Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-7671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE
Sanhita Ghosh
Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Shubha Verma
CORRESPONDING AUTHOR
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Jayanarayanan Kuttippurath
Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur-721302, India
Laurent Menut
Laboratoire de Météorologie Dynamique, IPSL, CNRS/Ecole Polytechnique/Sorbonne Université/Ecole Normale Supérieure, 91128 Palaiseau CEDEX, France
Related authors
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
Atmos. Chem. Phys., 25, 6273–6297, https://doi.org/10.5194/acp-25-6273-2025, https://doi.org/10.5194/acp-25-6273-2025, 2025
Short summary
Short summary
In this study, we evaluate the present state of modelling lightning flashes over the Northern Hemisphere, using the classical CTH (cloud-top height) scheme and the ICEFLUX scheme with the CHIMERE model. Our study provides a comprehensive 3D comparison of model outputs to assess the robustness and applicability of these schemes. An improvement in O3 distribution in the tropical free troposphere is observed due to inclusion of LNOx (nitrogen oxide emissions from lightning) in the model. Inclusion of LNOx also reduces the lifetime of trace gas CH4.
Bertrand Bessagnet, Narayan Thapa, Dikra Prasad Bajgai, Ravi Sahu, Arshini Saikia, Arineh Cholakian, Laurent Menut, Guillaume Siour, Tenzin Wangchuk, Monica Crippa, and Kamala Gurung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3641, https://doi.org/10.5194/egusphere-2025-3641, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study highlights the use of numerical tools at very to support the Air Quality monitoring strategy in the Himalayan valley which suffer from Air Pollution. For the first time ever, a high resolution simulation is performed in Bhutan showing the high PM2.5 concentrations within the valleys and potential contaminations up to the glaciers enhancing climate related risks.
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
Atmos. Chem. Phys., 25, 6273–6297, https://doi.org/10.5194/acp-25-6273-2025, https://doi.org/10.5194/acp-25-6273-2025, 2025
Short summary
Short summary
In this study, we evaluate the present state of modelling lightning flashes over the Northern Hemisphere, using the classical CTH (cloud-top height) scheme and the ICEFLUX scheme with the CHIMERE model. Our study provides a comprehensive 3D comparison of model outputs to assess the robustness and applicability of these schemes. An improvement in O3 distribution in the tropical free troposphere is observed due to inclusion of LNOx (nitrogen oxide emissions from lightning) in the model. Inclusion of LNOx also reduces the lifetime of trace gas CH4.
Sauvik Santra, Shubha Verma, Shubham Patel, Olivier Boucher, and Mathew Koll Roxy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2302, https://doi.org/10.5194/egusphere-2025-2302, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Uneven spatial changes in Indian monsoon rainfall are linked to tiny airborne particles called aerosols, both human-made and natural (like dust). Using a high-resolution climate model, we show how persistent weakening and strengthening patterns in rainfall are driven by spatially varying aerosols. Reducing human-made aerosols may ease rainfall shortages in some areas but worsen excesses in others. These insights are key for better water management and policy planning.
Gopalakrishna Pillai Gopikrishnan, Daniel M. Westervelt, and Jayanarayanan Kuttippurath
EGUsphere, https://doi.org/10.5194/egusphere-2025-1056, https://doi.org/10.5194/egusphere-2025-1056, 2025
Short summary
Short summary
This study examines the inverse effect of aerosol surface area and particulate matter (PM) reduction on air quality and atmospheric chemistry, particularly on surface ozone levels. Aerosols act as surfaces for the uptake of hydroxyl radicals (HO2), which are essential for controlling ozone formation. Reducing aerosols and PM may enhance surface ozone formation, thus worsening air quality. However, further efforts to decrease NOx emissions could mitigate this rise in surface ozone levels.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024, https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
Short summary
This study is about the modelling of the atmospheric composition in Europe during the summer of 2022, when massive wildfires were observed. It is a sensitivity study dedicated to the relative impacts of two modelling processes that are able to modify the meteorology used for the calculation of the atmospheric chemistry and transport of pollutants.
