C., and Gera, B. S.: Variation in aerosol black carbon concentration and
its emission estimates at the mega-city Delhi, Int. J. Remote Sens.,
32, 6749–6764, https://doi.org/10.1080/01431161.2010.512943, 2011. a, b
Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré,
C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE – preliminary
evaluation at the continental scale, Atmos. Environ., 38, 2803–2817,
https://doi.org/10.1016/j.atmosenv.2004.02.034, 2004. a
Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, B., Liousse, C.,
Moukhtar, S., Pun, B., Seigneur, C., and Schulz, M.: Regional modeling of
carbonaceous aerosols over Europe – Focus on Secondary Organic Aerosols, J.
Atmos. Chem, 61, 175–202, 2009. a
Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K.,
Soni, V. K., Attri, S. D., Sateesh, M., and Tiwari, S.: Carbonaceous aerosols
and pollutants over Delhi urban environment: temporal evolution, source
apportionment and radiative forcing, Sci. Total Environ., 521, 431–445,
https://doi.org/10.1016/j.scitotenv.2015.03.083, 2015. a
Bond, T. C., Streets, D. G., Nelson, K. F. Y. S. M., Woo, J.-H., and Klimont,
Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004. a, b
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res., 118, 1–173, https://doi.org/10.1002/jgrd.50171, 2013. a, b, c, d
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in:
Climate change 2013: The Physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G. K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., 571–657, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013. a
Boucher, O., Balkanski, Y., Hodnebrog, Ø., Myhre, C. L., Myhre, G., Quaas,
J., Samset, B. H., Schutgens, N., Stier, P., and Wang, R.: Jury is still out
on the radiative forcing by black carbon, P. Natl. Acad. Sci. USA, 113, E5092–E5093,
https://doi.org/10.1073/pnas.1607005113, 2016. a
Briant, R., Tuccella, P., Deroubaix, A., Khvorostyanov, D., Menut, L., Mailler, S., and Turquety, S.: Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler, Geosci. Model Dev., 10, 927–944, https://doi.org/10.5194/gmd-10-927-2017, 2017. a
Chandra, S., Dwivedi, A. K., and Kumar, M.: Characterization of the
atmospheric boundary layer from radiosonde observations along eastern end of
monsoon trough of India, J. Earth Syst. Sci., 123, 1233–1240, 2014. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land-Surface Hydrology Model
with the Penn State-NCAR MM5 Modeling Syste. Part I: Model Implementation and
Sensitivity, Mon. Weather Rev., 129, 569–585, 2001. a
Chen, Y., Wild, O., Conibear, L., Ran, L., He, J., Wang, L., and Wang, Y.:
Local characteristics of and exposure to fine particulate matter (PM2.5)
in four Indian megacities, Atmos. Environ. X, 5, 100052,
https://doi.org/10.1016/j.aeaoa.2019.100052, 2020. a
Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained
estimates of carbonaceous aerosol radiative forcing, P. Natl. Acad. Sci. USA, 109,
11624–11629, https://doi.org/10.1073/pnas.1203707109, 2012. a, b
David, L. M., Ravishankara, A., Kodros, J. K., Venkataraman, C., Sadavarte, P.,
Pierce, J. R., Chaliyakunnel, S., and Millet, D. B.: Aerosol optical depth
over India, J. Geophys. Res.-Atmos., 123, 3688–3703,
https://doi.org/10.1002/2017JD027719, 2018. a
Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H.: Effect of
biogenic volatile organic compound emissions on tropospheric chemistry during
the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign in the
Ile-de-France region, J. Geophys. Res.-Atmos., 108, 8560,
https://doi.org/10.1029/2001JD001421, 2003. a
Dong, X., Zhu, Q., Fu, J. S., Huang, K., Tan, J., and Tipton, M.: Evaluating
Recent Updated Black Carbon Emissions and Revisiting the Direct Radiative
Forcing in Arctic, Geophys. Res. Lett., 46, 3560–3570,
https://doi.org/10.1029/2018GL081242, 2019. a
Dumka, U. C., Moorthy, K. K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh,
N., and Babu, S.: Characteristics of aerosol black carbon mass concentration
over a high altitude location in the Central Himalayas from multi-year
measurements, Atmos. Res., 96, 510–521, https://doi.org/10.1016/j.atmosres.2009.12.010,
2010. a, b, c, d
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b, c
Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R., and Li, Z.:
Substantial contribution of anthropogenic air pollution to catastrophic
floods in Southwest China, Geophys. Res. Lett., 42, 6066–6075,
https://doi.org/10.1002/2015GL064479, 2015. a