Raina Roy, Pankaj Kumar, Jayanarayanan Kuttippurath, and Franck Lefevre
Atmos. Chem. Phys., 24, 2377–2386, https://doi.org/10.5194/acp-24-2377-2024, https://doi.org/10.5194/acp-24-2377-2024, 2024
Short summary
Short summary
We assess the interannual variability of ozone loss and chlorine activation in the Antarctic winters of 2013–2020. The analysis shows significant interannual variability in the Antarctic ozone during this period as compared to the previous decade (2000–2010). Dynamics and chemistry of the winters play their respective roles in the ozone loss process. The winter of 2019 is an example of favourable chemistry helping in the large loss of ozone, though the dynamical conditions were unfavourable.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023, https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary
Short summary
We show that a new advection scheme named PPM + W (piecewise parabolic method + Walcek) offers geoscientific modellers an alternative, high-performance scheme designed for Cartesian-grid advection, with improved performance over the classical PPM scheme. The computational cost of PPM + W is not higher than that of PPM. With improved accuracy and controlled computational cost, this new scheme may find applications in chemistry-transport models, ocean models or atmospheric circulation models.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023, https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary
Short summary
This study is about the wildfires occurring in France during the summer 2022. We study the forest fires that took place in the Landes during the summer of 2022. We show the direct impact of these fires on the air quality, especially downstream of the smoke plume towards the Paris region. We quantify the impact of these fires on the pollutants peak concentrations and the possible exceedance of thresholds.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Juan Cuesta, Lorenzo Costantino, Matthias Beekmann, Guillaume Siour, Laurent Menut, Bertrand Bessagnet, Tony C. Landi, Gaëlle Dufour, and Maxim Eremenko
Atmos. Chem. Phys., 22, 4471–4489, https://doi.org/10.5194/acp-22-4471-2022, https://doi.org/10.5194/acp-22-4471-2022, 2022
Short summary
Short summary
We present the first comprehensive study integrating satellite observations of near-surface ozone pollution, surface in situ measurements, and a chemistry-transport model for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020. It confirms the occurrence of a net enhancement of ozone in central Europe and a reduction elsewhere, except for some hotspots, linked with the reduction of precursor emissions from Europe and the Northern Hemisphere.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021, https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Short summary
The CHIMERE chemistry-transport model is presented in its new version, V2020r1. Many changes are proposed compared to the previous version. These include online modeling, new parameterizations for aerosols, new emissions schemes, a new parameter file format, the subgrid-scale variability of urban concentrations and new transport schemes.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021, https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary
Short summary
Based on modeling, the transport dynamics of ozone and fine particles in central Chile are investigated. Santiago emissions are found to influence air quality along a 1000 km plume as far as Argentina and northern Chile. In turn, emissions outside the metropolis contribute significantly to its recorded particles concentration. Emissions of precursors from Santiago are found to lead to the formation of a persistent ozone bubble in altitude, a phenomenon which is described for the first time.
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021, https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
Short summary
This paper presents a new interpolator useful for geophysics applications. It can explore N-dimensional meshes, grids or look-up tables. The code accepts irregular but structured grids. Written in Fortran, it is easy to implement in existing codes and very fast and portable. We have compared it with a Python library. Python is convenient but suffers from portability and is sometimes not optimized enough. As an application case, this method is applied to atmospheric sciences.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Cited articles
Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal,
K. R., Reddy, L. S. S., Narasimhulu, K., and Kumar, K. R.: Black carbon
aerosols and gaseous pollutants in an urban area in North India during fog
period, Atmos. Res., 85, 209–216, https://doi.org/10.1016/j.atmosres.2006.12.007,
2007. a
Bano, T., Singh, S., Gupta, N. C., Soni, K., Tanwar, R. S., Nath, S., Arya,
B. C., and Gera, B. S.: Variation in aerosol black carbon concentration and
its emission estimates at the mega-city Delhi, Int. J. Remote Sens.,
32, 6749–6764, https://doi.org/10.1080/01431161.2010.512943, 2011. a, b
Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré,
C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE – preliminary
evaluation at the continental scale, Atmos. Environ., 38, 2803–2817,
https://doi.org/10.1016/j.atmosenv.2004.02.034, 2004. a
Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, B., Liousse, C.,
Moukhtar, S., Pun, B., Seigneur, C., and Schulz, M.: Regional modeling of
carbonaceous aerosols over Europe – Focus on Secondary Organic Aerosols, J.
Atmos. Chem, 61, 175–202, 2009. a
Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K.,
Soni, V. K., Attri, S. D., Sateesh, M., and Tiwari, S.: Carbonaceous aerosols
and pollutants over Delhi urban environment: temporal evolution, source
apportionment and radiative forcing, Sci. Total Environ., 521, 431–445,
https://doi.org/10.1016/j.scitotenv.2015.03.083, 2015. a
Bond, T. C., Streets, D. G., Nelson, K. F. Y. S. M., Woo, J.-H., and Klimont,
Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004. a, b
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res., 118, 1–173, https://doi.org/10.1002/jgrd.50171, 2013. a, b, c, d
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in:
Climate change 2013: The Physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G. K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., 571–657, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013. a
Boucher, O., Balkanski, Y., Hodnebrog, Ø., Myhre, C. L., Myhre, G., Quaas,
J., Samset, B. H., Schutgens, N., Stier, P., and Wang, R.: Jury is still out
on the radiative forcing by black carbon, P. Natl. Acad. Sci. USA, 113, E5092–E5093,
https://doi.org/10.1073/pnas.1607005113, 2016. a
Briant, R., Tuccella, P., Deroubaix, A., Khvorostyanov, D., Menut, L., Mailler, S., and Turquety, S.: Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler, Geosci. Model Dev., 10, 927–944, https://doi.org/10.5194/gmd-10-927-2017, 2017. a
Chandra, S., Dwivedi, A. K., and Kumar, M.: Characterization of the
atmospheric boundary layer from radiosonde observations along eastern end of
monsoon trough of India, J. Earth Syst. Sci., 123, 1233–1240, 2014. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land-Surface Hydrology Model
with the Penn State-NCAR MM5 Modeling Syste. Part I: Model Implementation and
Sensitivity, Mon. Weather Rev., 129, 569–585, 2001. a
Chen, Y., Wild, O., Conibear, L., Ran, L., He, J., Wang, L., and Wang, Y.:
Local characteristics of and exposure to fine particulate matter (PM2.5)
in four Indian megacities, Atmos. Environ. X, 5, 100052,
https://doi.org/10.1016/j.aeaoa.2019.100052, 2020. a
Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained
estimates of carbonaceous aerosol radiative forcing, P. Natl. Acad. Sci. USA, 109,
11624–11629, https://doi.org/10.1073/pnas.1203707109, 2012. a, b
David, L. M., Ravishankara, A., Kodros, J. K., Venkataraman, C., Sadavarte, P.,
Pierce, J. R., Chaliyakunnel, S., and Millet, D. B.: Aerosol optical depth
over India, J. Geophys. Res.-Atmos., 123, 3688–3703,
https://doi.org/10.1002/2017JD027719, 2018. a
Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H.: Effect of
biogenic volatile organic compound emissions on tropospheric chemistry during
the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign in the
Ile-de-France region, J. Geophys. Res.-Atmos., 108, 8560,
https://doi.org/10.1029/2001JD001421, 2003. a
Dong, X., Zhu, Q., Fu, J. S., Huang, K., Tan, J., and Tipton, M.: Evaluating
Recent Updated Black Carbon Emissions and Revisiting the Direct Radiative
Forcing in Arctic, Geophys. Res. Lett., 46, 3560–3570,
https://doi.org/10.1029/2018GL081242, 2019. a
Dumka, U. C., Moorthy, K. K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh,
N., and Babu, S.: Characteristics of aerosol black carbon mass concentration
over a high altitude location in the Central Himalayas from multi-year
measurements, Atmos. Res., 96, 510–521, https://doi.org/10.1016/j.atmosres.2009.12.010,
2010. a, b, c, d
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b, c
Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R., and Li, Z.:
Substantial contribution of anthropogenic air pollution to catastrophic
floods in Southwest China, Geophys. Res. Lett., 42, 6066–6075,
https://doi.org/10.1002/2015GL064479, 2015. a
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020. a
Ganguly, D., Jayaraman, A., Rajesh, T. A., and Gadhavi, H.: Wintertime aerosol
properties during foggy and nonfoggy days over urban center Delhi and their
implications for shortwave radiative forcing, J. Geophys. Res., 111, D15217,
https://doi.org/10.1029/2005JD007029, 2006. a, b, c
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I.,
Dickerson, R., Thompson, A. M., and Schafer, J.: An analysis of AERONET
aerosol absorption properties and classifications representative of aerosol
source regions, J. Geophys. Res.-Atmos., 117, D17203,
https://doi.org/10.1029/2012JD018127, 2012. a, b
Govardhan, G., Nanjundiah, S., Satheesh, S. K., Moorthy, K. K., and Kotamarthi,
V. R.: Performance of WRF-Chem over Indian region: Comparison with
measurements, J. Earth Syst. Sci., 124, 875–896, 2015. a
Govardhan, G., Satheesh, S. K., Moorthy, K. K., and Nanjundiah, R.: Simulations of black carbon over the Indian region: improvements and implications of diurnality in emissions, Atmos. Chem. Phys., 19, 8229–8241, https://doi.org/10.5194/acp-19-8229-2019, 2019. a
Grell, G. and Devenyi, A. D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys.
Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311, 2002. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Gustafsson, Ö. and Ramanathan, V.: Convergence on climate warming by black
carbon aerosols, P. Natl. Acad. Sci. USA, 113, 4243–4245,
https://doi.org/10.1073/pnas.1603570113, 2016. a, b, c, d
Haupt, S. E., Kosovic, B., Jensen, T., Cowie, J., Jimenez, P., and Wiener, G.:
Comparing and integrating solar forecasting techniques, in: 2016 IEEE 43rd
Photovoltaic Specialists Conference (PVSC), 0953–0955, IEEE, Portland, OR, USA,
https://doi.org/10.1109/PVSC.2017.8366162, 2016. a
Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A federated instrument network and data
archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998. a
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Iyer, U. S. and Raj, P. E.: Ventilation coefficient trends in the recent
decades over four major Indian metropolitan cities, J. Earth Syst. Sci., 122,
537–549, 2013. a
Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L., ten
Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B., and
Cassee, F. R.: Black carbon as an additional indicator of the adverse health
effects of airborne particles compared with PM10 and PM2.5,
Environ. Health Persp., 119, 1691–1699,
https://doi.org/10.1289/ehp.1003369, 2011. a
Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F.,
Hoek, G., Fischer, P., Brunekreef, B., and Krzyzanowski, M.: Health effects
of black carbon, WHO Regional Office for Europe, Denmark, 2012. a
Janssens-Maenhout, G., Dentener, F., Van Aardenne, J., Monni, S., Pagliari, V.,
Orlandini, L., Klimont, Z., Kurokawa, J.-i., Akimoto, H., Ohara, T.,
Wankmüller, R., Battye, B., Grano, D., Zuber, A., and Keating, T.:
EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on
national inventories, European Commission Publications Office, Ispra (Italy),
JRC68434, EUR report No EUR, 25, 299–2012, https://doi.org/10.2788/14102, 2012. a
Jimenez, P. A., Hacker, J. P., Dudhia, J., Haupt, S. E., Ruiz-Arias, J. A.,
Gueymard, C. A., Thompson, G., Eidhammer, T., and Deng, A.: WRF-Solar:
description and clear-sky assessment of an augmented NWP Model for solar
power prediction, B. Am. Meteorol. Soc., 97,
1249–1264, https://doi.org/10.1175/BAMS-D-14-00279.1, 2016. a
Johnson, T. M., Guttikunda, S., Wells, G. J., Artaxo, P., Bond, T. C., Russell,
A. G., Watson, J. G., and West, J.: Tools for improving air quality
management: A review of top-down source apportionment techniques and their
application in developing countries, World Bank, Washington, DC, 2011. a
Kanawade, V., Tripathi, S., Bhattu, D., and Shamjad, P.: Sub-micron particle
number size distributions characteristics at an urban location, Kanpur, in
the Indo-Gangetic Plain, Atmos. Res., 147–148, 121–132,
https://doi.org/10.1016/j.atmosres.2014.05.010, 2014. a
Kumar, M., Raju, M., Singh, R., Singh, A., Singh, R., and Banerjee, T.:
Wintertime characteristics of aerosols over middle Indo-Gangetic Plain:
Vertical profile, transport and radiative forcing, Atmos. Res., 183,
268–282, https://doi.org/10.1016/j.atmosres.2016.09.012, 2017. a
Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., and Ojha,
N.: What controls the seasonal cycle of black carbon aerosols in India?, J.