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020. a
Ganguly, D., Jayaraman, A., Rajesh, T. A., and Gadhavi, H.: Wintertime aerosol
properties during foggy and nonfoggy days over urban center Delhi and their
implications for shortwave radiative forcing, J. Geophys. Res., 111, D15217,
https://doi.org/10.1029/2005JD007029, 2006. a, b, c
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I.,
Dickerson, R., Thompson, A. M., and Schafer, J.: An analysis of AERONET
aerosol absorption properties and classifications representative of aerosol
source regions, J. Geophys. Res.-Atmos., 117, D17203,
https://doi.org/10.1029/2012JD018127, 2012. a, b
Govardhan, G., Nanjundiah, S., Satheesh, S. K., Moorthy, K. K., and Kotamarthi,
V. R.: Performance of WRF-Chem over Indian region: Comparison with
measurements, J. Earth Syst. Sci., 124, 875–896, 2015. a
Govardhan, G., Satheesh, S. K., Moorthy, K. K., and Nanjundiah, R.: Simulations of black carbon over the Indian region: improvements and implications of diurnality in emissions, Atmos. Chem. Phys., 19, 8229–8241, https://doi.org/10.5194/acp-19-8229-2019, 2019. a
Grell, G. and Devenyi, A. D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys.
Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311, 2002. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Gustafsson, Ö. and Ramanathan, V.: Convergence on climate warming by black
carbon aerosols, P. Natl. Acad. Sci. USA, 113, 4243–4245,
https://doi.org/10.1073/pnas.1603570113, 2016. a, b, c, d
Haupt, S. E., Kosovic, B., Jensen, T., Cowie, J., Jimenez, P., and Wiener, G.:
Comparing and integrating solar forecasting techniques, in: 2016 IEEE 43rd
Photovoltaic Specialists Conference (PVSC), 0953–0955, IEEE, Portland, OR, USA,
https://doi.org/10.1109/PVSC.2017.8366162, 2016. a
Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A federated instrument network and data
archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998. a
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Iyer, U. S. and Raj, P. E.: Ventilation coefficient trends in the recent
decades over four major Indian metropolitan cities, J. Earth Syst. Sci., 122,
537–549, 2013. a
Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L., ten
Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B., and
Cassee, F. R.: Black carbon as an additional indicator of the adverse health
effects of airborne particles compared with PM10 and PM2.5,
Environ. Health Persp., 119, 1691–1699,
https://doi.org/10.1289/ehp.1003369, 2011. a
Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F.,
Hoek, G., Fischer, P., Brunekreef, B., and Krzyzanowski, M.: Health effects
of black carbon, WHO Regional Office for Europe, Denmark, 2012. a
Janssens-Maenhout, G., Dentener, F., Van Aardenne, J., Monni, S., Pagliari, V.,
Orlandini, L., Klimont, Z., Kurokawa, J.-i., Akimoto, H., Ohara, T.,
Wankmüller, R., Battye, B., Grano, D., Zuber, A., and Keating, T.:
EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on
national inventories, European Commission Publications Office, Ispra (Italy),
JRC68434, EUR report No EUR, 25, 299–2012, https://doi.org/10.2788/14102, 2012. a
Jimenez, P. A., Hacker, J. P., Dudhia, J., Haupt, S. E., Ruiz-Arias, J. A.,
Gueymard, C. A., Thompson, G., Eidhammer, T., and Deng, A.: WRF-Solar:
description and clear-sky assessment of an augmented NWP Model for solar
power prediction, B. Am. Meteorol. Soc., 97,
1249–1264, https://doi.org/10.1175/BAMS-D-14-00279.1, 2016. a
Johnson, T. M., Guttikunda, S., Wells, G. J., Artaxo, P., Bond, T. C., Russell,
A. G., Watson, J. G., and West, J.: Tools for improving air quality
management: A review of top-down source apportionment techniques and their
application in developing countries, World Bank, Washington, DC, 2011. a
Kanawade, V., Tripathi, S., Bhattu, D., and Shamjad, P.: Sub-micron particle
number size distributions characteristics at an urban location, Kanpur, in
the Indo-Gangetic Plain, Atmos. Res., 147–148, 121–132,
https://doi.org/10.1016/j.atmosres.2014.05.010, 2014. a
Kumar, M., Raju, M., Singh, R., Singh, A., Singh, R., and Banerjee, T.:
Wintertime characteristics of aerosols over middle Indo-Gangetic Plain:
Vertical profile, transport and radiative forcing, Atmos. Res., 183,
268–282, https://doi.org/10.1016/j.atmosres.2016.09.012, 2017. a
Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., and Ojha,
N.: What controls the seasonal cycle of black carbon aerosols in India?, J.
Geophys. Res.-Atmos., 120, 7788–7812, https://doi.org/10.1002/2015JD023298,
2015. a
Kumar, R. R., Soni, V. K., and Jain, M. K.: Evaluation of spatial and temporal
heterogeneity of black carbon aerosol mass concentration over India using
three year measurements from IMD BC observation network, Sci. Total Environ., 723,
138060, https://doi.org/10.1016/j.scitotenv.2020.138060, 2020. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Lesins, G., Chylek, P., and Lohmann, U.: A study of internal and external
mixing scenarios and its effect on aerosol optical properties and direct
radiative forcing, J. Geophys. Res., 107, 4094, https://doi.org/10.1029/2001JD000973,
2002. a
Lin, Y. L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092, 1983. a
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005. a
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011. a, b
Mahapatra, P. S., Panda, S., Das, N., Rath, S., and Das, T.: Variation in
black carbon mass concentration over an urban site in the eastern coastal
plains of the Indian sub-continent, Theor. Appl. Climatol., 117, 133–147,
https://doi.org/10.1007/s00704-013-0984-z, 2014. a
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J.,
Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.,
Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy,
E., Maycock, T., Tignor, M., and Waterfield, T. (Eds.): Global warming of 1.5 ∘C: An IPCC special report on the Impacts of Global Warming of
1.5 ∘C above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response to
the threat of Climate Change, sustainable development, and efforts to
eradicate poverty, World Meteorological Organization Geneva, Switzerland,
2018. a
Meng, J., Liu, J., Yi, K., Yang, H., Guan, D., Liu, Z., Zhang, J., Ou, J.,
Dorling, S., Mi, Z., Shen, H., Zhong, Q., and Tao, S.: Origin and radiative forcing of black carbon
aerosol: production and consumption perspectives, Environ. Sci. Technol., 52,
6380–6389, https://doi.org/10.1021/acs.est.8b01873, 2018. a
Menut, L., Goussebaile, A., Bessagnet, B., Khvorostiyanov, D., and Ung, A.:
Impact of realistic hourly emissions profiles on air pollutants
concentrations modelled with CHIMERE, Atmos. Environ., 49, 233–244,
https://doi.org/10.1016/j.atmosenv.2011.11.057, 2012. a, b
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013. a, b
Menut, L., Mailler, S., Siour, G., Bessagnet, B., Turquety, S., Rea, G., Briant, R., Mallet, M., Sciare, J., Formenti, P., and Meleux, F.: Ozone and aerosol tropospheric concentrations variability analyzed using the ADRIMED measurements and the WRF and CHIMERE models, Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, 2015. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, 1997. a
Monahan, E. C.: The ocean as a source for atmospheric particles, in: The role
of air-sea exchange in geochemical cycling, 129–163, D.
Reidel, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-009-4738-2, 1986. a
Moorthy, K. K., Beegum, S. N., Srivastava, N., Satheesh, S., Chin, M., Blond,
N., Babu, S. S., and Singh, S.: Performance evaluation of chemistry
transport models over India, Atmos. Environ., 71, 210–225,
https://doi.org/10.1016/j.atmosenv.2013.01.056, 2013. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117,
D08101, https://doi.org/10.1029/2011JD017187, 2012. a
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013a. a, b
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and natural
radiative forcing, climate change 2013: the Physical science basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 659–740, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013b. a, b, c
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N.,
Niranjan, K., Madhaban, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K.