Geophys. Res.-Atmos., 120, 7788–7812, https://doi.org/10.1002/2015JD023298,
2015. a
Kumar, R. R., Soni, V. K., and Jain, M. K.: Evaluation of spatial and temporal
heterogeneity of black carbon aerosol mass concentration over India using
three year measurements from IMD BC observation network, Sci. Total Environ., 723,
138060, https://doi.org/10.1016/j.scitotenv.2020.138060, 2020. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Lesins, G., Chylek, P., and Lohmann, U.: A study of internal and external
mixing scenarios and its effect on aerosol optical properties and direct
radiative forcing, J. Geophys. Res., 107, 4094, https://doi.org/10.1029/2001JD000973,
2002. a
Lin, Y. L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092, 1983. a
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005. a
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011. a, b
Mahapatra, P. S., Panda, S., Das, N., Rath, S., and Das, T.: Variation in
black carbon mass concentration over an urban site in the eastern coastal
plains of the Indian sub-continent, Theor. Appl. Climatol., 117, 133–147,
https://doi.org/10.1007/s00704-013-0984-z, 2014. a
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J.,
Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.,
Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy,
E., Maycock, T., Tignor, M., and Waterfield, T. (Eds.): Global warming of 1.5 ∘C: An IPCC special report on the Impacts of Global Warming of
1.5 ∘C above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response to
the threat of Climate Change, sustainable development, and efforts to
eradicate poverty, World Meteorological Organization Geneva, Switzerland,
2018. a
Meng, J., Liu, J., Yi, K., Yang, H., Guan, D., Liu, Z., Zhang, J., Ou, J.,
Dorling, S., Mi, Z., Shen, H., Zhong, Q., and Tao, S.: Origin and radiative forcing of black carbon
aerosol: production and consumption perspectives, Environ. Sci. Technol., 52,
6380–6389, https://doi.org/10.1021/acs.est.8b01873, 2018. a
Menut, L., Goussebaile, A., Bessagnet, B., Khvorostiyanov, D., and Ung, A.:
Impact of realistic hourly emissions profiles on air pollutants
concentrations modelled with CHIMERE, Atmos. Environ., 49, 233–244,
https://doi.org/10.1016/j.atmosenv.2011.11.057, 2012. a, b
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013. a, b
Menut, L., Mailler, S., Siour, G., Bessagnet, B., Turquety, S., Rea, G., Briant, R., Mallet, M., Sciare, J., Formenti, P., and Meleux, F.: Ozone and aerosol tropospheric concentrations variability analyzed using the ADRIMED measurements and the WRF and CHIMERE models, Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, 2015. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, 1997. a
Monahan, E. C.: The ocean as a source for atmospheric particles, in: The role
of air-sea exchange in geochemical cycling, 129–163, D.
Reidel, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-009-4738-2, 1986. a
Moorthy, K. K., Beegum, S. N., Srivastava, N., Satheesh, S., Chin, M., Blond,
N., Babu, S. S., and Singh, S.: Performance evaluation of chemistry
transport models over India, Atmos. Environ., 71, 210–225,
https://doi.org/10.1016/j.atmosenv.2013.01.056, 2013. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117,
D08101, https://doi.org/10.1029/2011JD017187, 2012. a
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013a. a, b
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and natural
radiative forcing, climate change 2013: the Physical science basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 659–740, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013b. a, b, c
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N.,
Niranjan, K., Madhaban, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K.
V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the
Indo-Gangetic plain (IGP): Impacts of local boundary layer processes and
long-range transport, J. Geophys. Res., 112, D13205,
https://doi.org/10.1029/2006JD008099, 2007. a, b, c
Nair, V. S., Solmon, F., Giorgi, F., Mariotti, L., Babu, S. S., and Moorthy,
K. K.: Simulation of South Asian aerosols for regional climate studies, J.
Geophys. Res., 117, D04209, https://doi.org/10.1029/2011JD016711, 2012. a, b, c
Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T., Pozzoli, L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, 2015. a, b
Pandey, A., Sadavarte, P., Rao, A. B., and Venkataraman, C.: Trends in
multi-pollutant emissions from a technology-linked inventory for India: II.
Residential, agricultural and informal industry sectors, Atmos. Environ., 99,
341–352, https://doi.org/10.1016/j.atmosenv.2014.09.080, 2014. a, b
Paulot, F., Paynter, D., Ginoux, P., Naik, V., and Horowitz, L. W.: Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms, Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018, 2018. a
Péré, J.-C., Mallet, M., Pont, V., and Bessagnet, B.: Impact of aerosol
direct radiative forcing on the radiative budget, surface heat fluxes, and
atmospheric dynamics during the heat wave of summer 2003 over western Europe:
A modeling study, J. Geophys. Res.-Atmos., 116, D23119,
https://doi.org/10.1029/2011JD016240, 2011. a
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia, Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, 2018a. a
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia, Atmos. Chem. Phys., 18, 2725–2747, https://doi.org/10.5194/acp-18-2725-2018, 2018b. a
Priyadharshini, B.: Ambient aerosol characteristics, source types and radiative
impacts over urban and semi-urban regions of Bengal Gangetic plain, PhD
thesis, IIT, Kharagpur, 2019. a
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011. a
Ram, K. and Sarin, M. M.: Spatio-temporal variability in atmospheric
abundances of EC, OC and WSOC over Northern India, J. Aerosol Sci., 41,
88–98, https://doi.org/10.1016/j.jaerosci.2009.11.004, 2010. a
Ram, K. and Sarin, M. M.: Atmospheric carbonaceous aerosols from Indo-Gangetic
Plain and Central Himalaya: Impact of anthropogenic sources, J. Environ.