V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the
Indo-Gangetic plain (IGP): Impacts of local boundary layer processes and
long-range transport, J. Geophys. Res., 112, D13205,
https://doi.org/10.1029/2006JD008099, 2007. a, b, c
Nair, V. S., Solmon, F., Giorgi, F., Mariotti, L., Babu, S. S., and Moorthy,
K. K.: Simulation of South Asian aerosols for regional climate studies, J.
Geophys. Res., 117, D04209, https://doi.org/10.1029/2011JD016711, 2012. a, b, c
Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T., Pozzoli, L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, 2015. a, b
Pandey, A., Sadavarte, P., Rao, A. B., and Venkataraman, C.: Trends in
multi-pollutant emissions from a technology-linked inventory for India: II.
Residential, agricultural and informal industry sectors, Atmos. Environ., 99,
341–352, https://doi.org/10.1016/j.atmosenv.2014.09.080, 2014. a, b
Paulot, F., Paynter, D., Ginoux, P., Naik, V., and Horowitz, L. W.: Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms, Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018, 2018. a
Péré, J.-C., Mallet, M., Pont, V., and Bessagnet, B.: Impact of aerosol
direct radiative forcing on the radiative budget, surface heat fluxes, and
atmospheric dynamics during the heat wave of summer 2003 over western Europe:
A modeling study, J. Geophys. Res.-Atmos., 116, D23119,
https://doi.org/10.1029/2011JD016240, 2011. a
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia, Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, 2018a. a
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia, Atmos. Chem. Phys., 18, 2725–2747, https://doi.org/10.5194/acp-18-2725-2018, 2018b. a
Priyadharshini, B.: Ambient aerosol characteristics, source types and radiative
impacts over urban and semi-urban regions of Bengal Gangetic plain, PhD
thesis, IIT, Kharagpur, 2019. a
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011. a
Ram, K. and Sarin, M. M.: Spatio-temporal variability in atmospheric
abundances of EC, OC and WSOC over Northern India, J. Aerosol Sci., 41,
88–98, https://doi.org/10.1016/j.jaerosci.2009.11.004, 2010. a
Ram, K. and Sarin, M. M.: Atmospheric carbonaceous aerosols from Indo-Gangetic
Plain and Central Himalaya: Impact of anthropogenic sources, J. Environ.
Manage., 148, 153–163,
https://doi.org/10.1016/j.jenvman.2014.08.015, 2015. a
Ram, K., Sarin, M., and Tripathi, S.: Inter-comparison of thermal and optical
methods for determination of atmospheric black carbon and attenuation
coefficient from an urban location in northern India, Atmos. Res., 97,
335–342, https://doi.org/10.1016/j.atmosres.2010.04.006, 2010b. a
Ram, K., Sarin, M. M., and Tripathi, S. N.: A 1 year record of carbonaceous
aerosols from an urban site in the Indo‐Gangetic Plain: Characterization,
sources, and temporal variability, J. Geophys. Res., 115, D24313,
https://doi.org/10.1029/2010JD014188, 2010b. a
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to
black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008. a
Rana, A., Jia, S., and Sarkar, S.: Black carbon aerosol in India: A
comprehensive review of current status and future prospects, Atmos. Res.,
218, 207–230, https://doi.org/10.1016/j.atmosres.2018.12.002, 2019. a, b, c
Reddy, B. S. K., Kumar, K. R., Balakrishnaiah, G., Gopal, K. R., Reddy, R. R.,
Reddy, L. S. S., Ahammed, Y. N., Narasimhulu, K., Moorthy, K. K., and Babu,
S. S.: Potential source regions contributing to seasonal variations of black
carbon aerosols over Anantapur in southeast India, Aerosol Air Qual.