Manage., 148, 153–163,
https://doi.org/10.1016/j.jenvman.2014.08.015, 2015. a
Ram, K., Sarin, M., and Tripathi, S.: Inter-comparison of thermal and optical
methods for determination of atmospheric black carbon and attenuation
coefficient from an urban location in northern India, Atmos. Res., 97,
335–342, https://doi.org/10.1016/j.atmosres.2010.04.006, 2010b. a
Ram, K., Sarin, M. M., and Tripathi, S. N.: A 1 year record of carbonaceous
aerosols from an urban site in the Indo‐Gangetic Plain: Characterization,
sources, and temporal variability, J. Geophys. Res., 115, D24313,
https://doi.org/10.1029/2010JD014188, 2010b. a
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to
black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008. a
Rana, A., Jia, S., and Sarkar, S.: Black carbon aerosol in India: A
comprehensive review of current status and future prospects, Atmos. Res.,
218, 207–230, https://doi.org/10.1016/j.atmosres.2018.12.002, 2019. a, b, c
Reddy, B. S. K., Kumar, K. R., Balakrishnaiah, G., Gopal, K. R., Reddy, R. R.,
Reddy, L. S. S., Ahammed, Y. N., Narasimhulu, K., Moorthy, K. K., and Babu,
S. S.: Potential source regions contributing to seasonal variations of black
carbon aerosols over Anantapur in southeast India, Aerosol Air Qual.
Res., 12, 145–161, https://doi.org/10.4209/aaqr.2011.10.0159, 2012. a
Reddy, M. S., Boucher, O., Venkataraman, C., Verma, S., Leon, J. F., and Pham,
M.: GCM estimates of aerosol transport and radiative forcing during
INDOEX, J. Geophys. Res., 109, D16205, https://doi.org/10.1029/2004JD004557, 2004. a, b
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J.,
Christopher, S. A., Curtis, C. A., Schmidt, C. C., Eleuterio, D. P.,
Richardson, K. A., and Hoffman, J. P.: Global monitoring and forecasting of
biomass-burning smoke: Description of and Lessons From the Fire Locating and
Modeling of Burning Emissions (FLAMBE) Program, IEEE J. Sel. Top. Appl.
Earth Observ. Remote Sens., 2, 144–162, https://doi.org/10.1109/JSTARS.2009.2027443,
2009. a
Rypdal, K., Stordal, F., Fuglestvedt, J. S., and Berntsen, T.: Introducing
top-down methods in assessing compliance with the Kyoto Protocol, Clim.
Pol., 5, 393–405, https://doi.org/10.1080/14693062.2005.9685565,
2005. a
Sadavarte, P. and Venkataraman, C.: Trends in multi-pollutant emissions from a
technology-linked inventory for India: I. Industry and transport sectors,
Atmos. Environ., 99, 353–364,
https://doi.org/10.1016/j.atmosenv.2014.09.081, 2014. a, b, c
Safai, P., Raju, M., Rao, P., and Pandithurai, G.: Characterization of
carbonaceous aerosols over the urban tropical location and a new approach to
evaluate their climatic importance, Atmos. Environ., 92, 493–500,
https://doi.org/10.1016/j.atmosenv.2014.04.055, 2014. a
Safai, P. D., Kewat, S., Pandithurai, G., Praveen, P. S., Ali, K., Tiwari, S.,
Rao, P. S. P., Budhawant, K. B., Saha, S. K., and Devara, P. C. S.: Aerosol
characteristics during winter fog at Agra, North India, J. Atmos. Chem., 61,
101–118, https://doi.org/10.1007/s10874-009-9127-4, 2008. a
Sahu, L., Sheel, V., Pandey, K., Yadav, R., Saxena, P., and Gunthe, S.:
Regional biomass burning trends in India: Analysis of satellite fire data, J.
Earth Syst. Sci., 124, 1377–1387, 2015. a
Sanap, S. D., Ayantika, D. C., Pandithurai, G., and Niranjan, K.: Assessment of
the aerosol distribution over Indian subcontinent in CMIP5 models, Atmos.
Environ., 87, 123–137, https://doi.org/10.1016/j.atmosenv.2014.01.017, 2014. a
Santra, S., Verma, S., Fujita, K., Chakraborty, I., Boucher, O., Takemura, T., Burkhart, J. F., Matt, F., and Sharma, M.: Simulations of black carbon (BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources, and implications on glacier runoff, Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, 2019. a, b, c
Satheesh, S., Ramanathan, V., Li-Jones, X., Lobert, J., Podgorny, I., Prospero,
J., Holben, B., and Loeb, N.: A model for the natural and anthropogenic
aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment
data, J. Geophys. Res.-Atmos., 104, 27421–27440, 1999. a
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006. a
Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary
boundary layer heights from radiosonde observations: Comparison of methods
and uncertainty analysis, J. Geophys. Res., 115, D16113,
https://doi.org/10.1029/2009JD013680, 2010. a
Singh, B. P., Tiwari, S., Hopke, K. P., Singh, R. S., Bisht, D. S., Srivastava,
A. K., Singh, R. K., Dumka, U. C., Singh, A. K., Rai, B. N., and Srivastava,
M. K.: Seasonal inhomogeneity of soot particles over the Central
Indo-Gangetic Plains, India: influence of meteorology, J.