Res., 12, 145–161, https://doi.org/10.4209/aaqr.2011.10.0159, 2012. a
Reddy, M. S., Boucher, O., Venkataraman, C., Verma, S., Leon, J. F., and Pham,
M.: GCM estimates of aerosol transport and radiative forcing during
INDOEX, J. Geophys. Res., 109, D16205, https://doi.org/10.1029/2004JD004557, 2004. a, b
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J.,
Christopher, S. A., Curtis, C. A., Schmidt, C. C., Eleuterio, D. P.,
Richardson, K. A., and Hoffman, J. P.: Global monitoring and forecasting of
biomass-burning smoke: Description of and Lessons From the Fire Locating and
Modeling of Burning Emissions (FLAMBE) Program, IEEE J. Sel. Top. Appl.
Earth Observ. Remote Sens., 2, 144–162, https://doi.org/10.1109/JSTARS.2009.2027443,
2009. a
Rypdal, K., Stordal, F., Fuglestvedt, J. S., and Berntsen, T.: Introducing
top-down methods in assessing compliance with the Kyoto Protocol, Clim.
Pol., 5, 393–405, https://doi.org/10.1080/14693062.2005.9685565,
2005. a
Sadavarte, P. and Venkataraman, C.: Trends in multi-pollutant emissions from a
technology-linked inventory for India: I. Industry and transport sectors,
Atmos. Environ., 99, 353–364,
https://doi.org/10.1016/j.atmosenv.2014.09.081, 2014. a, b, c
Safai, P., Raju, M., Rao, P., and Pandithurai, G.: Characterization of
carbonaceous aerosols over the urban tropical location and a new approach to
evaluate their climatic importance, Atmos. Environ., 92, 493–500,
https://doi.org/10.1016/j.atmosenv.2014.04.055, 2014. a
Safai, P. D., Kewat, S., Pandithurai, G., Praveen, P. S., Ali, K., Tiwari, S.,
Rao, P. S. P., Budhawant, K. B., Saha, S. K., and Devara, P. C. S.: Aerosol
characteristics during winter fog at Agra, North India, J. Atmos. Chem., 61,
101–118, https://doi.org/10.1007/s10874-009-9127-4, 2008. a
Sahu, L., Sheel, V., Pandey, K., Yadav, R., Saxena, P., and Gunthe, S.:
Regional biomass burning trends in India: Analysis of satellite fire data, J.
Earth Syst. Sci., 124, 1377–1387, 2015. a
Sanap, S. D., Ayantika, D. C., Pandithurai, G., and Niranjan, K.: Assessment of
the aerosol distribution over Indian subcontinent in CMIP5 models, Atmos.
Environ., 87, 123–137, https://doi.org/10.1016/j.atmosenv.2014.01.017, 2014. a
Santra, S., Verma, S., Fujita, K., Chakraborty, I., Boucher, O., Takemura, T., Burkhart, J. F., Matt, F., and Sharma, M.: Simulations of black carbon (BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources, and implications on glacier runoff, Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, 2019. a, b, c
Satheesh, S., Ramanathan, V., Li-Jones, X., Lobert, J., Podgorny, I., Prospero,
J., Holben, B., and Loeb, N.: A model for the natural and anthropogenic
aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment
data, J. Geophys. Res.-Atmos., 104, 27421–27440, 1999. a
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006. a
Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary
boundary layer heights from radiosonde observations: Comparison of methods
and uncertainty analysis, J. Geophys. Res., 115, D16113,
https://doi.org/10.1029/2009JD013680, 2010. a
Singh, B. P., Tiwari, S., Hopke, K. P., Singh, R. S., Bisht, D. S., Srivastava,
A. K., Singh, R. K., Dumka, U. C., Singh, A. K., Rai, B. N., and Srivastava,
M. K.: Seasonal inhomogeneity of soot particles over the Central
Indo-Gangetic Plains, India: influence of meteorology, J.