Meteorol. Res., 29, 935–949, 2015. a
Singh, N., Solanki, R., Ojha, N., Janssen, R. H. H., Pozzer, A., and Dhaka, S. K.: Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations, Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016, 2016. a
Srivastava, S., Lal, S., Subrahamanyam, D. B., Gupta, S., Venkataramani, S.,
and Rajesh, T.: Seasonal variability in mixed layer height and its impact on
trace gas distribution over a tropical urban site: Ahmedabad, Atmos. Res.,
96, 79–87, https://doi.org/10.1016/j.atmosres.2009.11.015, 2010. a
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate
change 2013: The Physical science basis. Contribution of working group I to
the fifth assessment report of the intergovernmental panel on climate change,
Cambridge University Press, Cambridge, New York, https://doi.org/10.1017/CBO9781107415324,
2014. a
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He,
D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H., and
Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003. a, b
Stromatas, S., Turquety, S., Menut, L., Chepfer, H., Péré, J. C., Cesana, G., and Bessagnet, B.: Lidar signal simulation for the evaluation of aerosols in chemistry transport models, Geosci. Model Dev., 5, 1543–1564, https://doi.org/10.5194/gmd-5-1543-2012, 2012. a
Stull, R. B.: An introduction to boundary layer meteorology, Springer, New York,
1988. a
Surendran, D. E., Beig, G., Ghude, S. D., Panicker, A. S., Manoj, M. G., Chate,
D. M., and Ali, K.: Radiative forcing of black carbon over Delhi, Int. J.
Photoenergy, 2013, 313652, https://doi.org/10.1155/2013/313652, 2013. a, b
Szopa, S., Foret, G., Menut, L., and Cozic, A.: Impact of large scale
circulation on European summer surface ozone and consequences for modelling
forecast, Atmos. Environ., 43, 1189–1195,
https://doi.org/10.1016/j.atmosenv.2008.10.039, 2009. a
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006. a, b
Thamban, N. M., Tripathi, S. N., Moosakutty, S. P., Kuntamukkala, P., and
Kanawade, V. P.: Internally mixed black carbon in the Indo-Gangetic Plain
and its effect on absorption enhancement, Atmos. Res., 197, 211–223,
https://doi.org/10.1016/j.atmosres.2017.07.007, 2017. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989. a
Tripathi, S. N., Dey, S., Tare, V., and Satheesh, S. K.: Aerosol black carbon
radiative forcing at an industrial city in northern India, Geophys. Res.
Lett., 32, L08802, https://doi.org/10.1029/2005GL022515, 2005a. a
Tripathi, S. N., Dey, S., Tare, V., satheesh, S. K., Lal, S., and
Venkataramani, S.: Enhanced layer of black carbon in a north Indian
industrial city, Geophys. Res. Lett., 32, L12802, https://doi.org/10.1029/2005GL022564,
2005b. a
Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer:
Sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37,
129–148, 1986. a
Vaishya, A., Singh, P., Rastogi, S., and Babu, S. S.: Aerosol black carbon
quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and
source apportionment, Atmos. Res., 185, 13–21,
https://doi.org/10.1016/j.atmosres.2016.10.001, 2017. a
van Leer, B.: Towards the ultimate conservative difference scheme: IV. A
new approach to numerical convection, J. Comput. Phys., 23, 276–299, 1979. a
Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and
Friedlander, S. K.: Residential biofuels in South Asia: carbonaceous aerosol
emissions and climate impacts, Science, 307, 1454–1456,
https://doi.org/10.1126/science.1104359, 2005. a, b, c, d
Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J.-F.,
Crouzille, B., Boucher, O., and Streets, D. G.: Emissions from open biomass
burning in India: Integrating the inventory approach with high-resolution
Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land
cover data, Global Biogeochem. Cy., 20, GB2013,
https://doi.org/10.1029/2005GB002547, 2006. a, b, c
Verma, S., Venkataraman, C., Boucher, O., and Ramachandran, S.: Source
evaluation of aerosols measured during the Indian Ocean Experiment
using combined chemical transport and back trajectory modeling, J. Geophys.
Res., 112, D11210, https://doi.org/10.1029/2006JD007698, 2007. a
Verma, S., Venkataraman, C., and Boucher, O.: Origin of surface and columnar
INDOEX aerosols using source- and region-tagged emissions transport in a
general circulation model, J. Geophys. Res., 113, D24211,
https://doi.org/10.1029/2007JD009538, 2008. a
Verma, S., Venkataraman, C., and Boucher, O.: Attribution of aerosol radiative
forcing over India during the winter monsoon to emissions from source
categories and geographical regions, Atmos. Environ., 45, 4398–4407,
https://doi.org/10.1016/j.atmosenv.2011.05.048, 2011. a, b
Verma, S., Bhanja, S. N., Pani, S. K., and Misra, A.: Aerosol optical and
physical properties during winter monsoon pollution transport in an urban
environment, Environ. Sci. Pollut. Res., 21, 4977–4994,
https://doi.org/10.1007/s11356-013-2383-5, 2014. a, b
Verma, S., Priyadharshini, B., Pani, S. K., Kumar, D. B., Faruqi, A. R.,
Bhanja, S. N., and Mandal, M.: Aerosol extinction properties over coastal
West Bengal Gangetic plain under inter-seasonal and sea breeze influenced
transport processes, Atmos. Res., 167, 224–236,
https://doi.org/10.1016/j.atmosres.2015.07.021, 2016. a, b
Verma, S., Reddy, D. M., Ghosh, S., Kumar, D. B., and Chowdhury, A. K.:
Estimates of spatially and temporally resolved constrained black carbon
emission over the Indian region using a strategic integrated modelling
approach, Atmos. Res., 195, 9–19, https://doi.org/10.1016/j.atmosres.2017.05.007,
2017. a, b, c, d, e, f, g, h, i
Wang, P., Wang, H., Wang, Y. Q., Zhang, X. Y., Gong, S. L., Xue, M., Zhou, C. H., Liu, H. L., An, X. Q., Niu, T., and Cheng, Y. L.: Inverse modeling of black carbon emissions over China using ensemble data assimilation, Atmos. Chem. Phys., 16, 989–1002, https://doi.org/10.5194/acp-16-989-2016, 2016. a, b, c
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res.-Atmos., 119, 195–206, https://doi.org/10.1002/2013JD020824,
2014a. a
Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., Piao, S.,
Shen, H., Vuolo, M. R., Valari, M., Chen, H., Chen, Y., Cozic, A., Huang, Y.,
Li, B., Li, W., Shen, G., Wang, B., and Zhang, Y.: Exposure to ambient black
carbon derived from a unique inventory and high-resolution model, P. Natl. Acad. Sci. USA, 111,
2459–2463, https://doi.org/10.1073/pnas.1318763111, 2014b. a
Wesely, M.: Parameterization of surface resistances to gaseous dry deposition
in regional-scale numerical models, Atmos. Environ., 23, 1293–1304,
https://doi.org/10.1016/0004-6981(89)90153-4, 1989. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and
below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37,
245–282, 2000. a
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry
deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
a
Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P.-L., Singh, B., Huang, J., and Fu, Q.: Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 15, 6205–6223, https://doi.org/10.5194/acp-15-6205-2015, 2015. a
Zhang, S., Penner, J. E., and Torres, O.: Inverse modeling of biomass burning
emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J.
Geophys. Res., 110, D21306, https://doi.org/10.1029/2004JD005738, 2005. a
Zhou, T., Chen, Z., Zou, L., Chen, X., Yu, Y., Wang, B., Bao, Q., Bao, Y., Cao,
J., He, B., Hu, S., Li, L., Li, J., Lin, Y., Ma, L., Qiao, F., Rong, X.,
Song, Z., Tang, Y., Wu, B., Wu, T., Xin, X., Zhang, H., and Zhang, M.:
Development of climate and earth system models in China: Past achievements
and new CMIP6 results, J. Meteorol. Res., 34, 1–19,
https://doi.org/10.1007/s13351-020-9164-0, 2020. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7551 KB) - Full-text XML
Short summary
Wintertime direct radiative perturbation due to black carbon (BC) aerosols was assessed over the Indo-Gangetic Plain with an efficiently modelled BC distribution. The atmospheric radiative warming due to BC was about 50–70 % larger than surface cooling. Compared to the atmosphere without BC, for which a net cooling at the top of the atmosphere was exhibited, enhanced atmospheric radiative warming by 2–3 times and a reduction in surface cooling by 10–20 % were found due to BC.
Wintertime direct radiative perturbation due to black carbon (BC) aerosols was assessed over the...
Altmetrics
Final-revised paper
Preprint