Meteorol. Res., 29, 935–949, 2015. a
Singh, N., Solanki, R., Ojha, N., Janssen, R. H. H., Pozzer, A., and Dhaka, S. K.: Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations, Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016, 2016. a
Srivastava, S., Lal, S., Subrahamanyam, D. B., Gupta, S., Venkataramani, S.,
and Rajesh, T.: Seasonal variability in mixed layer height and its impact on
trace gas distribution over a tropical urban site: Ahmedabad, Atmos. Res.,
96, 79–87, https://doi.org/10.1016/j.atmosres.2009.11.015, 2010. a
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate
change 2013: The Physical science basis. Contribution of working group I to
the fifth assessment report of the intergovernmental panel on climate change,
Cambridge University Press, Cambridge, New York, https://doi.org/10.1017/CBO9781107415324,
2014. a
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He,
D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H., and
Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003. a, b
Stromatas, S., Turquety, S., Menut, L., Chepfer, H., Péré, J. C., Cesana, G., and Bessagnet, B.: Lidar signal simulation for the evaluation of aerosols in chemistry transport models, Geosci. Model Dev., 5, 1543–1564, https://doi.org/10.5194/gmd-5-1543-2012, 2012. a
Stull, R. B.: An introduction to boundary layer meteorology, Springer, New York,
1988. a
Surendran, D. E., Beig, G., Ghude, S. D., Panicker, A. S., Manoj, M. G., Chate,
D. M., and Ali, K.: Radiative forcing of black carbon over Delhi, Int. J.
Photoenergy, 2013, 313652, https://doi.org/10.1155/2013/313652, 2013. a, b
Szopa, S., Foret, G., Menut, L., and Cozic, A.: Impact of large scale
circulation on European summer surface ozone and consequences for modelling
forecast, Atmos. Environ., 43, 1189–1195,
https://doi.org/10.1016/j.atmosenv.2008.10.039, 2009. a
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006. a, b
Thamban, N. M., Tripathi, S. N., Moosakutty, S. P., Kuntamukkala, P., and
Kanawade, V. P.: Internally mixed black carbon in the Indo-Gangetic Plain
and its effect on absorption enhancement, Atmos. Res., 197, 211–223,
https://doi.org/10.1016/j.atmosres.2017.07.007, 2017. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989. a
Tripathi, S. N., Dey, S., Tare, V., and Satheesh, S. K.: Aerosol black carbon
radiative forcing at an industrial city in northern India, Geophys. Res.
Lett., 32, L08802, https://doi.org/10.1029/2005GL022515, 2005a. a
Tripathi, S. N., Dey, S., Tare, V., satheesh, S. K., Lal, S., and
Venkataramani, S.: Enhanced layer of black carbon in a north Indian
industrial city, Geophys. Res. Lett., 32, L12802, https://doi.org/10.1029/2005GL022564,
2005b. a
Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer:
Sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37,
129–148, 1986. a
Vaishya, A., Singh, P., Rastogi, S., and Babu, S. S.: Aerosol black carbon
quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and
source apportionment, Atmos. Res., 185, 13–21,
https://doi.org/10.1016/j.atmosres.2016.10.001, 2017. a
van Leer, B.: Towards the ultimate conservative difference scheme: IV. A
new approach to numerical convection, J. Comput. Phys., 23, 276–299, 1979. a
Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and
Friedlander, S. K.: Residential biofuels in South Asia: carbonaceous aerosol
emissions and climate impacts, Science, 307, 1454–1456,
https://doi.org/10.1126/science.1104359, 2005. a, b, c, d
Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J.-F.,
Crouzille, B., Boucher, O., and Streets, D. G.: Emissions from open biomass
burning in India: Integrating the inventory approach with high-resolution
Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land
cover data, Global Biogeochem. Cy., 20, GB2013,
https://doi.org/10.1029/2005GB002547, 2006. a, b, c
Verma, S., Venkataraman, C., Boucher, O., and Ramachandran, S.: Source
evaluation of aerosols measured during the Indian Ocean Experiment
using combined chemical transport and back trajectory modeling, J. Geophys.
Res., 112, D11210, https://doi.org/10.1029/2006JD007698, 2007. a
Verma, S., Venkataraman, C., and Boucher, O.: Origin of surface and columnar
INDOEX aerosols using source- and region-tagged emissions transport in a
general circulation model, J. Geophys. Res., 113, D24211,
https://doi.org/10.1029/2007JD009538, 2008. a
Verma, S., Venkataraman, C., and Boucher, O.: Attribution of aerosol radiative
forcing over India during the winter monsoon to emissions from source
categories and geographical regions, Atmos. Environ., 45, 4398–4407,
https://doi.org/10.1016/j.atmosenv.2011.05.048, 2011. a, b
Verma, S., Bhanja, S. N., Pani, S. K., and Misra, A.: Aerosol optical and
physical properties during winter monsoon pollution transport in an urban
environment, Environ. Sci. Pollut. Res., 21, 4977–4994,
https://doi.org/10.1007/s11356-013-2383-5, 2014. a, b
Verma, S., Priyadharshini, B., Pani, S. K., Kumar, D. B., Faruqi, A. R.,
Bhanja, S. N., and Mandal, M.: Aerosol extinction properties over coastal
West Bengal Gangetic plain under inter-seasonal and sea breeze influenced
transport processes, Atmos. Res., 167, 224–236,
https://doi.org/10.1016/j.atmosres.2015.07.021, 2016. a, b
Verma, S., Reddy, D. M., Ghosh, S., Kumar, D. B., and Chowdhury, A. K.:
Estimates of spatially and temporally resolved constrained black carbon
emission over the Indian region using a strategic integrated modelling
approach, Atmos. Res., 195, 9–19, https://doi.org/10.1016/j.atmosres.2017.05.007,
2017. a, b, c, d, e, f, g, h, i
Wang, P., Wang, H., Wang, Y. Q., Zhang, X. Y., Gong, S. L., Xue, M., Zhou, C. H., Liu, H. L., An, X. Q., Niu, T., and Cheng, Y. L.: Inverse modeling of black carbon emissions over China using ensemble data assimilation, Atmos. Chem. Phys., 16, 989–1002, https://doi.org/10.5194/acp-16-989-2016, 2016. a, b, c
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res.-Atmos., 119, 195–206, https://doi.org/10.1002/2013JD020824,
2014a. a
Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., Piao, S.,
Shen, H., Vuolo, M. R., Valari, M., Chen, H., Chen, Y., Cozic, A., Huang, Y.,
Li, B., Li, W., Shen, G., Wang, B., and Zhang, Y.: Exposure to ambient black
carbon derived from a unique inventory and high-resolution model, P. Natl. Acad. Sci. USA, 111,
2459–2463, https://doi.org/10.1073/pnas.1318763111, 2014b. a
Wesely, M.: Parameterization of surface resistances to gaseous dry deposition
in regional-scale numerical models, Atmos. Environ., 23, 1293–1304,
https://doi.org/10.1016/0004-6981(89)90153-4, 1989. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and
below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37,
245–282, 2000. a
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry
deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
a
Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., Singh, B., Huang, J., and Fu, Q.: Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 15, 6205–6223, https://doi.org/10.5194/acp-15-6205-2015, 2015. a
Zhang, S., Penner, J. E., and Torres, O.: Inverse modeling of biomass burning
emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J.
Geophys. Res., 110, D21306, https://doi.org/10.1029/2004JD005738, 2005. a
Zhou, T., Chen, Z., Zou, L., Chen, X., Yu, Y., Wang, B., Bao, Q., Bao, Y., Cao,
J., He, B., Hu, S., Li, L., Li, J., Lin, Y., Ma, L., Qiao, F., Rong, X.,
Song, Z., Tang, Y., Wu, B., Wu, T., Xin, X., Zhang, H., and Zhang, M.:
Development of climate and earth system models in China: Past achievements
and new CMIP6 results, J. Meteorol. Res., 34, 1–19,
https://doi.org/10.1007/s13351-020-9164-0, 2020. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7551 KB) - Full-text XML
Short summary
Wintertime direct radiative perturbation due to black carbon (BC) aerosols was assessed over the Indo-Gangetic Plain with an efficiently modelled BC distribution. The atmospheric radiative warming due to BC was about 50–70 % larger than surface cooling. Compared to the atmosphere without BC, for which a net cooling at the top of the atmosphere was exhibited, enhanced atmospheric radiative warming by 2–3 times and a reduction in surface cooling by 10–20 % were found due to BC.
Wintertime direct radiative perturbation due to black carbon (BC) aerosols was assessed over the...
Altmetrics
Final-revised paper
Preprint